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Learning Objectives

In this course, you will learn about

1. the terminology, aims and history of cryptography,
2. the basic principles of symmetric algorithms (those with a single key),
3. the principles of asymmetric algorithms (those with a public and private

key),
4. the methods of user authentication, the proof of the identity of a user,
5. the methods of cryptanalysis, the art of deciphering enciphered data

without knowledge of the key,
6. the practical considerations of applied cryptography in a corporate envi-

ronment,
7. its manifold implementations, for example, in Online banking, Blockchain

and electronic voting.

The recommended reading will introduce you to the most important authors
and articles in cryptology.
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1 Basic concepts of cryptology

Study Goals

On completion of this chapter, you will have learned . . .

• . . . to distinguish between cryptology, cryptography and cryptanalysis.
• . . . what cryptography is good for: IT-security for Conődentiality, Integrity
and Availability.

• . . . basic (historic) cryptographic algorithms.
• . . . its historical impact.
• . . . a key criterion (by Kerckhoff) for best cryptographical practice.
• . . . The principal uses of Hash functions.
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Introduction

Cryptography serves to protect information by encryption (or enciphering),
the shuffling of data (that is, the transformation of intelligible into indecipherable
data) that only additional secret information, the key, can feasibly undo it
(decryption or deciphering).

encrypt/encipher: to shuffle data so that only additional secret
information can feasibly undo it.

key: the additional secret information that is practically indispens-
able to decrypt.

decrypt/decipher: to invert encryption.

That is, the shuffled (enciphered) data can practically only be recovered (de-
ciphered) by knowledge of the key. Since the original data is in principle still
recoverable, it can be thought of as concealment.

Because historically only written messages were encrypted, the source data,
though a string of 1s and 0s (the viewpoint adopted in symmetric cryptography)
or a number (that adopted in asymmetric cryptography), is called plaintext and
the encrypted data the ciphertext.

plaintext respectively ciphertext: the data to be encrypted respec-
tively the encrypted data.

Single and Public-Key Cryptography. Historically, the key to reverse this
transformation (of intelligible data into indecipherable data) was both necessary
to decipher and to encipher, symmetric encryption. That is, in the past, the key
used to encrypt and decrypt was always the same: Symmetric cryptography had
been used by the Egyptians almost 2000 years before Christ, and was used, for
example,

• during World War II on the Engima machine, and
• nowadays, in the encryption of a wireless network (for example, by the
AES algorithm).

symmetric cryptography: cryptography is symmetric when the same
key is used to encrypt and decrypt.
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In the 70s asymmetric cryptography was invented, in which the key to encipher
(the public key) and the key to decipher (the secret or private key) are different.

asymmetric cryptography: cryptography is asymmetric when dif-
ferent keys are used to encrypt and decrypt. The key to encipher is
public and the key to decipher is private (or secret).

In fact, only the key to decipher is private, kept secret, while the key to encrypt
is public, known to everyone. In comparison with symmetric cryptography,
asymmetric encryption avoids the risk of compromising the key to decipher
that is involved

• in exchanging the key with the cipherer, and
• in ownership of the cipher key (by the cipherer in addition to the deci-
pherer).

On top, It is useful, that the keys exchange their roles, the private key enciphers,
and the public one deciphers, a digital signature: While the encrypted message
will no longer be secret, every owner of the public key can check whether the
original message was encrypted by the private key.

Nowadays such asymmetric cryptography algorithms are ubiquitous on the
Internet: Examples are

• RSA which is based on the difficulty of factoring in prime numbers, or
• ECC which is based on the difficulty of computing points in őnite curves,

which protect (őnancial) transactions on secure sites (those indicated by a
padlock in the browser’s address bar).

Data Format. Up to the digital age, cryptography mainly studied the trans-
formation of intelligle text into indecipherable text. Since then, cryptography
studies the transformation of processible (digital) data into indecipherable
(digital) data. This data is, for example, a digital őle (text, image, sound, video,
. . . ). It is considered a bit sequence (denoted by a string of 0s and 1s) or byte
sequence (denoted by a string of hexadecimal pairs 00, 01, . . . , FE, FF) or a
number (denoted as usual by their decimal expansion 0, 1, 2, 3 . . . ). Let us
recall that every 1011... bit sequence is a number n via its binary expansion

n = 1 + 0 · 2 + 1 · 22 + 1 · 23 + · · ·
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(and vice versa).

The point of view of a sequence of bits (or, more exactly, of hexadecimal digits
whose sixteen symbols 0 ś 9 and A ś F correspond to a group of four bits) is
preferred in symmetric cryptography whose algorithms transform them, for
instance, by permutation and substitution of their digits. The point of view of a
number is preferred in asymmetric cryptography whose algorithms operate on
it by mathematical functions such as raising to a power (raising to a power)
and exponentiation.

The key, the additional secret information, can take various form; which form is
mainly a question of convenience, most common are:

• that of a number,
• that of a sequence of letters, for example,

ś a password, or
ś a secret phrase (with spaces).

For example, in the ancient Scytale algorithm (see Section 2) that uses a role
of parchment wrapped around a stick, the key consists of the circumference
(in letters) of the stick, a small number. Nowadays, PIN codes (= Personal
Identiőcation Number) or passwords are ubiquitous in day-to-day life; to facilitate
memorization the memorization of complete secret sentences (= pass phrases)
is encouraged.

Asymmetric encryption depends on larger keys and therefore stores them in
őles (of 64-letter texts, called ASCII-armor) of a couple of kilobytes. For example
(where ... indicates tens of skipped lines):

-----BEGIN PGP PUBLIC KEY BLOCK-----

Version: SKS 1.1.6

Comment: Hostname: pgp.mit.edu

mQENBFcFAs8BCACrW3TP/ZiMRQJqWP0SEzXqm2cBZ+fyBUrvcu1fGU890pd4

3JdiWIreHx/sbJdW1wjABeW8xS1bM67nLW9VVHUPLi9QP3VGfmqmXqbWIB7O

...

-----END PGP PUBLIC KEY BLOCK-----
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1.1 Terminology

The preőx Crypto-, comes from Greek kryptós, łhiddenž.

Cryptography. Cryptography (from the Greek gráphein, łto writež) is the
art of hidden writing: shuffling information so that it is indecipherable to all
but the intended recipient.

Cryptography: the art of transforming information so that it is
indecipherable to all but the intended recipient.

That is, cryptography is the art of transforming information such that it is
incomprehensible to all but the intended recipient. Useful, since Antiquity, for
example to conceal military messages from the enemy. Since then, (electronic
binary) data has replaced text, and what used to be concealing written messages
exchanged by messengers or kept secret has become symmetric cryptography:
securing data ŕowing between computers or stored on a computer.

Since the 70s, asymmetric cryptography makes it possible (by digital signatures)
to verify the identities of participants and undeniably (non-repudiation) register
their transactions in electronic commerce.

Cryptographic methods (or Ciphers) are generically classiőed

1. according to whether sender and recipient use the same key (symmetric,
or single-key) cipher, such as AES, or different keys to encrypt and decrypt
(asymmetric, or two-key, or public-key) cipher, such as RSA or ECC.

Among the symmetric ciphers, these are generically classiőed

2. according to whether they operate on blocks of bits of őxed length, say
128 bits, (block cipher, such as AES or RSA) or single bits (stream ciphers such
as RC4): While stream ciphers typically are simpler, faster and predestined
for real time transmissions, they tend to be less secure and are therefore
less commonly used (for example, a Wi-Fi network is commonly secured
by a block cipher such as AES).
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Cryptanalysis. Cryptanalysis (from the Greek analýein, łto unravelž) is
the art of untying the hidden writing: the breaking of ciphers, that is, recovering
or forging enciphered information without knowledge of the key.

Cryptanalysis: the art of deciphering ciphertext without knowledge
of the key.

Cryptanalysis (colloquially łcode breakingž) is the art of deciphering the enci-
phered information without knowledge of the secret information, the key, that
is normally required to do so; usually by őnding a secret key.

Cryptanalysis of public-key algorithms relies on the efficient computation of
mathematical functions on the integers. For instance, cryptanalysis of the most
famous public-key algorithm, RSA , requires the factorization of a number with
> 500 decimal digits into its prime factors, which is computationally infeasible
(without knowledge of the key).

Cryptanalysis of symmetric ciphers depends on the propagation of patterns in
the plaintext to the ciphertext. For example, in a monoalphabetic substitution
cipher (in which each letter is replaced by another letter, say A by Z), the
numbers of occurrences with which letters occur in the plaintext alphabet and
in the ciphertext alphabet are identical (if A occurred ten times, then so does
Z). If the most frequent letters of the plaintext can be guessed, so those of the
ciphertext.

A powerful technique is Differential cryptanalysis that studies how differences
(between two plaintexts) in the input affect those at the output (of the corre-
sponding ciphertexts). In the case of a block cipher, it refers to tracing the
(probabilities of) differences through the network of transformations. Differen-
tial cryptanalysis attacks are usually Chosen-plaintext attacks, that is, the attacker
can obtain the corresponding ciphertexts for some set of plaintexts of her
choosing.

Cryptology. Cryptology (from the Greek lógos, łwordž, łreasonž, łteachingž
or łmeaningž) is the science of hiding, the science of trusted communication
which embraces cryptography and cryptanalysis; according to Webster (1913) it
is łthe scientiőc study of cryptography and cryptanalysisž. Though cryptology is
often considered a synonym for cryptography and occasionally for cryptanalysis,
cryptology is the most general term.
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Cryptology: the science of trusted communication, including cryp-
tography and in particular cryptanalysis.

Secrecy, though still important, is no longer the sole purpose of cryptology
since the advent of public-key cryptography in the 80s. To replace by electronic
devices what had historically been done by paperwork, digital signatures and
authentication were introduced.

Adjectives often used synonymously are secret, private, and confidential. They all
describe information which is not known about by other people or not meant
to be known about. Something is

• secret, from Latin secretus łset apartž, if it is only known by a particular
person or group,

• confidential, from from Latin conődere, łto have full trust or reliancež, if
it is to be kept secret, that is, not to be told or shared with other people,

• private, from Latin privatus łset apartž (from the state), if it is meant to
be secret, especially regarding an individual versus the state.

Frequently confused, and misused, terms in cryptology are code and cipher,
often employed as though they were synonymous: A code is a rule for replacing
one information symbol by another. A cipher likewise, but the rules governing
the replacement (the key) are a secret known only to the transmitter and the
legitimate recipient.

Code. A codification or an encoding is a rule for replacing one bit of
information (for example, a letter) with another one, usually to prepare it for
processing by a computer.

encoding: a rule for replacing one bit of information (for example,
a letter) with another one, usually to process it by a computer.

For example,

• Morse Code, that replaces alphanumeric characters with patterns of dots
and dashes,

• the American Standard Code for Information Interchange (ASCII code)
from 1963 that represents on computers 128 characters (and operations
such as backspace and carriage return) by seven-bit numbers, that is, by
sequences of seven 1s and 0s. For example, in ASCII a lowercase a is
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always 1100001, a lowercase b is always 1100010, and so on (whereas an
uppercase A is always 1000001, an uppercase B is always 1000010).

• more recently, UTF-8 (8-bit Unicode Transformation Format) is a variable-
length character encoding by Ken Thompson and Rob Pike to represent
any universal character in the Unicode standard (which possibly has
up to 22 ≈ 4 billion characters, and includes the alphabets of many
languages, such as English, Chinese, . . . , as well as meaningful symbols
such as emoticons) by a sequence of between 1 up to 4 bytes, and which is
backwards compatible with ASCII , and is becoming the de facto standard.

Ciphers. A cipher, like an encoding, also replaces information (which may
be anything from a single bit to an entire sequence of symbols) with another
one. However, the replacement is made according to a rule deőned by a key so
that anyone without its knowledge cannot invert the replacement.

cipher: a rule for replacing information (for example, a text) so
that its inverse is only feasible by knowledge of the key.

Information is frequently both encoded and enciphered: For example, a text
is encoded, for example, by ASCII, and then encrypted, for example, by the
Advanced Encryption Standard (AES).

Self-Check Questions.

1. Please distinguish between cryptology, cryptography and cryptanalysis:

• cryptology is the science of secure storage and communication of information.
• cryptography is the art of secure storage and communication of information.
• cryptanalysis is the art of decryption of encrypted information without

knowledge of the key.

2. Please distinguish between encoding and encryption:

While both encoding and encryption transform information into a computer

readable format, only for encryption this transformation is not invertible without

knowledge of the key.
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1.2 IT security: threats and common attacks

A snappy acronym to resume the fundamental aims of information security
is the CIA, which stands for: Conődentiality, Integrity and Availability. That
is, conődentiality of information, integrity of information and availability of
information.

CIA: stands for Conődentiality, Integrity and Availability.

More comprehensive are łthe five pillars of Information Assurancež, that
add authentication and non-repudiation: Conődentiality, integrity, availability,
authentication and non-repudiation of information.

The őve pillars of Information Assurance: are formed by Conőden-
tiality, integrity, availability, authentication and non-repudiation of
information.

Cryptography helps to achieve all of these to good effect: Good encryption,
as achieved by thoroughly tested standard algorithms such as AES or RSA, is
practically impossible to break computationally; instead, keys are stolen or
plaintext is stolen before encryption or after decryption. While cryptography
provides high technical security, human failure, for example, arising out of
convenience or undue trust, is the weakest point in information security.

Conődentiality. Information that is confidential is meant to be kept secret,
that is, should not be disclosed to other people, for example information that is
known only by someone’s doctor or bank. In law, conődential is the relation
existing between, for example, a client and her counsel or agent, regarding
the trust placed in one by the other. In the information security standard
ISO/IEC 27002 the International Organization for Standardization (ISO) deőnes
confidentiality as łensuring that information is accessible only to those authorized
to have accessž. In IT, it means ensuring that sensitive information stored on
computers is not disclosed to unauthorized persons, programs or devices. For
example, avoiding that anyone with access to a network can use common tools
to eavesdrop on traffic and intercept valuable private information.
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Integrity. Integrity is the state of being whole, the condition of being uniőed
or sound in construction.

(Data) Integrity is about the reliable, complete and error-free, transmission and
reception or storage of data: that the original data had not been altered or
corrupted; in particular, is valid in accordance with expectations.

When the data has been altered, either through electronic damage by software
or physical damage to the disk, the data is unreadable. For example when we
download a őle we verify its integrity by calculating its hash and comparing
with the hash published by source. Without such a check, someone could, for
example, package a Trojan horse into an installer on Microsoft Windows (that,
as a last resort, hopefully would already be known and detected by an antivirus
program such as Microsoft Defender).

Availability. Though unrelated to cryptology, in IT security availability of
information against threats such as DoS (Denial of Service) attacks (to deny
users of the Website access to a Website by ŕooding it with requests) or accidents,
such as power outages, or natural disasters such as earthquakes. To achieve
it, it is best to have a safety margin and include redundancy, in particular, to
have

• parallel redundant failover hardware, such as a server or network, which is
always kept running so that at any moment, upon detected failure of the
primary system, processing can be automatically shifted over.

• prevent intrusion by monitoring network traffic patterns for anomalies
and block network traffic when necessary.

Authentication. Authentic (from Greek authentes, real or genuine) means
according to Webster (1913)

• not false or copied, genuine, real.
• having the origin supported by unquestionable evidence, veriőed, or
• entitled to acceptance or belief because of agreement with known facts or
experience; reliable; trustworthy.

Authentication thus is the veriőcation of something (or someone) as łauthenticž.
This might involve conőrming the identity of a person or the origins of an
object.

18



In IT, authentication means

• veriőcation of the identity of a user and possibly her permission to access
an object; convincing a computer that a person is who she claims to be
after identiőcation.

• veriőcation that data is unchanged between two points of time; be it
intentionally (altered) or accidentally (corrupted).

To verify her identity, a person proves that she is who she claims to be by showing
some evidence. Devices that are used for authentication include passwords, per-
sonal identiőcation numbers, smart cards, and biometric identiőcation systems.
For example, to login, she enters her user identiőcation and password.

A common attack is that of the łman in the middlež, where the attacker assumes
to either correspondent the identity of the other correspondent. To solve this,
certiőcates, digital signatures by third parties, are used. Either,

• as in the web of trust in OpenPGP, by signatures among persons known to
each other over ends, or

• as on secure sites in a web browser, by a signature of an, uncondition-
ally trusted, central certiőcation authority, usually companies such as
VeriSign.

Non-repudiation. Repudiation is a legal term for disavowal of a legal bind
(such as an agreement or obligation); someone who repudiates:

• refuses to accept or be associated with a legal bind,
• refuses to recognize the validity of the legal bind (for example, her signa-
ture),

• refuses to fulőll the legal bind.

For example, a forged or forced signature is repudiable.

Non-repudiation is the assurance:

• that a contract cannot later be denied by either of the parties that agreed
on it;

• of the identity of the claimed sender or recipient of a given message.
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In computing, this means that authentication can hardly be refuted afterwards.
This is achieved by a digital signature.

For example,

• an electronic receipt proves that a particular user has sent a message such
as an instruction to buy an item in an online auction.

• if the e-mail says it was sent by Bob, then later on Bob can’t claim that it
was not originally sent by him.

In today’s global economy, where face-to-face agreements are often impossible,
non-repudiation is essential for safe commerce.

Self-Check Questions.

1. In practice, is sensitive information obtained by

□ human, or
□ cryptographic

failure?

2. What does CIA in IT security stand for: Confidentiality, Integrity and
Availability.

3. Please list the őve pillars of information security: Confidentiality, integrity,
availability, authentication and non-repudiation of information.

1.3 Aims of Cryptography in Child’s terms

Alice wants to send Bob a locked box (with a message or a key) without sending
the key, so that the box was never left unlocked throughout the process.
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A castle. An open lock is the public key and locking its application. The
key is the secret key:

1. Alice sends Bob a lock of hers.
2. Bob puts the keys in the box, locks it with Alice’s lock and sends the box

to Alice.
3. Alice opens the box.
4. Now Alice and Bob have a key to a common lock.

Two locks. The key or message in the box is the shared secret. The other
two keys the mutual secrets. From two two-sided one can be constructed by the
interchangeability of the order of the encryptions, commutativity.

0. Alice puts a message or key in a box.
1. Alice padlocks the box (and keeps the key) and sends the locked box to

Bob.
2. Bob obviously can’t open the box, but he secures the box with a second

padlock (and also keeps the key) and sends the double-locked box back
to Alice.

3. Alice opens her lock with her key and sends the box (still padlocked) to
Bob.

4. Bob can now open the box with his own key.

1.4 Historical Overview

The history of cryptography dates back at least 4000 years. We distinguish three
periods:

1. Till the 20th century, its methods were classic, mainly pen and paper.

2. In the early 20th century, they were replaced by more efficient and so-
phisticated methods by complex electromechanical machines, mainly
rotor machines for polyalphabetic substitution, such as the Enigma rotor
machine used by the axis powers during World War II.

3. Since then, digitalization, the replacement of analog devices by digital
computers, allowed methods of ever greater complexity. Namely, the most
tested algorithms are
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• DES (or its threefold iteration 3DES) and its successor AES for sym-
metric cryptography,

• RSA and its successor ECC (Elliptic Curve Cryptography) for asym-
metric cryptography.

Classic Cryptography. From antiquity till World War I, cryptography was
carried out by hand and thus limited in complexity and extent to at most a few
pages. The principles of cryptanalysis were known, but the security that could
be practically achieved was limited without automatization. Therefore, given
sufficient ciphertext and effort, cryptanalysis was practically always successful.

The principles of cryptanalysis were őrst understood by the Arabs. They used
both substitution and transposition ciphers, and knew both letter frequency
distributions and probable plaintext in cryptanalysis. Around 1412, al-Kalka-
shand̄ı gave in his encyclopedia Sub̄ıal-āısh̄ı a manual on how to cryptanalyze
ciphertext using letter frequency counts with lengthy examples.

Scytale. A scytale (from Latin scytala) consists of a rod with a band of
parchment wound around it on which is written a secret message. It was rolled
spirally upon a rod, and then written upon. The secret writing on the strip
wound around the rod is only readable if the parchment was to be wound
on a rod of the same thickness; It is a transposition cipher, that is, shuffles, or
transposes, the letters of the plaintext.

Caesar’s Cipher. Caesar’s Cipher is one of the simplest and most widely-
known chiphers, named after Julius Caesar (100 ś 44 BC), who used it to
communicate with his generals. It is a substitution cipher that replaces, sub-
stitutes, each alphabetic letter of the plaintext by a őxed alphabetic letter. In
Caesar’s Cipher, each letter in the plaintext is shifted through the alphabet the
same number of positions; that is, each letter in the plaintext is replaced by a
letter some őxed number of positions further down the alphabet.

Bacon’s Cipher. Francis Bacon’s cipher from 1605 is an arrangement of the
letters a and b in őve-letter combinations (of which there are 25 = 32 ) that each
represent a letter of the alphabet (of which there are 26 ). Nowadays we would
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call a code, but at the time it illustrated the important principle that only two
different signs can be used to transmit any information.

Alberti’s Cipher Disk. In 1470, Leon Battista Alberti described in Trattati
in Cifra (łTreatise on Ciphersž) the őrst cipher disk to shift the letters of the
alphabet cyclically. He recommended changing the offset after every three or
four words, thus conceiving a polyalphabetic cipher in which the same alphabetic
letters are replaced by different ones. The same device was used more than four
centuries later by the U.S. Army in World War I.

ADFGVX cipher. The best known cipher of World War I is the German
ADFGVX cipher:

1. The 26 Latin letters and 10 arabic digits were replaced in a 6 x 6 matrix
by pairs of the letters A, D, F, G, V, and X.

2. The resulting text was then written into a rectangle, and
3. then the columns read in the order indicated by the key.

Invented by Fritz Nebel, it was introduced in March 1918 for use by mobile units.
The French Bureau du Chiffre, in particular, Georges Painvin, broke the cipher
a month later Ð still too late as the German attacks had already ceded.

Electromechanical Cryptography by Rotor Machines. The mechanization
of cryptography began after World War I by the development of so-called rotor
cipher machines:

These rotors are stacked. The rotation of one rotor causes the next one to rotate
1/26 of a full revolution. ( Just like in an odometer where after a wheel has
completed a full revolution, the next one advances 1/10 of a full revolution.) In
operation, there is an electrical path through all rotors. Closing the key contact
of the plaintext letter on a typewriter-like keyboard

1. emits a current to one of the contacts on the initial rotor,
2. The current then passes through the cable salad of the stacked rotors

(which depends on their rotational positions!), and
3. ends up at an indicator where it lights up the lamp of the ciphertext letter.
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Figure 1: The Alberti substitution disk (Buonafalce (2014))

In the US, Edward H. Hebern made in 1917 the őrst patent claim to accomplish
polyalphabetic substitution by cascading a collection of monoalphabetic substi-
tution rotors, wiring the output of the őrst rotor to the input of the following
rotor, and so on. In Europe, Already in 1915 such a rotor machine had been
built by two Dutch naval officers, Lieut. R.P.C. Spengler and Lieut. Theo van
Hengel, and independently by a Dutch mechanical engineer and wireless oper-
ator, Lieut. W.K. Maurits. Around the same time as Hebern, Arthur Scherbius
from Germany (who őled his patent in February 1918) and Hugo A. Koch
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Figure 2: Enigma Rotor Wiring (CourtlyHades296 (2017))

Figure 3: CrypTool 2 has an animation of the encryption by Enigma; Esslinger
et al. (2012)
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from the Netherlands (a year later), also built rotor machines, which were
commercialized and evolved into the German Enigma used in World War II.

In Japan, the Japanese Foreign Office put into service its őrst rotor machine
in 1930, which was cryptanalyzed in 1936, using solely the ciphertexts, by the
U.S. Army’s Signal Intelligence Service (SIS). (In 1939 a new cipher machine
was introduced, in which rotors were replaced by telephone stepping switches,
but readily broken by the SIS again solely relying on ciphertext; even more so,
their keys could be foreseen.)

The Invention of Engima. Arthur Scherbius was born in Frankfurt am Main
on 20 October 1878 as son of a businessman. After studying at the Technical
College in Munich, he completed his doctoral dissertation at the Technical
College in Hanover in 1903, then worked for several major electrical companies
in Germany and Switzerland. In 1918, he submitted a patent for a cipher
machine based on rotating wired wheels and founded his own őrm, Scherbius
and Ritter. Since both the imperial navy and the Foreign Office declined interest,
he entered the commercial market in 1923 and advertised the Enigma machine,
as it was now called, in trade publications or at the congress of the International
Postal Union. This sparked again the interest of the German navy in the need
for a secure cipher, and a slightly changed version was in production by 1925.
Still, the corporation continued to struggle for proőtability because commercial
as public demand was conőned to a few hundred machines. While Scherbius
fell victim to a fatal accident involving his horse-drawn carriage, and died in
1929, his corporation survived and by 1935 amply supplied the German forces
under Hitler’s rearmament program.

The Breakage of Enigma. Polish and British cryptanalysis solved the Ger-
man Enigma cipher (as well as two telegraph ciphers, Lorenz-Schlüsselmaschine
and Siemens & Halske T52). To this end

• the patents of the Enigma were őled in the United States,
• similar machines were commercially available, and
• the rotor wirings were known from a German code clerk:

Hans-Thilo Schmidt, decorated with an Iron Cross in World War I, worked
as a clerk at a cipher office (previously lead by his brother). In June 1931,
he contacted the intelligence officer at the French embassy and agreed with
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Rodolphe Lemoine to reveal information about the Enigma machine, copies
of the instruction manual, operating procedures and lists of the key settings.
However, French cryptanalysts made little headway, and the material was passed
on to Great Britain and Poland, whose specialists had more success:

The commercial version of the Enigma had a rotor at the entry and his wiring
was unknown. However, the Polish cryptanalyst Marian Rejweski, guided by
the German inclination for order, found out that it did not exist in the military
version; what is more, he inferred the internal wirings of the cylinders by
distance, that is, by mere cryptanalysis of the enciphered messages.

Figure 4: Marian Rejweski; Thuresson (2013)

The Britisch cryptanalysts in Bletchley Park (among them the mathematician
Alan Turing, a founding father of theoretical computer science) could reduce
by likely candidates the number of possible keys from 150 trillions to around a
million, a number that allowed a work force of around 4200 (among them 80%

women) an exhaustive key-search with the help of the Turing Bomb, an ingenious
electromechanical code-breaking machine that imitated a simultaneous run of
many Enigma machines and efficiently checked the likelihood of their results.
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Figure 5: The inner workings of the Turing bomb; Petticrew (2018)

Schmidt continued to inform the Allies throughout war till the arrest (and
confession) of Lemoine in Paris which lead to that of Schmidt by the Gestapo
in Berlin on 1 April 1943 and his death in prison.

Digital Cryptography. After World War II, cryptographic machines stayed
conceptually the same till the early 80s: faster rotor machines in which rotors
had been replaced by electronic substitutions, but still merely concatenating
shifted monoalphabetic substitutions to obtain a polyalphabetic substitution.

However, such letter per letter substitutions are still linear over the letters, so the
ciphertext obtained from a plaintext will reveal how to decrypt all letters of a
plaintext of (at most) the same length. That is, a letter per letter substitution
diffuses little, that is, hardly spreads out changes; optimal diffusion is attained
whenever the change of a single letter of the plaintext causes the change of half
of the letters of the ciphertext. If the attacker has access to the ciphertexts of
many plaintexts, possibly of his own choosing, then he can obtain the key by
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the ciphertexts of two plaintexts that differ in a single position.

DES. Instead, computers made it possible to combine such substitutions
(such as Caesar’s Cipher) with transpositions (such as the Scytale), achieving
far better diffusion, which lead to the creation of one of the most widely used
ciphers in history, the Data Encryption Standard (DES), in 1976.

AES. In January 1997 the U.S. National Institute of Standards and Technol-
ogy (NIST; former National Bureau of Standards, NBS) announced a public
contest for a replacement of the aging DES, the Advanced Encryption Standard
(AES). Among 15 viable candidates from 12 countries, in October 2000 Rijndael,
created by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, was
chosen and became the AES.

Since improvements in computing power allowed to őnd the őxed 56-bit DES
key by exhaustive key-search (brute force), the NIST speciőcations for the
AES demanded an increasing key length, if need be. Rijndael not only was
shown immune to the most sophisticated known attacks such as differential
cryptanalysis (in Daemen and Rijmen (1999) and Daemen and Rijmen (2002))
and of an elegant and simple design, but is also both small enough to be
implemented on smart cards (at less than 10 000 bytes of code) and ŕexible
enough to allow longer key lengths.

Public-key cryptography. Since the ’80s, the advent of public-key cryptogra-
phy in the information age made digital signatures and authentication possible;
giving way to electronic information slowly replacing graspable documents.

Asymmetric encryption was őrst suggested publicly at Diffie and Hellman
(1976).

Conceptually it relies on a trap function (more speciőcally, in op.cit. the modular
exponential), an invertible function that is easily computable but whose inverse
is hardly computable in the absence of additional information, the secret key.

To encrypt, the function is applied; to decrypt its inverse with the secret key.
For example, in the approach according to Diffie and Hellman, this function is
the exponential, however, over a different domain than the real numbers we
are used to.
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In fact, Diffie and Hellman (1976) introduced only a scheme for exchanging a
secret key through an insecure channel. It was őrst put it into practice

• in Rivest, Shamir, and Adleman (1978), where the RSA cryptographic
algorithm was introduced, or

• by the ElGamal algorithm, more recent, but the closest example of the
original scheme.

Not only do these algorithms enable ciphering by a public key (thus removing
the problem of its secret communication), but, by using the private key instead to
encipher, made possible digital signatures, which might have been its commercial
breakthrough. These algorithms still stand strong, but others, such as elliptic
curve cryptography, are nowadays deemed more efficient at the same security.

Self-Check Questions.

1. Please list the major epochs of cryptography: Classic (Pen and Paper),
electromechanics (rotor machine) and digital age.

2. How many possible keys has Caesar’s Cipher? 26 including the trivial one.
3. Which one of Caesar’s Cipher and the Scytale is a substitution cipher?
Caesar’s Cipher is a substitution cipher and the Scytale is a transposition cipher.

4. What deőciency was shared by all rotor machines? As substitution is letter-
wise, the frequency of the alphabetical letters was preserved.

1.5 Security Criteria

Kerckhoff’s Principle. Kerckhoff principle postulates the independence
of a cryptographic algorithm’s security from its secrecy:

Kerckhoffs’ principle: The ciphertext should be secure even if
everything about it, except the key, is public knowledge.

While knowledge of the key compromises a single encryption, knowledge of the
algorithm will compromise all encryptions ever carried out. A public algorithm
guarantees the difficulty of decryption depending only on the knowledge of the
key, but not on the algorithm. The more it is used, the more likely it becomes
that the algorithm will be eventually known. For the algorithm to be useful, it
thus needs to be safe even though it is public.
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Claude Shannon (1916 ś 2001) paraphrased it as: łthe enemy knows the systemž,
Shannon’s maxim. The opposite would be to rely on a potentially weak, but
unknown algorithm, łsecurity through obscurityž; ample historic evidence shows
the futility of such a proposition (for example, the above ADFGVX cipher of
Section 1.4 comes to mind).

Shannon’s Criteria. Shannon’s principles of

• Confusion respectively Diffusion

give criteria for an uninferable relation between the ciphertext and

• the key respectively the plaintext.

Ideally, when one letter in the key respectively in the plaintext changes, then
half of the ciphertext changes, that is, each letter in the ciphertext changes with
a probability of 50%. While the output of the cipher, the ciphertext, depends
deterministically on the input, the plaintext, and the key, the algorithm aims to
obfuscate this relationship to make it as complicated, intertwined, scrambled as
possible: each letter of the output, of the ciphertext, depends on each letter of
the input, of the plaintext, and of the key.

Self-Check Questions.

1. Name two algorithms that satisfy Kerckhoff’s principle. DES and AES.

Summary

Cryptography protects information by shuffling data (that is, transforming
it from intelligible into indecipherable data) so that only additional secret
information, the key, can feasibly reverse it. Up to the end of the ’70s, the
key used to encrypt and decrypt was always the same: symmetric or (single-key)
cryptography. In the 70s asymmetric cryptography was invented, in which the key
to encipher (the public key) and the key to decipher (the secret or private key)
are different. In fact, only the key to decipher is private, kept secret, while
the key to encrypt is public, known to everyone. When the keys exchange
their roles, the private key enciphers, and the public one deciphers, then the
encryption is a digital signature. while the encrypted message will no longer be
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secret, every owner of the public key can check whether the original message
was encrypted by the private key. Because historically only written messages
were encrypted, the source data, though a stream of 1s and 0s (the viewpoint
adopted in symmetric cryptography) or a number (that adopted in asymmetric
cryptography), is called plaintext and the encrypted data the ciphertext.

The security

• of public-key algorithm relies on the inefficient computation of mathemat-
ical functions on the integers. For example, the most famous public-key
algorithm, RSA , requires the factorization of a number with > 500 decimal
digits into its prime factors, which is computationally infeasible (without
knowledge of the key);

• of symmetric cryptographic algorithms depends on the diffusion of small
differences on the input and key to large differences in the output; ideally,
if one bit of the input or key changes, then about half of the bits of the
output changes.

Good encryption, as achieved by standard algorithms such as AES or RSA, is
practically impossible to break computationally; instead, keys are stolen or
plaintext is stolen before encryption or after decryption.

A hash function is an algorithm that generates an output of őxed (byte) size
(usually around 16 to 64 bytes) from an input of variable (byte) size, for example,
a text or image őle, a compressed archive. The output string of őxed length
that a cryptographic hash function produces from a string of any length (an
important message, say) is a kind of inimitable łsignaturež. A person who
knows the łhash valuež cannot know the original message, but only the person
who knows the original message can prove that the łhash valuež is produced
from that message.

Questions

• How many keys has Caesar’s Cipher (excluding the trivial one)? 12, 13,
25 , 26

• For which non-trivial key is Caesar’s Cipher idempotent, that is, encrypting
the ciphertext again yields the plaintext? 1, 2, 26, 13

• Which cryptographic algorithm comes closest to satisfying Kerckhoff’s
principle? Scytale, Enigma, ADFGVX, One-time pad
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• Which one is an encryption algorithm? MD5, SHA-1, AES, CRC
• Which one is a hash function that is not cryptographic? MD5, SHA-1,
CRC, AES

Required Reading

The article Simmons et al. (2016) gives a good summary of cryptology, in
particular, historically; read its introduction and the section on history. As does
the őrst chapter of Menezes, Oorschot, and Vanstone (1997), which focuses more
on the techniques. The most recent work is Aumasson (2017), and a concise
but demanding overŕight of modern cryptography. Get started by reading its
őrst chapter as well.

Further Reading

Some classics are Frederick) Friedman (1976) which is a manual for cryptanalysis
for the U.S. military, originally not intended for publication.

The books Kahn (1996) and Singh (2000) trace out the history of cryptanalysis
in an entertaining way.

The book Schneier (2007) is a classic for anyone interested in understanding
and implementing modern cryptographic algorithms.
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2 Symmetric ciphers

Study Goals

On completion of this chapter, you will have learned . . .

• . . . that the two fundamental symmetric cryptographic algorithms are

ś substitution that replaces the alphabet of the plaintext by an alphabet
of the ciphertext (such as Caesar’s cipher), and

ś transposition (or permutation) that transposes the letters of the plain-
text (such as the Scytale).

• . . . that the only cryptographically perfectly secure cipher is the one-time
pad in which the key is as long as the plaintext

• . . . that modern algorithms like DES and AES are Substitution and Permu-
tation Networks that break the plaintext up into short blocks of the same
size as the key and, on each block, iterate

1. addition of the key,
2. substitution, and
3. permutation.
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Introduction

Up to the end of the ’70s, before the publication of Diffie and Hellman (1976) and
Rivest, Shamir, and Adleman (1978), all (known) cryptographic algorithms were
symmetric (or single-key), that is, used the same key to encipher and decipher.
Thus every historic algorithm, as sophisticated as it may be, be it Caesar’s
Cipher, the Scytale or the Enigma, was symmetric.

While asymmetric algorithms depend on a computationally difficult problem,
such as the factorization of a composed number into its prime factors, and
regard the input as a natural number, symmetric ones operate on the input as
a string (of bits or letters) by (iterated) substitutions and transpositions.

The only perfectly secure cipher is the one-time pad in which the key is as long
as the plaintext and the ciphertext is obtained by adding, letter by letter, each
letter of the key to the corresponding (that is, at the same position) letter of
the plaintext.

However, such a large key is impractical for more complex messages, such as
text, image or video őles: In modern times, it means that to encrypt a hard
drive, another hard drive that carries the key is needed.

To compensate the shorter key length, modern algorithms, ideally, create so
much intertwining that they achieve almost perfect diffusion, that is, the change
of a single bit of the input or key causes the change of around half of the output
bits. Modern algorithms, such as DES or AES, are substitution and permutation
network block ciphers, meaning that they encrypt one chunk of data at a time
by iterated transpositions and substitutions.

2.1 Substitution and Transposition

The two basic operations to encrypt are transposition and substitution:

• A transposition changes the order (that is, transposes or permutes) of the
symbols in the text but not the symbols themselves.

• A substitution replaces (that is, substitutes) every symbol in the text by
another (group of) symbol, but not the order of the symbols.

The historical prototypical algorithms for these two operations are:
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• the substitution cipher by Caesar, that advances every letter in the plain-
text by the three positions, that is, encrypts A as D, B as E, and so forth,
and

• the permutation of the plaintext by the scytale, or baton of Licurgo
(Spartan lawgiver around the ninth century BC), where the parchment is
wrapped around the baton and the text written on it horizontally.

We will see that even with many possible keys an algorithm, such as that given
by any permutation of the alphabet which has almost 280 keys, can be easily
broken if it preserves regularities, like the frequency of the letters.

As a criterion for security, there is that of diffusion by Shannon: Ideally, if a
letter in the plaintext changes, then half of the letters in the ciphertext changes.
Section 2.2 will show how modern algorithms, called substitution and permutation
networks, join and iterate these two complementary prototypical algorithms to
reach this goal.

ideal diffusion (according to Shannon): if a bit in the plaintext or
key changes, then half of the bits in the ciphertext changes.

Substitution ciphers. In a substitution cipher the key determines substi-
tutions of the plaintext alphabet (considered as a set of units of symbols such as
single letters or pairs of letters) by the ciphertext alphabet. For example, if the
units of the plaintext and ciphertext are both the letters of the Latin alphabet,
then a substitution permutes the letters of the Latin alphabet. If the substitution
cipher is monoalphabetic (such as Caesar’s Cipher), then the same substitution
is applied to every letter of the plaintext independent of its position. If the
substitution cipher is polyalphabetic (such as the Enigma), then the substitution
varies with the position of the letter in the plaintext. To encrypt, each alphabet-
ical unit of the plaintext is replaced by the substituted alphabetical unit, and
inversely to decrypt.

Substitution Cipher: a cipher that replaces each alphabetical unit
of the plaintext by a corresponding alphabetical unit.

Every monoalphabetic substitution cipher, that is, every plaintext symbol is
always encrypted into the same ciphertext symbol, is insecure: the frequency
distributions of symbols in the plaintext and in the ciphertext are identical, only
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the symbols having been relabeled. Therefore, for example in English, around
25 letters of ciphertext suffice for cryptanalysis.

The main approach to reduce the preservation of the single-letter frequen-
cies in the ciphertext is to use several cipher alphabets, that is, polyalphabetic
substitution.

Shift by a őxed distance. The simplest substitution cipher is a cyclical shift
of the plaintext alphabet; Caesar’s cipher.

Caesar’s Cipher A substitution cipher that shifts the alphabetical
position of every plaintext letter by the same distance.

This method was used by Roman emperors Caesar (100 ś 44 B.C.) and Augustus
(63 ś 14 B.C.): őx a distance d between letters in alphabetical order, that is, a
number between 0 and 25, and shift (forward) each letter of the (latin) alphabet
by this distance d . We imagine that the alphabet is circular, that is, that the
letters are arranged in a ring, so that the shift of a letter at the end of the
alphabet results in a letter at the beginning of the alphabet.

Figure 6: We imagine that the letters of the alphabet form a wheel (Simply-
Science.ch (2014))

For example, if d = 3 , then

A ↦→ D,B ↦→ E, ...,W ↦→ Z,X ↦→ A, ...,Z ↦→ C.
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There are 26 keys (including the trivial key d = 0 ).

Figure 7: Caesar displaces each letter of the alphabet by the same distance

To decipher, each letter is shifted by the negative distance −d , that is, d
positions backwards. If the letters of the alphabet form a wheel, then the letters
are transferred

• clockwise during the encipherment, and
• counterclockwise during the decipherment.

By the cyclicity of the letter arrangement, we observe that a transfer of d
positions in counterclockwise direction equals one of 26−d positions in clockwise
direction.

Substitution by Permutation of the letters of the alphabet. Instead of
replacing each letter by one shifted by the same distance d , let us replace each
letter with some letter, for example:

A B . . . Y Z
↓ ↓ . . . ↓ ↓

E Z . . . G A

To revert the encipherment, never two letters be sent to the same letter! That is,
we shuffle the letters among themselves. This way we obtain 26·25·s1 = 26! > 106

keys (which is around the number of passwords with 80 bits).

Transposition (or Permutation) ciphers. A transposition (or permuta-

tion) cipher encrypts the plaintext by permuting its units (and decrypts by
the inverse permutation). Each alphabetical unit stays the same; the encryption
depends only on the positions of the units.
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Transposition Cipher: Transpose the alphabetical units of the
plaintext.

The Scytale or Licurgo’s Baton (= a Spartan legislator around 800 B.C.) is a cipher
used by the Spartans, as follows:

1. wrap a stick into a narrow strip,
2. write on this strip horizontally, that is, along the larger edge, and
3. unroll the strip.

The letters thus transposed on the strip could only be deciphered by a stick
with the same circumference (and being long enough) in the same way as the
text was encrypted:

1. wrap the stick into the strip, and
2. read this strip horizontally, that is, along the larger edge.

Figure 8: The skytale encrypting a military order in English (BeEsCommon-
sWiki (2015))

Here, the key is given by the stick’s circumference, that is, the number of letters
that fit around the stick.

For example, if the stick has a circumference of 2 letters (and a length of 3
letters), the two rows

B I G
S U M

become the three rows

B S
I U
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G M

which, once concatenated (to reveal neither the circumference nor the length),
become

B S I U G M

Security of Historical Examples. Let us apply the established security
criteria to the substitution ciphers:

Caesar’s Cipher. This simple substitution cipher violates all desirable quali-
ties: For example, Kerckhoff’s principle that the algorithm be public: Once the
method is known, considering the small amount of 25 keys, the ciphertext gives
way in short time to a brute-force attack:

brute-force attack: an exhaustive key-search that checks each possi-
ble key.

Substitution by any permutation of the letters of the Alphabet. A substi-
tution by any permutation of the letters of the alphabet, such as,

A B . . . Y Z
↓ ↓ . . . ↓ ↓

E Z . . . G A

has
26 · 25 · · · 1 = 26! > 1026

keys, so a brute-force attack is computationally infeasible.

But it violates the goals of diffusion and confusion. If the key (= permutation of
the alphabet) exchanges the letter α for the letter β , then there’s

• bad confusion because the substitution of β in the key implies only the
substitution of each letter β in the ciphertext,
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• bad diffusion because the substitution of a letter α in the plaintext implies
only the substitution of the corresponding letter β in the ciphertext.

In fact, the algorithm allows statistical attacks on the frequency of letters,
bigrams (= pairs of letters) and trigrams (= triples of letters). See Section 12.1.

The Scytale. Also the scytale is weak in any sense given by the security
principles. It violates

• the Kerckhoff principle that the algorithm be public.

In fact, the maximum value of the circumference of the stick in letters is < n/2
where n = the number of letters in the ciphertext. So a brute-force attack is
feasible.

It has

• bad diffusion because the substitution of a letter α in the plaintext only
implies that of the same letter α in the ciphertext.

In fact, the algorithm is prone to statistical attacks on the frequency of bigrams (=
pairs of letters), trigrams (= triples of letters), and higher tuples. For example, a
promising try would be the choice of circumference as number c that maximizes
the frequency of the ‘th’ bigram between the letter strings at positions 1,1 +
c ,1 + 2c , ... , 2,2 + c ,2 + 2c , ... . For example, if we look

TEHMHTUB

we notice that T and H are one letter apart, which leads us to the guess that the
circumference is three letters, c = 3 , yielding the decipherment

THE THUMB.

Product ciphers. A product cipher composes ciphers, that is, if the product
is two-fold, then the output of one cipher is the input of the other.

product cipher: a composition of ciphers where the output of one
cipher serves as the input of the next.

41



The ciphertext of the product cipher is the ciphertext of the őnal cipher. Com-
bining transpositions only with transpositions or substitutions only with substi-
tutions, the obtained cipher is again a transposition or substitution, and hardly
more secure. However, mixing them, a transposition with substitutions, indeed
can make the cipher more secure.

A fractionation cipher is a product cipher that:

1. substitutes every symbol in the plaintext by a group of symbols (usually
pairs),

2. transposes the obtained ciphertext.

The most famous fractionation cipher was the ADFGVX cipher used by the
German forces during World War I:

A D F G V X

A a b c d e f
D g h i j k l
F m n o p q r
G s t u v w x
V y z 0 1 2 3
X 4 5 6 7 8 9

1. The 26 letters of the Latin Alphabet and 10 digits were arranged in a
6 × 6 -table and replaced by the pair of letters among A , D , F , G , V , and
X that indicate the row and column of the letter or digit.

2. The resulting text was written as usual from left to right into the rows of
a table and then each column read in the order indicated by a keyword.

However, it was cryptanalyzed within a month by the French cryptanalyst
Georges J. Painvin in 1918 when the German army entered in Paris. We will
see in Section 2.2 how modern ciphers reőne this idea of a product cipher to
obtain good diffusion.

Self-Check Questions.

1. For which distances d is Caesar’s Cipher auto-inverse, that is, the output
of the encipherment equals that of the decipherment? For d = 0 and 13 .
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2. Does Caesar’s Cipher satisfy Kerckhoff’s principle? No, the number of
possible keys is too small.

3. Why is a substitution cipher insecure? Because two identical letters in the
plaintext are replaced by two identical letters in the ciphertext.

2.2 Block Ciphers

Classic ciphers usually replaced single letters, sometimes pairs of letters. Systems
that operated on trigrams or larger groups of letters were regarded as too tedious
and never widely used.

Instead, it is safer to substitute a whole block (of letters instead of a single letter,
say) according to the key. However, the alphabet of this replacement would
be gigantic, so this ideal is practically unattainable, especially on hardware as
limited as a smart card with an 8 bit processor. For a block of, for example, 4
bytes, this substitution table would already have a 4 gigabytes (= 232 · 4 bytes).
However, in modern single-key cryptography a block of information commonly
has 16 bytes, about 27 alphabetic characters (whereas two-key cryptography
based on the RSA algorithm commonly uses blocks of 256 bits, about 620
alphabetic characters).

Instead, for example, AES only replaces each byte, each entry in a block, a
replacement table of 28 = 256 entries of 1 byte (and afterwards transposes the
entries.) We will see that these operations complement each other so well that
they are practically as safe as a substitution of the whole block.

Block and Stream Ciphers. A block cipher partitions the plaintext into
blocks of the same size and enciphers each block by a common key: While a
block could consist of a single symbol, normally it is larger. For example, in
the Data Encryption Standard the block size is 64 bits and in the Advanced
Encryption Standard 128 bits.

stream cipher versus block cipher: a stream cipher operates on
single characters (for example, single bytes) while a block cipher
operates on groups of characters (for example, each 16 bytes large)

A stream cipher partitions the plaintext into units, normally of a single charac-
ter, and then encrypts the i -th unit of the plaintext with the i -th unit of a key
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stream. Examples are the one-time pad, rotor machines (such as the Enigma)
and DES used in Triple DES (in which the output from one encryption is the
input of the next encryption).

In a stream cipher, the same section of the key stream that was used to encipher
must be used to decipher. Thus, the sender’s and recipient’s key stream must
be synchronized initially and constantly thereafter.

Feistel Ciphers. A Feistel Cipher (after Horst Feistel, the inventor of DES)
or a substitution and permutation network (SPN ) groups the text (= byte
sequence) into n -byte blocks (for example, n = 16 for AES and enciphers each
block by iteration (for example, 10 times in AES , and 5 times in our prototypical
model) of the following three steps, in given order:

1. add (XOR) the key,
2. substitute of the alphabet (which operates in sub-blocks of the block, for

example, on each byte), and
3. permute of all the sub-blocks in a block.

Substitution and Permutation Network: a cipher that iteratively
substitutes and permutes each block after adding a key.

That is, after

1. the addition (by Or Exclusive) of the key as in the One-time pad,

are applied

2. the substitution of the alphabet, for example, in the AES algorithm (each
byte, pair of hexadecimal letters, by another), and

3. the permutation of the text (from the current step, the state); for example,
in AES , that groups the text into a 4 × 4 square (whose entries are pairs
of hexadecimal letters), the entries in each row (and the columns) are
permuted.

These two simple operations,

• the substitution of the alphabet, and
• the permutation of text
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complement each other well, that is, they generate high confusion and diffusion
after a few iterations. In the őrst and last round, the steps before respectively
after the addition of the key are omitted because they do not increase the
cryptographic security: Since the algorithm is public (according to Kerckhoff’s
principle), any attacker is capable of undoing all those steps that do not require
knowledge of the key.

Though seemingly a Feistel Cipher differs from classical ciphers, it is after all a
product cipher, made up of transpositions and substitutions.

Self-Check Questions.

1. What distinguishes a stream cipher from a block cipher? a stream cipher
operates on single characters while a block cipher operates on groups of characters

2. What is a Substitution and Permutation Network (or Feistel Cipher)? A
block cipher that iteratively substitutes and permutes each block after adding a

key.

2.3 Data Encryption Standard (DES)

The Data Encryption Standard (DES), was made a public standard in 1977 after
it won public competition announced by the U.S. National Bureau of Standards
(NBS; now the National Institute of Standards and Technology, NIST). IBM
(International Business Machines Corporation) submitted the patented Lucifer
algorithm invented by one of the company’s researchers, Horst Feistel, a few
years earlier (after whom the substitution and permutation network was labelled
Feistel Cipher). Its internal functions were slightly altered by the NSA (and
National Security Agency) and the (effective) key size shortened from 112 bits
to 56 bits, before it became officially the new Data Encryption Standard.

DES: Block cipher with an effective key length of 56 bits conceived
by Horst Feistel from IBM that won a U.S. National competition to
become a cryptographic standard in 1977.

DES is a product block cipher of 16 iterations, or rounds, of substitution and
transposition (permutation). Its block size and key size is 64 bits. However,
only 56 of the key bits can be chosen; the remaining eight are redundant parity
check bits.
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As the name of its inventor Horst Feistel suggests, it is a Feistel Cipher, or
substitution and permutation network, similar to the prototype discussed above.
It groups the text (= byte sequence) into 32-bit blocks with sub-blocks of 4 bits
and enciphers each block in 16 iterations of the following three steps, called
the Feistel function, for short F-function, in given order:

1. add (XOR) the key,

2. substitution of each 4-bit sub-blocks of the block by the S-box (in hexa-
decimal notation), and

0 1 2 3 4 5 6 7 8 9 A B C D E F

E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

3. permutation of all the sub-blocks.

At each round i , the output from the preceding round is split into the 32
left-most bits, L(i ) , and the 32 right-most bits, R(i ) . R(i ) will become L(i + 1)
, whereas R(i + 1) is the output of a complex function, L(i ) + f (R(i ),K(i + 1))
whose input is

• the i + 1 -th block of the key bits, K(i + 1) , and
• of the entire preceding intermediate cipher.

This process is repeated 16 times.

Essential for the security of DES is the non-linear S-box of the F -function f
speciőed by the Bureau of Standards; it is not only non-linear, that is, f (A) +
f (B) ≠ f (A+B) but maximizes confusion and diffusion as identiőed by Claude
Shannon for a secure cipher in Section 2.1.

Key Size and the Birth of 3DES. The security of the DES like any algorithm
is no greater than the effort to search 256 keys. When introduced in 1977, this
was considered an infeasible computational task, but already in 1999 a special-
purpose computer achieved this in three days. A workaround, called łTriple
DESž or 3DES, was devised that effectively gave the DES a 112-bit key (using
two normal DES keys).
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Figure 9: The DES F-function (Hellisp (2014))

3DES: Triple application of DES to double the key size of the DES
algorithm.

(Which is after all the key size for the algorithm originally proposed by IBM for
the Data Encryption Standard.) The encryption would be E(1) ◦D(2) ◦ E(1)
while decryption would be D(1) ◦ E(2) ◦ D(1) , that is, the encryption steps
are:

1. Encrypt by the őrst key,
2. Decrypt by the second key, and
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3. Encrypt by the őrst key;

while the decryption steps are:

1. Decrypt by the őrst key,
2. Encrypt by the second key, and
3. Decrypt by the őrst key.

If the two keys coincide, then this cipher becomes an ordinary single-key DES;
thus, triple DES is backward compatible with equipment implemented for
(single) DES.

DES is the őrst cryptographic algorithm to fulőll Kerckhoff’s principle of being
public: every detail of its implementation is published. (Before, for example,
the implementation records of the Japanese and German cipher machines in
World War II were released only half a century after their cryptanalysis.)

Shortly after its introduction as a cryptographic standard, the use of the DES
algorithm was made mandatory for all (electronic) őnancial transactions of the
U.S. government and banks of the Federal Reserve. Standards organizations
worldwide adopted the DES, turning it into an international standard for
business data security. It only waned slowly after its successor AES was adopted
around 2000 (after its shortcomings became more and more apparent and could
only be worked around, by provisional means such as 3DES).

Self-Check Questions.

1. What key size does DES use?

□ 256 bits
□ 128 bits
□ 112 bits
□ 56 bits

2. Name a cryptographic weakness of DES: Short key length.

3. What does 3DES stand for? Tripe DES, that is, tripe application of DES.

4. What key size does 3DES use?

□ 256 bits
□ 128 bits
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□ 112 bits

□ 56 bits

2.4 Advanced encryption standard (AES)

In January 1997 the U.S. National Institute of Standards and Technology (NIST;
former National Bureau of Standards, NBS) announced a public contest (Na-
tional Institute for Standards and Technology (2000)) for an Advanced Encryption
Standard (AES) to replace the former symmetric encryption standard, the Data
Encryption Standard (DES). Since improvements in computing power allowed to
őnd the őxed 56-bit DES key by exhaustive key-search (brute force) in a matter
of days, the NIST speciőcations for the AES demanded an ever increasable key
length, if ever need be. The winner of this competition, the algorithm that
became the AES, was Rijndael (named after its creators Vincent Rijmen and
Joan Daemen):

• Rijndael: 86 positive votes, 10 negative votes.
• Serpent: 59 votes in favour, 7 against.
• Twofish: 31 positive, 21 negative votes
• RC6: 23 positive, 37 negative votes
• MARS: 13 votes in favour, 84 against.

AES: Substitution and Permutation network with a (variable) key
length of usually 128 bits conceived by Vincent Rijmen and Joan
Daemen that won a U.S. National competition to become a crypto-
graphic standard in 2000 and succeed DES.

Evaluation of Security. The creators of AES could demonstrate in Daemen
and Rijmen (1999) that these two operations complement each other so well that,
after several iterations, they almost compensate for the absence of a replacement
of the entire block by another. For a more detailed source, see Daemen and
Rijmen (2002).

As was the case with DES, the AES, decades after its introduction, still stands
strong against any attacks of cryptanalysis, but foreseeably will not yield to
developments in computing, as happened to the DES, also thanks to its adjustable
key size.
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Applications. Among the competitors of public contest by the NIST, none
of them stood out for its greater security, but Rijndael for its simplicity, or
clarity, and in particular computational economy in implementation. Since this
algorithm is to be run everywhere, for example on 8-bit smart card processors
(smartcards), the decision was made in favour of Rijndael. Rijndael not only
was secure, but thanks to its elegant and simple design, also both small enough
to be implemented on smart cards (at less than 10,000 bytes of code).

To this day, this algorithm remains unbroken and is considered the safest;
there is no need for another standard symmetric cryptographic algorithm. And
indeed, it runs everywhere: For example, to encrypt a wireless network, a single
key is used, so the encryption algorithm is symmetrical. The safest option, and
therefore most recommended, is AES.

Encipherment in Blocks. The AES algorithm is a block cipher, that is, it
groups the plaintext (and the keys) into byte blocks of 4 × B-byte rectangles
where

B := number of columns in the rectangle = 4,6or8.

Commonly, and for us from now on, B = 4 , that is, the rectangle is a 4×4-square
(containing 16 bytes or, equivalently, 128 bits). Each entry of the block is a byte
(= sequence of eight binary digits = eight-bit binary number).

On a hexadecimal basis (= whose numbers are 0 ś 9, A = 10, B = 11, C = 12,
D = 13, E = 14 and F = 15), such a square is for example

A1 13 B1 4A

A3 AF 04 1E

3D 13 C1 55

B1 92 83 72

Rounds. The AES algorithm enciphers each byte block B iteratively, in a
number of rounds R which depends on the number of columns of B: there are
R = 10 rounds for B = 4 columns, R = 12 rounds for B = 6 columns and R = 14

rounds for B = 8 columns. For us, as we assume B = 4 columns, R = 10.

The Substitution and Permutation cipher AES operates repeatedly as follows on
each block:
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1. Substitute each byte of the (square) block according to a substitution
table (S-box) with 28 = 256 entries of 1 byte each.

2. Permute the entries of each row, and
3. exchange the entries (= bytes = eight-digit binary numbers) of each column

by sums of multiples of them.
4. Add the round key, which is a byte block of the same size, to the block

(by XOR in each entry).

The őrst step is a substitution. The second and third step count as a horizontal
permutation (of the entries in each row) respectively vertical permutation (of
the entries in each column).

CrypTool 1 offers in Menu Individual Procedures -> Visualization of

Algorithms -> AES

• an Animation entry to see the animation in Figure 10 of the rounds, and
• an Inspector entry in Figure 12 to experiment with the values of plaintext
and key.

In these rounds, keys are generated, the plaintext replaced and transposed by
the following operations:

1. Round r = 0 :

• AddRoundKey to add (by XOR) the key to the plaintext (square) block

2. Rounds r = 1, ...,R − 1 : to encrypt, apply the following functions:

1. SubBytes to replace each entry (= byte = sequence of eight bits) with
a better distributed sequence of bits,

2. ShiftRows to permute the entries of each row of the block,
3. MixColumn to exchange the entries (= bytes = eight-digit binary num-

ber) of each column of the block by sums of multiples of them,
4. AddRoundKey to generate a key from the previous round’s key and

add it (by XOR) to the block.

3. Round r = R : to encrypt, apply the following functions:

1. SubBytes
2. ShiftRows
3. AddRoundKey
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Figure 10: The AES rounds in CrypTool 1 (Zabala (2019a))

That is, compared to previous rounds, the MixColumn function is omitted:
It turns out that MixColumn and AddRoundKey, after a slight change of
AddRoundKey, can change the order without changing the end result of
both operations. In this equivalent order, the operation MixColumn does
not increase cryptographic security, as the last operation invertible without
knowledge of the key. So it can be omitted.

The function MixColumn (and at its origin SubBytes) uses the multiplication of
the so-called Rijndael field 𝔽28 to compute the multiple of (the eight-digit
binary number given by) a byte; it will be presented at the end of this chapter.
Brieŕy, the őeld deőnes, on all eight-digit binary numbers, an addition given
by XOR and a multiplication given by a polynomial division with remainder:
The eight-digit binary numbers a = a7...a0 and b = b7...b0 to be multiplied are
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identiőed with polynomials

a (x) = a7x7 + · · · + a0 and b (x) = b7 + · · · + b0

which are then multiplied as usual to give a polynomial C(x) = a (x)b (x). To
yield a polynomial with degree ≤ 7, the remainder c (x) = c7x7 + · · · + c0 of C(x)
by polynomial division with

m (x) = x8 + x4 + x3 + x + 1.

is computed. The product c = a · b is then given by the coefficients c7...c0.

Let us describe all round functions in more detail:

SubBytes. SubBytes substitutes each byte of the block by another byte
given by the S-box substitution table.

To calculate the value of the entry by which the S-box substitutes each byte:

1. Calculate its multiplicative inverse B in 𝔽28 ,

2. Calculate
ai = bi + bi+4 + bi+5 + bi+6 + bi+7 + ci

where i = 0 , 1 , . . . , 7 is the index of each bit of a byte, and

• B = b7b6b5b4b3b2b1b0 is the entry byte,
• A = a7a6a5a4a3a2a1a0 is the output byte of the operation and
• c is the constant byte 01100011.

In matrix form,

©­­­­­­­­­­­­«

a0
a1
a2
a3
a4
a5
a6
a7

ª®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­«

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

ª®®®®®®®®®®®®¬

©­­­­­­­­­­­­«

b0
b1
b2
b3
b4
b5
b6
b7

ª®®®®®®®®®®®®¬

+

©­­­­­­­­­­­­«

1

1

0

0

0

1

1

0

ª®®®®®®®®®®®®¬
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in hexadecimal notation (where the row number corresponds to the őrst hexa-
decimal digit and the column number to the second hexadecimal digit of the
byte to be replaced):

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
A e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
B e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
C ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
D 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
E e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
F 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

ShiftRows. ShiftRows shifts the l -th row (counted starting from zero, that
is, l runs through 0 , 1 , 2 and 3; in particular, the őrst row is not shifted) l
positions to the left (where shift is cyclic). That is, the (square) block with
entries

B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

is transformed into one with entries

B00 B01 B02 B03

B11 B12 B13 B10
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B22 B23 B20 B21

B33 B30 B31 B32

Figure 11: Transposition in AES algorithm (Moser (2009))

MixColumn. MixColumn exchanges all entries of each column of the block
by a sum of multiples of them. This is done by multiplying each column by a
őxed matrix. More exactly,

• if B j (with coefficients b0,j , b1,j , b2,j and b3,j ) corresponds to the column
j of the input block, and

• if A j (with coefficients a0,j , a1,j , a2,j and a3,j ) corresponds to the column
j of the output block of the operation,
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then

©­­­
«

a0,j
a1,j
a2,j
a3,j

ª®®®
¬
=

©­­­
«

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

ª®®®
¬
©­­­
«

b0,j
b1,j
b2,j
b3,j

ª®®®
¬

For example, the byte a0,j is computed by

a0,j = 2 · b0,j + 3 · b1,j + b2,j + b3,j

AddRoundKey. AddRoundKey adds, by the XOR operation, the key W(r ) of
the current round r to the current block B of the ciphertext, the status, that is,
B is transformed into

B ⊕W(r ).

The key is generated column by column. We denote them by W(r )0, W(r )1,
W(r )2 and W(r )3; that is,

W(r ) =W(r )0 | W(r )1 | W(r )2 | W(r )3.

Since the key has 16 bytes, each column has 4 bytes.

1. The őrst round key W(0) is given by the initial W key.
2. For r = 1 , . . . , R (where R is the total number of rounds, R = 10 for

us), the four columns W(r )0, W(r )1, W(r )2 and W(r )3 of the new key are
generated from the columns of the old W(r − 1) key as follows:

1. The őrst column W(r )0 is given by

W(r )0 =W(r − 1)0 ⊕ ScheduleCore(W(r − 1)3);

that is, the last column of the previous round key plus the result of
ScheduleCore applied to the őrst column of the previous round key
(which we denote by T ); here ScheduleChore is the composition of
transformations:

1. SubWord : Substitutes each of the 4 bytes of T according to the
S-box of SubBytes .

2. RotWord : Shift T one byte to the left (in a circular manner, that
is, the last byte becomes the őrst).
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3. Rcon(r): Adds (by XOR ) to T the constant value, in hexadecimal
notation, (02)r−1000000 (where the power, that is, the iterated
product, is calculated in the Rijndael field 𝔽28). That is, the
only byte that changes is the őrst one, by adding either the value
2r−1 (for r ≤ 8 ) or the value 2r−1 in F28 for r = 9,10.

2. The next columns W(r )1, W(r )2 and W(r )3 are given, for i = 1,2

and 3 , by
W(r )i =W(r )i−1 ⊕W(r − 1)i ;

that is, the previous column of the current round key plus the current
column of the previous round key.

Diffusion. We note that the only transformation that is not affine (that is, the
composition of a linear application and a constant shift) is the multiplicative
inversion in the Rijndael őeld 𝔽28 in the SubBytes operation. In fact

1. In the operation SubBytes are applied, in this order,

1. the inversion in 𝔽28 ,
2. a linear application, and
3. the translation by a constant vector.

2. ShiftRows is a permutation, in particular, linear.
3. MixColumn is an addition, in particular, linear.
4. AddRoundKey is the translation by the round key.

Regarding the goals of ideal diffusion and confusion, we can point out that
in each step about half of the bits (in SubBytes) or bytes (in MixColumn and
ShiftRows)is replaced and transposed. To convince oneself of the complemen-
tarity of the simple operations for high security, that is, that they generate in
conjunction high confusion and diffusion after few iterations:

• the substitution of the alphabet, and
• the permutation of text, in particular,

ś of the permutation between the entries of every row, and
ś of the permutation between the column,

it is worth to experiment in Individual Procedures -> Visualization of

Algorithms -> AES -> Inspector with some pathological values, for exam-
ple:
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• All key and plaintext entries equal 00, and
• all key entries equals 00 and plaintext entries equals 00 except one entry
equals 01, that is, change a single bit.

Figure 12: The values of the blocks along the rounds of AES in CrypTool 1

(Zabala (2019b))

We see how this small initial difference spreads out, already generating totally
different results after, say, four rounds! This makes plausible the immunity of
AES against differential cryptanalysis.

In case all key and plaintext entries are equal to 00 , we also understand the
impact of adding the Rcon(r) constant to the key in each round: that’s where
all the confusion comes from!

The Rijndael binary őeld. The function MixColumn (as well as the compu-
tation of the power of Rcon in AddRoundKey) uses the multiplication given by
the so-called Rijndael field, denoted 𝔽28 , to compute the multiple of (the
number given by a) byte; let us quickly introduce it:
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Groups and Fields. A group is a set G with

• an operation · : G ×G → G that satisőes the associativity law,
• has a neutral element (that is, an element e such that x · e = x = e · x for
all x in G ) and

• an inverse of every element (that is, for every x in G an element y such
that x · y = e = y · x ).

Generally,

• the operation is denoted by · ,
• the neutral element by 1 , and
• the inverse of x in G by x−1.

Example. The set of nonzero rational numbers ℚ∗ with the multiplication opera-
tion · is a group.

If the groupG is commutative, that is, if the operation satisőes the commutativity
law, then commonly

• the operation is denoted by +
• the neutral element by 0 , and
• the inverse element of x in G by −x .

Example. The set of rational numbers ℚ with the addition operation + is a
commutative group.

A field is a set F with an addition and multiplication operation + and · such
that

• the set F with + is a commutative group,
• the set F∗ = F − {0} with · is a commutative group, and
• the distributivity law is satisőed.

Example. The set of rational numbers ℚ with addition + and multiplication · is
a őeld.
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Bytes as Polynomials with Binary Coefficients of Degree 7. A byte, a
sequence b7 . . . b1, b0 of eight bits in {0,1} is considered a polynomial with
binary coefficients by

b7...b1b0 ↦→ b7X
7 + · · · + b1X + b0

For example, the hexadecimal number 0x57 , or binary number 01010111 ,
corresponds to the polynomial

x6 + x4 + x2 + x + 1.

All additions and multiplications in AES take place in the binary field 𝔽28 with
28 = 256 elements, which is a set of numbers with addition and multiplication
that satisőes the associativity, commutativity and distributivity law (like, for
example, ℚ ) deőned as follows: Let

𝔽2 = {0,1}

be the field of two elements with

• addition 1 + 0 = 0 + 1 = 1 and 0 + 0 = 1 + 1 = 0 (which is the ⊕ addition
given by XOR ), and

• (the natural) multiplication 1 · 0 = 0 · 1 = 0 · 0 = 0 and 1 · 1 = 1 .

Let
𝔽2 [X] = ℤ/2ℤ = the polynomials on 𝔽2,

that is, the őnite sums a0 + a1X + a2X2 + ·s + anXn to a0 , a1 , . . . , an to 𝔽2 and
be

𝔽28 := 𝔽2 [X]/(X8 + X4 + X3 + X + 1).

That is, the result of both operations + and · in 𝔽2X is the remainder of the
division by X8+X4+X3 + X + 1 .

Addition. The + addition of two polynomials is the addition in 𝔽2 coefficient
to coefficient. That is, as bytes, the + addition is given by the XOR addition.
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Multiplication. The multiplication · is given by the natural multiplication
followed by the division with rest by the polynomial

m (x) = x8 + x4 + x3 + x + 1.

For example, in hexadecimal notation, 57 · 83 = C1 , because

(x6 + x4 + x2 + x + 1) (x7 + x + 1) = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

and

x13+x11+x9+x8+x6+x5+x4+x3+1 = (x5+x3+1) (x8+x4+x3+x +1) +x7+x6+1

The multiplication by the polynomial 1 does not change anything, it is the neutral
element. For every polynomial b (x) , Euclid’s extended algorithm, calculates
polynomials a (x) and c (x) such that

b (x)a (x) +m (x)c (x) = 1.

That is, in the division with the remaining a (x)b (x) for m (x) left over 1 . This
means that a is the inverse multiplicative in 𝔽28 ,

b−1(x) = a (x) in 𝔽28 .

When we invert a byte b into 𝔽28 , we mean byte a = b−1.

Self-Check Questions.

1. How many rounds has AES for a 128 bit key?

□ 8

□ 10

□ 12

□ 16

2. Which are the steps of each round? SubBytes, ShiftRows, MixColumn and
AddRoundKey

3. Which one of the steps is non-linear?

□ SubBytes

□ ShiftRows

□ MixColumn

□ AddRoundKey
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Summary

There are two basic operations in ciphering: transpositions and substitution.

• Transpositions rearrange the symbols in the text without changing the
symbols themselves (such as Caesar’ cipher that advances every letter in
the plaintext by the same distance in the alphabet).

• Substitutions replace the symbols of the text (be it one by one or in groups,
. . . ) by other symbols (or groups of symbols) without changing the order
in which they occur (such as the scytale, where the parchment is wrapped
around a stick and the text written on it horizontally).

Either of these ciphers is insecure because they preserve statistical data of the
plaintext: For example, a mere (monoalphabetic) substitution cipher falls victim
to the frequency distributions of symbols in the plaintext being carried over to
the ciphertext. Instead, a modern cipher combines substitution and permutation
ciphers, so called substitution and permutation network or Feistel cipher

While the only cipher proved to be perfectly secure, that is no method of crypt-
analysis is faster than exhaustive key-search, modern ciphers such as DES from
1976 or AES from 2000 in practice achieve, up to (the k)now, the same, that
is, no cryptanalytic method faster than exhaustive key-search is known. The
key criterion for this feat is high diffusion as deőned by Shannon, that is, if a bit
in the plaintext or key changes, then half of the bits in the ciphertext changes.
Compare it to that of ancient algorithms!

Questions

1. Which cipher is a substitution cipher? Scytale, Enigma, AES, DES
2. Which cipher is perfectly secure? RSA, one-time pad, AES, DES
3. What is the smallest key size used by AES? 56, 128 , 512, 2048

Required Reading

Read the section on symmetric cryptography in the article Simmons et al.
(2016).
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Read (at least the beginnings of) Chapter 9 on hash functions in Menezes,
Oorschot, and Vanstone (1997), and (at least the beginnings of) that in the
most recent work Aumasson (2017), Chapter 6.

Further Reading

Cryptanalyze a substitution cipher in Esslinger et al. (2008).

Follow the encryption process

• of AES by the AES inspector in Esslinger et al. (2008).
• of the Enigma by the animation in Esslinger et al. (2012).

See the book Sweigart (2013a) for implementing some simpler (symmetric)
algorithms in Python, a readable beginner-friendly programming language.

Read the parts of the book Schneier (2007) on understanding and implementing
modern symmetric cryptographic algorithms.
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3 Hash Functions

Study Goals

On completion of this chapter, you will have learned about the manifold uses of
(cryptographic) hash functions whose outputs serve as IDs of their input (for
example, a large őle).
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Introduction

A hash function is an algorithm that generates an output of őxed (byte) size
(usually around 16 to 64 bytes) from an input of variable (byte) size, for example,
a text or image őle, a compressed archive.

hash function: algorithm that generates a őxed-size output from
variable-size input

As a slogan it transforms a large amount of data into a small amount of
information.

Concept. A hash function takes an input (or łmessagež), a variable-size
string (of bytes), and returns a őxed-size string, the hash value (or, depending
on its use, also (message) digest, digital fingerprint or checksum).

For example, the hash md5 (of 16 bytes) of the word łkeyž in hexadecimal
coding (that is, whose digits run through 0, . . . ,9, a,b, c,d,e and f) is
146c07ef2479cedcd54c7c2af5cf3a80.

One distinguishes between

• checksum (non-cryptographic) functions, and
• cryptographic (or one-way) hash functions

Checksum. A (simple) hash function, or checksum function, should sat-
isfy:

• fast computation of a hash for any given data, and
• that it is highly unlikely for two (hardly) different messages to give the
same hash.

That is, with respect to the second property, a hash function should behave as
much as possible like a random function, while still being a fast and deterministic
algorithm.

checksum function: algorithm that quickly generates a őxed-size
output from variable-size input without collisions.
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For example, the most naive checksum would be the sum of the bits of the input,
truncated to the őxed output size. It is almost a hash function: it is fast, and
it is indeed unlikely that two different messages give the same hash. However,
one easily obtains two almost identical messages with the same hash. Tiny
alterations could therefore go undetected.

Cryptographic hash function. A cryptographic (or one-way) hash func-

tion should, moreover, satisfy:

• it is unfeasible to calculate an input that has a given hash.

Thus the output string of őxed length that a cryptographic hash function
produces from a string of any length (an important message, say) is a kind
of inimitable signature. A person who knows the hash value cannot know the
original message; only the person who knows the original message can prove
that the łhash valuež is produced from that message.

cryptographic (or one-way) hash function: a hash function such
that, given an output, it is unfeasible to calculate a corresponding
input.

More exactly:

• a hash function is weakly collision resistant if őnding an inverse is com-
putationally unfeasible, that is, given an output, őnding a (yet unknown)
corresponding input;

• a hash function is strongly collision resistant if őnding a collision is
computationally unfeasible, that is, őnding two inputs with the same
output.

weak collision resistance: computationally unfeasible to őnd an
unknown message for a given hash.

strong collision resistance: computationally unfeasible to őnd two
messages with the same hash.

Otherwise, an attacker could substitute an authorized message with an unau-
thorized one.
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Applications. Hash functions are used for

• querying database entries,

• error detection and correction, for example,

ś for data integrity checks,

• in cryptography to identify data but conceal its content, for example,

ś for data authenticity checks,

ś for authentication, for example,

* to store passwords and

* for digital signatures.

Checksums. A checksum is a method of error detection in data transmission
(where it also bears the name message digest) and storage. That is, a checksum
detects whether the received or stored data was not accidentally or intentionally
changed, that is, is free from errors or tampering. It is a hash of (a segment of)
computer data that is calculated before and after transmission or storage.

That is, it is a function which, when applied to any data, generates a relatively
short number, usually between 128 and 512 bits. This number is then sent with
the text to a recipient who reapplies the function to the data and compares
the result with the original number. If they coincide, then most probably the
message has not been altered during transmission; if not, then it is practically
certain that the message was altered.

Most naively, all the bits are added up, and the sum is transmitted or stored
as part of the data to be compared with the sum of the bits after transmission
or storage. Another possibility is a parity bit that counts whether the number
of nonzero bits, for example, in a byte, is even or odd. (The sum over all bits
for the exclusive-or operation instead of the usual addition operation.) Some
errors Ð such as reordering the bytes in the message, adding or removing zero
valued bytes, and multiple errors which increase and decrease the checksum so
that they cancel each other out Ð cannot be detected using this checksum.

The simplest such hash function that avoids these shortfalls against accidental
alterations is CRC, which will be discussed below. It is faster than cryptographic
checksums, but does not protect against intentional modiőcations.
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Hash Table. A hash table stores and sorts data by a table in which every
entry is indexed by its hash (for a hash function that is őxed once and for all
for the table). That is, its key is the hash of its value. This key has to be unique,
and therefore the hash function ideally collision free. If not, then, given a key,
őrst the address where several entries with this key are stored has to be looked
up, and then the sought-for entry among them, causing a slow down.

Therefore, the hash size has to be chosen wisely before creating the table, just
large enough to avoid hash collisions in the far future. If this can be achieved,
then the hash table will always őnd information at the same speed, no matter
how much data is put in. That is, hash tables often őnd information faster than
other data structures, such as search trees, and frequently used; for example,
for associative arrays, databases, and caches.

Examples. In practice, even for checksums, most hash functions are crypto-
graphic. Though slower, they are still fast enough on most hardware. In fact,
sometimes, for example to store passwords, they have to deliberately slow so that
the passwords cannot be found quickly by their hash values through an exhaus-
tive search among probable candidates (see rainbow tables in Section 12.6).

The most common cryptographic hash functions used to be MD5, usually with an
output length of 128 bit, invented by Ron Rivest of the Massachusetts Institute
of Technology in 1991. By 1996 methods were developed to create collisions for
the MD5 algorithm, that is, two messages with the same MD5 hash. MD5CRK was
a concerted effort in 2004 by Jean-Luc Cooke and his company, CertainKey
Cryptosystems, to prove the MD5 algorithm insecure by őnding a collision. The
project started in March and ended in August 2004 after a collision for MD5
was found. In 2005, further security defects were detected. In 2007 the NIST
(National Institute of Standards and Technology) opened a competition to
design a new hash function and gave it the name SHA hash functions, that
became a Federal Information Processing standard.

Cyclic Redundance Check (CRC). One exception is the Cyclic Redundance
Check (CRC) which is a fast simple hash function to detect noise, expected
accidental errors, for example, while reading a disc, such as a DVD, or in network
traffic. The CRC uses a binary generating polynomial (a formal sum in an
unknown whose only coefficients are 0 and 1 such as X2 + X ). The CRC is
computed by:
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1. a polynomial division of the binary polynomial obtained from the binary
input (that is, 1001 corresponds to X3 + 1 ) by the generating polynomial,
and

2. taking the remainder from the division as output.

The choice of the generator polynomial is the most important one to be made
when implementing the CRC algorithm; it should maximize the error-detection
and minimize the chances of collision. The most important attribute of the
polynomial is its length (or degree) as it determines the length of the output.
Most commonly used polynomial lengths are 9 bits (CRC-8), 17 bits (CRC-16),
33 bits (CRC-32) and 65 bits (CRC-64).

In fact, the type of a CRC identiőes the generating polynomial in hexadecimal
format (whose 16 digests run through 0, . . . , 9 and A, . . . , F). A frequent CRC
type is that used by Ethernet, PKZIP, WinZip, and PNG; the polynomial 0x04
.

Again, the CRC can only be relied on to conőrm the integrity against acci-
dental modiőcation; through intentional modiőcation, an attacker can cause
changes in the data that remain undetected by a CRC. To prevent against this,
cryptographic hash functions could be used to verify data integrity.

SHA. SHA stands for Secure Hash Algorithm. The SHA hash functions are
cryptographic hash functions made by the National Security Agency (NSA)
and the National Institute of Standards and Technology. SHA-1 is the successor
to MD5 with a hash size of 160 bits, an earlier, widely-used hash function, that
fell victim to more and more suspicious security shortcomings (even though
it is not downright broken; for example, there is no known computationally
feasible way to produce an input for a given hash ). SHA-1 was notably used in
the Digital Signature Algorithm (DSA) as prescribed by the Digital Signature
Standard (DSS) by the Internet Engineering Task Force.

In the meanwhile, there are three SHA algorithms SHA-1, SHA-2 and SHA-3,
released in 2015 of ever-increasing security, mitigating the shortcomings of
each predecessor. łSHA-2ž permits hashes of different bit sizes; to indicate the
number of bits, it is appended to the preőx łSHAž, for example, łSHA-224ž,
łSHA-256ž, łSHA-384ž, and łSHA-512ž.
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3.1 Hash as ID

A hash function should be

• onto, that is, all possible őxed-length sequences are hash function value,
and

• similar to a uniformly random variable, that is, the probability of each of
the values of the function is the same.

So if, for example, the output has 256 bits, then ideally each value should have
the same probability 2−256. That is, the output identiőes the input practically
uniquely (with a collision chance of ideally 2−256); So one might think of a
data hash, for example, from a őle, as its ID card (or more accurately, identity
number); a hash identiőes much data by little information.

Since the length of the hash sequence is limited (rarely ≥ 512 bits), while
the length of the input sequence is unlimited, there are collisions, that is equal
hashes from different őles. However, the algorithm minimizes the probability of
collisions by distributing their values as evenly as possible: Intuitively, make them
as random as possible; more accurately, every possible őxed-length sequence is
a value and the probability of each of the values is the same.

3.2 Cryptographic Hash Functions

It is cryptographic (or one-way)

• when reversion is computationally infeasible, that is, őnding an input for
a given output, and

• when similar inputs yield dissimilar outputs (in the sense of high diffusion,
that is, ideally one different input bit implies about half of the output bits
to be different).

Cryptographic or One-Way hash function: a hash function such
that it is computationally infeasible to őnd an input for a given
output and similar inputs have dissimilar output.

More exactly, the algorithm should resist
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• against the creation of an inverse image (that is the function is unidirectional):
given an output, the quickest way to őnd an input with this output is by
brute force, that is by proving all possible inputs,

• against the creation of a second reverse image: given an input, the quickest
way to őnd another input with the same output is by brute force, that is
by proving all possible inputs,

• against the creation of collisions: the fastest way to őnd two (arbitrary)
entries with the same output is by brute force, that is, by proving all
possible entries.

According to Kerckhoff’s principle, the algorithm should also be public. In
practice,

• the most important is resistance against the attack to create a second
reverse image, and

• the least important is that against collisions attacks; there are several
algorithms, for example, MD4, MD5 and SHA-1 that do not resist against
collisions attacks, but are still in use.

For example, the CRC algorithm is a hash function (not cryptographic); Common
cryptographic hash functions are, for example, MD4, MD5, SHA-1, SHA-256 and
SHA-3.

For example, the output of the hash function SHA-256 of ongel is
bcaec91f56ef60299f60fbce80be31c49bdb36bc500525b8690cc68a6fb4b7f6.
The output of a hash function, called hash, but also message digest or digital
fingerprint, depending on the input, is used, for example, for message integrity
and authentication.

3.3 Common Cryptographic Hash Functions

The most commonly used hash (cryptographic) algorithms even today are
16 bytes (=128 bits) MD4 and MD5 or SHA-1, which uses 20 bytes (= 160 bits).
Although all of these, MD4, MD5 and SHA-1 do not withstand collision attacks,
they remain popular for use. Their implementation details are described in
RFCs (Request for Comments): an RFC publicly speciőes in a text őle the details
of a proposed Internet standard or of a new version of an existing standard and
are commonly drafted by university and corporate researchers to get feedback
from others. An RFC is discussed on the Internet and in formal meetings of
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the working group tasked by the Internet Engineering Task Force (IETF). For
example, networking standards such as IP and Ethernet have been documented
in RFCs.

• MD4 (Message-Digest algorithm):

ś Developed in 1991 by Ron Rivest, one of the three creators of the
RSA algorithm (and the RSA Data Security company);

ś fast, but vulnerable to pre-image creation.
ś described in RFC 1320 .

• MD5:

ś Developed by RSA Data Security.

ś Described in RFC 132.

ś Vulnerable to collisions, but not to creating a second reverse image.
Often used for

* integrity check, by software with peer-to-peer protocol (P2P, or
Peer-to-Peer, in English), and

* password storage.

• SHA-1 (Secure Hash Algorithm):

ś Developed by NIST, the National Institute for Standards and Tech-
nology.

ś Vulnerable to collisions, but not to creating a second reverse image.

instead of MD4, MD5 or the ancient SHA-1, recommended are more recent versions
like SHA-256 and SHA-3 of the Secure Hash Algorithm.

Secure Hash Algorithm: Hash algorithm recommended by the
National Institute for Standards and Technology.

3.4 Construction Scheme

Similar to modern symmetric ciphers that follow the design laid out by Feistel’s
Lucifer algorithm in the 70s, cryptographic hash functions follow the Merkle-
Damgård construction:

The Merkle meta-method, or the Merkle-Damgård construction, builds from a
lossless compression function (that is, whose inputs have the same length as
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the output) a lossy compression function, that is, a hash function. This method
allows us to reduce the immunity of the entire hash function against

• the creation of an inverse image, and
• the creation of collisions

to the corresponding immunity of the compression function.

Merkle Meta-Method Scheme. This construction needs

• an initialization value (IV = initialization value),
• a compression function C, and
• a padding to pad the entry string m of the hash function to a string m̄ such
that m̄ = (m1,m2, ...) consists of a multiple of blocks m1, m2, . . . which are
accepted by the compression function.

With h0 = IV, one computes for i = 1,2, ...

hi = C(mi ,hi−1).

That is, for the computation of the hash of the current block, the value of the
compression function of the last block enters jointly with the current block
value.

The C compression function consists of a Feistel Cipher (or substitution and
permutation network) c where

• or, in the Mayer-Davis scheme, mi is the key and Hi−1 the plaintext; then
the ciphertext is added (by XOR ) to Hi−1 . This is

hi = hi−1 ⊕ c (hi−1,mi )

• or in the Miyaguchi-Preneel scheme, mi is the plaintext and (a g (Hi−1)
change) Hi−1 is the key; then, as in Mayer-Davis’s scheme, the ciphertext
is added (by XOR ) to Hi−1 . This is

hi = hi−1 ⊕ c (mi , g (hi−1))

The addition of hi−1 ensures that the C compression function is no longer
invertible (unlike the c cipher for a őxed key); that is, for a given output, it is
no longer possible to know the (unique) input. Otherwise, to create a collision,
given an output hi , one could decipher by different keys, m′

i and m
′′
i to get

different entries h′
i−1 and h

′′
i−1 .
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Figure 13: The Merkle meta-method (Chouhartem (2016)) where remplissage
and bourrage = padding, and f is the compression function (denoted
C )

Padding. To reduce the immunity from hash to compression function, the
padding mm needs to meet sufficient conditions:

• m is a starting segment of m , that is, the message is extended, but its
initial segment not changed!

• two messages of the same length are extended by the same őnal segment.
• two messages of different lengths are extended differently, so that they
differ in the last block.

The simplest pad that meets these conditions is the one that attaches the length
|m | to m and őlls the segment between the end of m and |m | by the number of
0 s prescribed by the block size, that is, the concatenation

m = m ∥ 0k ∥ |m |.

Observation: To avoid collisions, it is not enough for the padding to őll with
zeros the rest of the message: This way, two messages that only differ in the
number of őnal zeros at the last end would have the same padding!
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Instead, the simplest way would be to attach a digit 1, and then the rest with
0s. However, we will see that this would allow collisions with the Merkle meta-
method if the initial value IV was chosen in the following way:

Denote B1, ...,Bk the message blocks and IV the starting value. The hash is
calculated by iterating the compression function C : (X,B) → C(X,B)

H(M) = C(C(..C(C(IV,B1),B2)...Bk−1),Bk )

The clou of Merkle’s meta-method is the reduction of collisions from the hash
function to the compression function: a hash collision would imply a collision
of the compression function, that is, different pairs of X′

,B′ and X′′
,B′′ blocks

with C(X′
,B′) = C(X′′

,B′′) .

To see this, we note that

• if the m′ and m′′ collident messages have different lengths, then the last B′
k

and B′′
k
blocks are different (because they contain the different lengths!),

but they collide, because the value of the compression function of the last
entry is the hash function.

• Otherwise, that is, colliding messages have the same length, so there’s a
block further to the right where the padded messages differ and we’ll őnd
a block collision after it.

Without the length in the padding, the collision of two messages with different
lengths can ultimately only be reduced to a pre-image of the initial value IV

under the compression function, that is, a value B such that

IV = C(IV,B).

If its choice were arbitrary, the authors of MD5 and SHA-256 could however have
inserted the following back door: Both algorithms use Mayer-Davis’s scheme,
that is, a compression function

C(X,K) = X ⊕ E(X,K)

for a Feistel cipher E with a key K ; in particular, with K őxed the decryption
function EK = E(·,K) is invertible! Now, if the authors wanted to, they could
have chosen a key K and set

IV := E−1
K (0)
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exactly so that IV = C(IV,K). Then C(IV, B) = C(C(IV, K), B) , that is, a
collision between the hashes of B and K ⊕ B !

Since, for example, MD5 and SHA-256 choose as IV a value whose pre-image is
supposedly not known (for example, the hexadecimal digits in ascending order
in MD5 or the decimal digits of the őrst eight primes in SHA-256) this problem is
more theoretical than practical.

3.5 SHA-256

We won’t study the inner workings of SHA-256 in detail (in contrast to O’Connor
(2022)), but a schematic look at its design shows that it follows the Merkle-
Damgård construction:

It is then iterated in roughly 64 rounds:

On Lynn-Miller (2007), you can trace the bytes of an input of your choosing at
each step of the SHA-1 algorithm.

3.6 Uses

Uses of cryptographic hash functions abound:

Digital Signatures. If the roles of the public and private key are ŕipped,
then the encryption is a digital signature: while the encrypted message will no
longer be secret, every owner of the public key can check whether the original
message was encrypted by the private key. However, in theory, signing a őle
(using the RSA algorithm) that was encrypted using the RSA algorithm would
decrypt it. Therefore, in practice, since for a signature it suffices to unequivocally
identify the signed őle (but its content often secret, for example, when signing
a secret key), usually a cryptographic hash is encrypted by the private key.

(H)MAC. A message authentication code algorithm uses a one-way hash
function (such as MD5 or SHA-1) and a block cipher that accepts a secret
key and a message as input to produce a MAC. The MAC value provides the
intended receivers (who know the secret key) to detect any changes to the
message content by:
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Figure 14: Compression function (Kaminsky (2004))

• an integrity check (by ensuring that a different MAC will result if the
message has been altered) and

• an authenticity check (because only the person knowing the secret key
could have produced a MAC).

Data Storage and Integrity. Hash functions (not necessarily cryptographic,
like CRC) are used:

• for fast data query (that is, at őxed time, regardless of the number of
entries, for example,
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Figure 15: Iteration (Kaminsky (2004))
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ś in a hash table, and
ś in a Merkle tree;

• to ensure the integrity of a őle in case of accidental modiőcations, that is,
to detect differences between the őle and a reference version (typically
the one before the őle is transported).

Passwords. Cryptographic Hash functions are used:

• To distribute values evenly (key stretching), intuitively make them less
predictable; that is, as KDF (= Key Derivation Function);

ś in particular, to generate and store passwords, that is, as PBKDF (=
Password Based Key Derivation Function).

ś To ensure the integrity of a őle against tampering, that is, to detect
differences between the őle and a reference version (typically the
one before the őle is transported);

ś in particular, to ensure the authenticity of a őle: to detect differences
between the őle and a version that was under the control of a speciőc
person.

Observation: Note the difference between authenticity and authentication: The
former guarantees the equality of data received and sent from a person (for
example, in the digital signature), the latter the identity of that person (for
example, in a secure site access).

The cryptographic hash algorithms listed above, MD4/5, SHA . . . distribute
the values evenly, but are fast; so they are unsuitable for password creation
because they are vulnerable to brute-force attacks. To prevent these, the PBKDF

algorithm, for example, PBKDF1, PBKDF2, bcrypt, scrypt, Argon2 (a new and
more promising candidate), are

• deliberately slow, such as bcrypt,
• deliberately require a lot of memory to compute, such as scrypt algorithm;
• used only once for each entry (guaranteed by a salt, an additional,
unique, usually random argument. Without salt, the algorithm is prone
to attacks by so-called Rainbow Tables, tables of the hashes of the most
common passwords.
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3.7 Dispersion Table

A h table (or scatter table) uses a hash function to address the entries (= rows)
of a array, that is, a data table.

Each entry has a name, that is, a unique identiőcation (= key). For example, the
key is the name of a person. The key data, for example, your telephone number,
is stored in a table row. These rows are numbered from 0.

Figure 16: Hash Table

The row number, your address, of the key is determined by your hash. As an
advantage, at a őxed time, the data can

• from the key being found, and
• added.

While,
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• for a list of n entries, the search compares on average n/2 entries, and
• for a binary tree of n entries, log2n entries.

Figure 17: Comparison of data structures

Collisions, that is, two entrances with the same hash are more frequent than
you might think; see the Birthday Paradox. To avoid collisions, it is necessary

• choose the number of addresses large enough, and
• the sufficiently injector hash function, that is, it rarely sends different
arguments at equal values.

When collisions occur, a strategy is

• instead of the hash number address a single entry, use Chaining: address
a bucket, a bucket of multiple entries, a list, or

• use łOpen Hashing. put the entry in another free position, for example,
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ś the next one, or
ś use another hash function to calculate it (Double Hashing).

Up to 80 of the table being őlled, on average 3 collisions occur. That is, őnding
an entry takes 3 operations. To compare, with 1000 entries, it would take on
average

• in a 500 operations table, and
• on a binary tree about 10 operations.

However, after this factor collisions occur so often that the use of another data
structure, for example a binary tree, is recommended.

3.8 Merkle Tree

A spreading or Merkle tree (invented in 1979 by Ralph Merkle) groups data
into blocks by a tree (binary), whose vertices (= nodes) are hashes and whose
sheets (= end nodes) contain the data blocks, in order to be able to quickly check
(in linear time) each data block by computing the root hash.

In a n (= 2n sheets )deep scattering tree the data block of each sheet is veriőable

• by knowledge

ś of n hashes łantagonistsž from a source dubious, and
ś from the hash of the top of a source reliable, and

• by calculation

ś from the hash of the data block on the sheet,
ś of the n hashes of his predecessors, and
ś the comparison of the calculated root hash with that obtained.

Use. The main use of Merkle trees is to ensure that blocks of data received
from other pairs in a point-to-point network (P2P) are received intact and
unchanged.
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Figure 18: Checking the third block of a Merkle tree by computing the radical
hash. The hash of each node (mother) is the hash (of the concate-
nation) of the two daughters. The hashes which are necessary and
which have been informed to calculate the one of the top are grey.

Figure 19: Transaction Tree
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Operation. A Merkle tree is a (usually binary) hashes tree whose leaves
are data blocks from a őle (or set of őles). Each node above the leaves on the
tree is the hash of its two children. For example, in the image,

• Hash(34) is the hash of the concatenation of the hashes Hash(3) and
Hash(4), that is, Hash(34) = Hash(3) | |Hash(4)),

• Hash(1234) is the hash of the concatenation of the hashes Hash(12) and
Hash(34), that is, Hash(1234) = Hash(12) | |Hash(34)), and

• the radical hash Hash(12345678) is the hash of the concatenation of the
hashes Hash(1234) and Hash(5678), that is,

Hash(12345678) = | |mathrmHash (5678)).

.

Figure 20: Merkle-tree defective

Normally a cryptographic shuffling function' is used, for

example,SHA-1. However, if the Merkle tree only needs to protect

against unintentional damage, "checkums" are not necessarily

cryptographic, such asCRC‘s are used.

At the top of the Merkle tree resides the root-dispersion or master-dispersion. For
example, on a P2P network, root dispersion is received from a trusted source,
e.g. from a recognized website. The Merkle tree itself is received from any point
on the P2P network (not particularly reliable). This (not particularly reliable)
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Merkle tree is compared by calculating the leaf hashes with the reliable root
dispersion to check the integrity of the Merkle tree.

The main advantage of a tree (deep n with 2n leaves, that is, blocks of data),
rather than a dispersion list, is that the integrity of each leaf can be veriőed by
calculating n (rather than 2n) hashes (and its comparison with the root hash).

For example, in Figure 18, the 3 integrity check requires only

• the knowledge of the hashes Hash(4) Hash(12), and Hash(5678), and
• the computation of the hashes Hash(3) Hash(34), Hash(1234), and
Hash(12345678)

• the comparison between the calculated Hash(12345678) and the hash
obtained from the trusted source.

Self-Check Questions

1. How do a checksum and cryptographic hash function differ? Only for a
cryptographic hash function it is unfeasible to create collisions.

2. What are typical uses of hash functions? Fast data queries, identification of
files (for example, virus scanning), error correction and detection.

3. What are typical uses of cryptographic hash functions? Password storage,
message authentication, integrity checks.

4. What is the clou of the Merkle-Damgård construction? Reduction of the
resistance against collisions to that of the compression function.

Summary

A hash function transforms any data (such as a őle), in other words, a variable-
length string, into a fixed-length string (which is usually 16 or 32 bytes long); as a
slogan, it transforms a large amount of data into a small amount of information.
Their output, a hash, can be thought of as an ID-card of their input (such as a
őle); to this end, the hash function should

• diffuse well, that is, the inversion of an input bit implies the inversion of
about half of the output bits (the avalanche effect), that is, each output bit
should depend on each input bit,

85



• be onto, that is all possible őxed-length sequences are hash function values,
and

• be similar to a uniformly random variable, that is, the probability of each
of the values of the function is the same.

So if, for example, the output has 256 bits, then ideally each value should have
the same probability 2−256. That is, the output identiőes the input practically
uniquely (with a collision chance of ideally 2−256);

It is cryptographic (or one-way)

• when reversion is computationally infeasible, that is, őnding an input for
a given output, and

• when similar data yield dissimilar hashes.

Recommended are, among others, the more recent versions SHA-256 and SHA-3

of the Secure Hash Algorithm.

Questions

1. How do a checksum and cryptographic hash function differ? Only for a
cryptographic hash function it is unfeasible to create collisions.

2. What are typical uses for checksums? (Accidental) error detection and correc-
tion, for example, noise on reading a Compact Disc or in network traffic, and

many more.

3. What are typical uses of cryptographic hash functions? (Intentional) alter-
ation correction in storage or network traffic, and many more.

4. Name common cryptographic hash functions. The MD and the SHA family.

5. Which hash function is not cryptographic ? SHA-1, MD4, CRC,
WHIRLPOOL

6. Which cipher is a stream cipher? RSA, Enigma, AES, DES
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Required Reading

Read the section on symmetric cryptography in the article Simmons et al.
(2016).

Read (at least the beginnings of) Chapter 9 on hash functions in Menezes,
Oorschot, and Vanstone (1997), and (at least the beginnings of) that in the
most recent work Aumasson (2017), Chapter 6.

Further Reading

Observe the diffusion created by a cryptographic hash function in Lynn-Miller
(2007).
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4 Asymmetric Cryptography

Study Goals

On completion of this chapter, you will have learned . . .

• the advantages of asymmetric cryptography, such as, key distribution over
distance, and

• its limitations, principally the lack of trust in the distant owner of a public
key.
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Introduction

The big practical problem of single-key cryptography is key distribution, more
exactly:

• to secretly pass the same key to all correspondents, usually far away from
each other, before they can communicate securely. Even messengers as in
diplomatic and military agencies have to be trusted unconditionally to
neither intentionally nor accidentally disclose them.

• the high number of keys needed for a group of correspondents to commu-
nicate securely: Every pair of correspondents in a group needs a unique
key to communicate securely. In a group of 10 correspondents, each user
would need a different key for each of the other 9 correspondents; in
total 45 different keys. The number of keys increases in proportion to the
square of the number of correspondents: For example, in a group of 1000
correspondents, around half a million keys would be needed.

In 1976, Whitőeld Diffie and Martin Hellman conceived that the key distribution
problem could be solved by an algorithm that satisőed:

• (computationally) easy creation of a matched pair of keys for encryption
and decryption,

• (computationally) easy encryption and decryption,

• (computationally) infeasible recovery of one of the keys despite knowledge
of:

ś the algorithm,
ś the other key, and
ś any number of matching plaintext and ciphertext pairs.

• (computationally) infeasible recovery of the plaintext for almost all keys
k and messages x .

Observation: This was the őrst public appearance of two-key cryptography. How-
ever, the British Government Communications Headquarters (GCHQ) knew it
around a decade earlier.

If a user, say Alice, of such an algorithm keeps her decryption key secret but
makes her encryption key public, for example, in a public directory, then:
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• Everyone who wishes to communicate securely with Alice just needs to
look up her public key to send her a ciphertext that only she can decrypt;
that is, a message can be encrypted without any need for secrecy.

• a ciphertext encrypted with Alice’s secret key can be deciphered by every-
one who uses the corresponding public key; that is, a sender can be
identiőed without any need for secrecy.

The security of two-key cryptographic algorithms relies on the computational
difficulty of a mathematical problem, for example, factoring a number that is
the product of two large primes; ideally, computing the secret key is equivalent
to solving the hard problem, so that the algorithm is at least as secure as the
underlying mathematical problem is difficult. This has not been proved for any
of the standard algorithms, although it is believed to hold for each of them.

4.1 Asymmetric Cryptography

In comparison with symmetric cryptography, asymmetric encryption avoids the
risk of compromising the key to decipher that is involved in exchanging the
key with the cipherer. This secure communication with anyone via an insecure
channel is a great advantage compared to symmetric cryptography. Let us
recall the classic methods to exchange a symmetric key, before looking at its
asymmetric counterpart: While asymmetric cryptography made it possible to
exchange a secret key overtly, this convenience comes at the risk of the unknown
identity of the key holder, prone to a man-in-the-middle attack which Public
Key Infrastructure work around by the use of certiőcates, digital signatures by
third parties of public keys.

Symmetric Ciphers. A symmetric key must be passed secretly. Possible
methods are:

• Derivation from a base key using a Key Derivation Function (KDF), a
cryptographic hash function which derives a secret key from secret Ð and
possibly other public Ð information, for instance, a unique number,

• Creating a key from key parts held by different persons, for example, as
an analogue to the one-time pad: If s is the secret (binary number, then
s = s1 ⊕ s2 ⊕ ... ⊕ sn for the partial secrets s1, s2, . . . Reconstruction of s is
only possible if all s1, s2, . . . are combined
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• transmission via a different channel, for example:

ś personally,
ś a sealed letter,
ś by telephone, or
ś by quantum entanglement, where a change of state of one quantum
particle (say from spin-up to spin-down) instantly implies that of the
other and vice-versa. This information of state cannot be intercepted
and lends itself to bit transmission; However, entanglement is fragile
and can not be fully controlled. Quantum entanglement for key
distribution was put into practice in Sasaki et al. (2011).

4.2 Man-in-the-middle Attack

Diffie and Hellman’s achievement was to separate secrecy from authentication:
Ciphertexts created with the secret key can be deciphered by everyone who
uses the corresponding public key; but the secret-key holder has no information
about the owner of the public key!

Thus the public keys in the directory must be authenticated. Otherwise A could
be tricked into communicating with C when he thinks he is communicating with
B by substituting C key for B in A’s copy of the directory; the man-in-the-middle

attack (MIM):

Man-in-the-middle attack: an attacker intercepts the messages
between the correspondents and assumes towards each of them
either correspondent’s identity.

Scenario. In an MITM, the attacker places himself between the correspon-
dents, assuming towards each one of them the identity of the other to intercept
their messages.

1. Bob sends his public key to Alice. Eve intercepts it, and sends Alice her
own public key that claims Bob as its owner. If Alice sends a message to
Bob, then she uses, without realizing it, the public key of Eve!

2. Alice enciphers a message with the public key of Eve and sends it to Bob.
3. Eve intercepts the message, deciphers it with her private key; she can read

the message and alter it.
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Figure 21: MITM Sweigart (2013b)

4. Eve enciphers the message with Bob’s public key.
5. Bob deciphers the message with his private key and suspects nothing.

So both Alice and Bob are convinced to use each other’s public key, but they
are actually Eve’s!

Example. In practical terms, this problem occurs for example in the 1982
‘ARP’ Address Resolution Protocol (in RFC 826) which standardizes the address
resolution (conversion) of the Internet layer into link layer addresses. That is,
ARPmaps a network address (for example, an IPv4 address) to a physical address
as an Ethernet address (or MAC address). (On Internet Protocol Version 6 (IPv6)
networks, ARP has been replaced by NDP, the Neighbor Discovery Protocol).

The ARP poisoning attack proceeds as follows:

Maria Bonita wants to intercept Alice’s messages to Bob, all three being part of
the same physical network.

Maria Bonita sends a arp who-has packet to Alice which contains as the source
IP address that of Bob whose identity we want to usurp (ARP spooőng) and the
physical MAC address of Maria Bonita’s network card.
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0. Alice will create an entry that associates the MAC address of Maria Bonita
with Bob’s IP address.

1. So when Alice communicates with Bob at the IP level, it will be Maria
Bonita who will receive Alice’s packages!

4.3 Public and private key

Let us recall that there are two keys, a public key and a private key. Usually:

• The public key is used to encrypt, while the private key is used to decrypt.

Thus, a text can be transferred from the encipherer (Alice) to one person only,
the decipherer (Bob).

The roles of the public and private keys can be reversed:

• The private key is used to encrypt, while the public key is used to decipher.

Thus, the encipherer can prove to all decipherers (those who have the public
key) their ownership of the private key; the digital signature.

The (mathematical) algorithm behind the encryption either by the public key
(for hiding the content of digital messages) or by the private key (for adding
digital signatures) is in theory almost the same: only the roles of the arguments
of the one-way function are exchanged (for example, in the RSA algorithm). In
practice, however, usually:

• the public key encrypts paddings of the plaintext (to avoid a text so short
that the private key can be easily computed), and

• the private key encrypts hashes, the value of a function that almost al-
ways sends different texts to different numbers. (This hash is usually a
cryptographic hash, that is, given its output, it is practically impossible
to deduce its input, so that the integrity of the signed message can be
checked, that is, that whether it has been altered on the way).

That is, while

• for encryption by the public key, the preparatory transformation of the
text (the padding) is easily invertible,

• for private key encryption, it (the hashing) is hardly invertible.
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Figure 22: digital signature

Ephemeral Sub Keys. A sub-key of a master key is a key (whose crypto-
graphic checksum is) signed by the master key. The owner often creates subkeys
in order to use the main key (public and private) only

• to sign

ś someone else’s key,
ś a personal sub key

• to revoke a key (that is, sign a revocation),

• to change the expiration date of a personal key.

The subkeys are used for all other daily purposes (signing and deciphering).

This way, if a sub key is eventually compromised (which is more likely that
that of a main key due to its everyday use), then the main key will not be
compromised. In this case,
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• the owner revokes it (publishes a note invalidating the compromised public
key which is digitally signed by its private main key), and

• creates another key.

Figure 23: subkeys

We saw how subkeys work in practice in the common command-line program GPG

discussed in Section 13.4. A good reference is https://wiki.debian.org/Subkeys.

Sub Keys for the Day-to-Day. For more security, you create (for example,
in GPG)

• őrst a (public and private) main key and

• then several sub keys with expiry date, for everyday use:

ś a subkey to decipher in everyday life (for example, the encrypted
emails received), and

ś a sub key to sign in everyday life (for example, the emails sent).

Before their expiry, the keys are either extended, or revoked to create
others.

As for using different keys to sign and encrypt,
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Figure 24: Fingerprints of sub keys in GPG for S subscribe and E encrypt

• it’s necessary for some algorithms, for example,

ś Yes, in the ElGamal algorithm,
ś but not in łRSAž.

• it is safer (but more inconvenient, which can lead to the user’s sloppiness
and then in practice it is less safe!) to have different keys to decipher and
to sign,

ś because

* it is useful to keep a copy of the private key to decipher (to
be able, after its loss, to still read őles enciphered by the corre-
sponding public key)

* it is useless to keep a copy of the private key to sign (because
once lost another person can sign with it too).

ś because, for example in the RSA algorithm, the signature and the
decipherment (by the private key) are equal (in theory, though in
practice implemented differently) algorithms!

Therefore, signing (by the private key) a document encrypted by the
corresponding public key is equivalent to deciphering it! However,
this possibility is theoretical, but it does not practice: All imple-
mentations of the RSA protect the user by the fact that always and
exclusively

* paddings of a document, and

* sign a cryptographic check sum of a document (from which its
original content cannot be deducted).

Best Practices for Key Management. Only the main key is immutably
linked to the identity of the owner, and all others replaceable: While the
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• main key is kept in a safe at home and only sees the light when keys need
to be signed (be it from the owner or from someone else [for example, to
establish the web of trust]).

In practice,

ś is stored on a ŕash drive or memory card,

ś and to be more durable, it is even printed, for example:

* By the paperkey program that extracts the secret part (of the
őle) of the private key (that is, it omits all public information
like

· the identity,
· the algorithm, . . . ,

and encodes this part in hexadecimal notation (stored in a text
őle). (So if the key has, for example, 4096 bits, the őle generated
by paperkey has ≥ 1024 bits). This command

gpg --export-secret-key 0xAE46173C6C25A1A1! > ~/private.sec

paperkey --secret-key ~/private.sec > ~/private.paperkey

· exports only (indicated by the !) the main secret key
(0xAE46173C6C25A1A1) of the private keys, and

· extracts and converts it by paperkey into a text őle.

* By the qrencoder program (for keys whose őle has < 2953

characters) which encodes it into a QR code.

• the sub keys are stored in a smartcard that is accessed by a USB reader
with its own keyboard. Compared to using a digital őle, it has the advantage
that

ś reading the keys on a smart card is much more difficult than a őle
(stored on a USB stick or hard drive)

ś leaves fewer traces:

* It never reveals the key, but only what is necessary to prove that
it can access it, and

* is immune to keyloggers that record keystrokes.
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Figure 25: smartcard reader

(Perfect) Forward Secrecy. (Perfect) Forward Secrecy means that, after
the correspondents exchanged their (permanent) public keys and established
mutual trust,

1. before correspondence each correspondent creates an ephemeral key (the
session key*) and signs it by the private (permanent) key to avoid a MITM

attack (see Section 4.2),
2. after correspondence each correspondent deletes her (ephemeral) private

key.

This way, even if the correspondence was eavesdropped and recorded, it cannot
be deciphered later; in particular, it cannot be deciphered by obtaining a
correspondent’s private key.

For example, the TLS protocol, which encrypts communication of much of
the Internet, has since version 1.2 support for Perfect Forward Secrecy: In
the handshake between client and server in Section 13.3 : after the client has
received (and trusted) the server certiőcate, the server and the client exchange
a ephemeral public key which serves to encrypt the communication of only
this correspondence. This ephemeral key is signed by the public (permanent)
key of the server. (The creation of this asymmetric key in Perfect Forward
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Secrecy makes the creation of a symmetric preliminary key by the client in the
penultimate step in the handshake in the TLS protocol superŕuous.)

Figure 26: Perfect Forward Secrecy

Group Signature. Every granted signature shall őrst be thought through
solemnly. The same goes for digital signatures:

A signature proves that the owner of the private key, say Alice, acknowledged
the content. In e-mail communication, it avoids the risk that an attacker

• mimics the e-mail address of sender Alice, but
• enciphers with the key of the recipient Bob.

However, if the communication contains something Alice doesn’t want to be
seen by others (for example, to be read out loud by a prosecutor in court),
better not prove her acknowledgement! Since this message may eavesdropped,
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her correspondent may change his mind about the privacy of their conversation,
or his account is hacked, . . .

To give an analogy to our analog reality, an automatic digital signature by Alice
compares to the recording of every private conversation of Alice.

In fact, usually Alice wants to prove only to Bob that she’s the sender, but not to
third parties! For this, in a group signature, an ephemeral key to sign is created
and shared (that is, the public and private key) between Alice and Bob. This way,
Alice and Bob are sure that the message was sent by the other correspondent,
but a third party only that it was sent among the group members.

Figure 27: Group Signature

4.4 Public Key Infrastructures

A Public Key Infrastructure (PKI) of a network establishes trust among its
spatially separated users by őrst authenticating them, then authorizing their
public keys by signing them (referred to as digital certiőcates) and őnally
distributing them. In institutions and corporations, a PKI is often implemented
as ła trust hierarchyž of Certiőcation Authorities, whereas in looser communities
it can be decentralized and trust mutually established by the users themselves.
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A Public Key Infrastructure (PKI): establishes trust among its
spatially separated users of a network by őrst authenticating them,
then authorizing their public keys by signing them (referred to as
digital certiőcates) and őnally distributing them.

A PKI includes:

• (Digital) Certiőcates: public keys which are signed to authenticate their
users. Other then the name and key, they contain additional personal
data, such as an e-mail address, and usually an expiry date.

• Certiőcate Revocation List (CRL): A list of certiőcates that have been
revoked before their validity expires, for example, because

ś the key has been compromised, or
ś the key owner is no longer trustable, for example, because of her
departure.

• Directory Service: a searchable database of the emitted certiőcates; for
example, in a trust hierarchy an LDAP server (Lightweight Directory
Access Protocol; a standard used by large companies to administer access
of users to őles, printers, servers, and application data), and in the web
of trust a server that hosts a database searchable by a web form.

Philosophy of Solutions. The identity of the key owner is conőrmed by
third parties, that is, other identities with private keys that conőrm by their
digital signatures that it is Alice who owns the private key.

However, the problem of the public key identity arises again: How can we ensure
the identities of the private key owners? There are two solutions:

• hierarchical authorities, and

• the web of trust

For short: while in the Web-of-Trust the connections built by trust form a graph,
in the approach by hierarchical authorities they form a tree.
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Figure 28: Hierarchical authorities, Cort (2018)

Figure 29: The web of trust, Kku (2019)

Hierarchical Authorities. In the approach via hierarchical authorities,
private key owners are distinguished by hierarchical levels. At the highest level
lie the root authorities on which one trusts unconditionally.

hierarchical authorities: Key owners that conőrm others’ identities
by digital signatures and are organized in a hierarchy, where trust
passes from a higher to a lower level; total trust is placed in those
at the highest level, the root authorities.

For example,
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• VeriSign, GeoTrust, Commode, . . . are major US certifying companies;

• as a recent addition, the (US intermediary) non-proőt authority Let us

encrypt;

• a look at the /etc/ssl/certs folder in the Linux distribution openSUSE

reveals that there is, for example,

ś a German authority (TeleSec of Deutsche Telekom AG, the former
national telecommunications operator),

ś three Spanish (Firmaprofesional, ACCVRAIZ1 Ð Agencia de Tec-
nología y Certiőcación Electrónica, and ACC RAIZ FNMT Ð Fábrica
Nacional de Moneda y Timbre), and

ś many U.S. authorities.

Web of Trust. In the web of trust, private key owners cannot be distin-
guished from each other.

web of trust: Private key owners conőrm other’s identities by suc-
cessively passing trust to each other among equals.

The absence of root authorities, unconditionally trusted entities, is compensated
for by the

1. trust initially established by

• having obtained the public key personally (for example, at key-sign
parties, meetings where participants exchange and sign their public
keys mutually), or

• by

1. having obtained the key through a different channel (Website,
e-mail, . . . ) and

2. having communicated your check sum via another channel
(phone, SMS, instant messenger, . . . );

2. then the trust is successively (transitively) passed from one to the other:
If Alice trusts Bob, and Bob trusts Charles, then Alice trusts Charles.
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Standardization of Philosophies on the Internet. On the Internet,

• the system of trust by hierarchical authorities has been standardized by the
scheme X.509, principally used to encrypt the communication between a
user and a (commercial) Website (but also between users in corporate
environments, such as, S/MIME e-mail encryption), and

• The OpenPGP scheme (as implemented by the GnuPG program), with its
main use of encrypting e-mails. This scheme radically rejects any hierarchy:
the user can publish a public key with an e-mail address on a public key
server such as that of the MIT without even conőrming (by an activation
e-mail) that he has access to the account of this e-mail address.

4.5 DANE

The IETF (Internet Engineering Task Force) proposed (in RFC 63941: DANE
use cases and RFC 66982: DANE protocol) the DANE protocol that aims to
cryptographically harden the TLS, DTLS, SMTP, and S/MIME protocols using
DNSSEC. By DNSsec, a DNS resolver can authenticate a DNS resolution, that
is, whether it is identical to that on the authoritative DNS server, by checking
its signature (of the authoritative DNS server). Instead of relying, like these
protocols, entirely on certiőcate authorities (CAs), domain holders

• can restrict the CAs that validate the domain’s certiőcate, and
• can emit certiőcates for themselves, without reference to CAs.

Using CAs, there is no restriction on which CAs can issue certiőcates for which
domains. If an attacker can gain control of a single CA among the many CAs
that the client trusts, then she can emit fake certiőcates for every domain. DANE
allows clients to ask the DNS servers, which certiőcate are trustworthy so that
the domain holder can restrict the scope of a CA. When the user is passed a
domain name certiőcate (as part of the initial TLS handshake), the client can
check the certiőcate against a TLSA resource-record (TLSA-RR) published in
the DNS for the service name which is authenticated by the authoritative DNS
server.

The most common standard for a PKI is the hierarchy of X.509 certiőcate
authorities. X.509 was őrst published in 1998 and is deőned by the International
Telecommunications Union’s Standardization sector (ITU-T), X.509 establishes
in particular a standard format of electronic certiőcate and an algorithm for
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the validation of certiőcation path. The IETF developed the most important
proőle, PKIX Certiőcate and CRL Proőle, or łPKIXž for short, as part of RFC
3280, currently RFC 5280. It is supported by all common web browsers, such
as Chrome and Firefox, which come with a list of trustworthy X.509 certiőcate
authorities.

In more detail, the TLSA-RR contains the entry Certiőcate Usage, whose value
(from 0 to 3, the lower, the more restrictive) restricts the authority allowed to
validate the certiőcate for the user:

0. PKIX-TA (CA constraint). The client’s trust resides in a PKIX authority.
1. PKIX-EE (Service Certiőcate Constraint). The client’s trust resides in a

PKIX certiőcate.
2. DANE-TA (Trust Anchor assertion). The client’s trust resides in an author-

ity which, in contrast to PKIX-TA, does not have to be a PKIX certiőcate
authority.

3. DANE-EE (Domain-issued certiőcate). The client’s trust resides in an
certiőcate which, in contrast to PKIX-EE, does not have to be a PKIX
certiőcate.

The DANE check therefore serves to conőrm certiőcates issued by public
certiőcation authorities. With DANE values (2 and 3), the domain holder has
the option of creating his own, even self-signed certiőcates for his TLS-secured
services, without having to involve a certiőcation authority known to the client.
By choosing between łTrust Anchorž (TA) and łEnd Entityž (EE), the domain
owner can decide for himself whether to anchor DANE security to a CA or
server certiőcate.

4.6 Hybrid Ciphers

hybrid encryption: a two-key algorithm is used to authenticate the
correspondents by digitally signing the messages or to exchange a
key for single-key cryptography for efficient communication there-
after,

The most common key exchange method is to create a shared secret between
the two parties by the Diffie-Hellman protocol and then hash it to create the
encryption key. To avoid a man-in-the-middle attack, the exchange is authenti-
cated by a certiőcate, that is, by signing the messages with a long term private
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key to which the other party holds a public key to verify. Since single-key cryp-
tographic algorithms are more efficient than two-key cryptographic algorithms
by a considerable factor, the main use of two-key encryption is thus so-called
hybrid encryption where the two-key algorithm is used

• to authenticate the correspondents by digitally signing the messages, or
• to exchange a key for single-key cryptography for efficient secure commu-
nication thereafter.

For example, in the TLS (Transport Layer Security; former SSL) protocol, which
encrypts secure sites on the World Wide Web, a cryptographic package such as
TLS_RSA_WITH_3DES_EDE_CBC_SHA (identiőcation code 0x00 0x0a) uses

• RSA to authenticate and exchange the keys,
• 3DES in CBC mode to encrypt the connection, and
• SHA as a cryptographic hash.

Self-Check Questions.

1. What is a problem that Public Key cryptography solves? Distributing a
secret key over an open channel.

2. What is a problem that Public Key cryptography does not solve? The
authentication of the private key owner.

3. What are two common approaches to work around the Man-in-the-middle
attack? Certificate authorities and Web-of-trust

4. What are common protocols to work around the Man-in-the-middle attack?
X.509 (as used by S/MIME) and OpenPGP

Summary

Single-key (or symmetric) cryptography suffers from the key distribution problem:
to pass the same secret key to all, often distant, correspondents. Two-key (or
asymmetric) cryptography solves this problem seemingly at once, by enabling
the use of different keys to encrypt and decrypt. However, the identity of the
key owner must be conőrmed; if not personally, then by third parties, that is,
identities with private keys that conőrm by their digital signatures that it is
Alice who owns the private key. However, the problem of the public key identity
arises again: How can we ensure the identities of these private key owners?
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There are two solutions: In the approach via hierarchical authorities, private
key owners are distinguished by hierarchical levels. At the highest level lie the
root authorities on which one trusts unconditionally. In the web of trust, trust is
transferred from one to the other, that is, trust is transitive: If Alice trusts Bob,
and Bob trusts Charles, then Alice trusts Charles.

Questions

Required Reading

Read the section on asymmetric cryptography in the article Simmons et al.
(2016). Read in Menezes, Oorschot, and Vanstone (1997) Sections 3.1 and
3.3.

Further Reading

Read the parts of the book Schneier (2007) on understanding and implementing
modern asymmetric cryptographic algorithms.
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5 Modular Arithmetic

Study Goals

On completion of this chapter, you will have learned what a trapdoor function
is, and:

1. why modular arithmetic is needed to deőne such a function, and
2. what modular arithmetic is by division with rest.
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Introduction

The security of two-key cryptographic algorithms relies on the computational
difficulty of a mathematical problem, for example, factoring a number that is
the product of two large primes; ideally, computing the secret key is equivalent
to solving the hard problem, so that the algorithm is at least as secure as the
underlying mathematical problem is difficult. This has not been proved for any
of the standard algorithms, although it is believed to hold for each of them.

To see the usefulness of (modular) arithmetic in cryptography, recall that
asymmetric cryptography is based on a trapdoor function, which

• must be easily computable, but
• its inverse must be practically incomputable without knowledge of a
shortcut, the key!

The ease of calculating the function corresponds to the ease of encryption,
while the difficulty of calculating the inverse corresponds to the difficulty of
decryption, that is, inverting the encryption. For example, RSA uses

• as an encryption function the raising to an n -th power, and
• as a decryption function its inverse, the root extraction.

While both, the function itself and even its inverse, are easily computed using
the usual multiplication of numbers, instead cryptographic algorithms (such as
RSA) use modular arithmetic to entangle the computation of the inverse function
without knowledge of the key (which in RSA is root extraction).

We already know modular or circular arithmetic from the arithmetic of the clock,
where m = 12 is considered equal to 0 : Because the indicator restarts counting
from 0 after each turn, for example, 3 hours after 11 hours is 2 o’clock:

11 + 3 = 14 = 12 + 2 = 2.

Over these őnite circular domains, called őnite rings and deőned in Section 5.3,
(the graphs of) these functions become irregular and practically incomputable,
at least without knowledge of a shortcut, the key.

In what follows, we

1. convince ourselves of the difficulty on this domain in contrast to that of
the real numbers, and
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2. introduce this domain.
3. we explain how to calculate the inverse function on it.

5.1 Modular Arithmetic as Randomization

The difficulty of calculating the inverse corresponds to the difficulty of de-
cryption, that is, inverting the encryption. In an asymmetric cryptographic
algorithm,

• the ease of encrypting (a number), and
• the difficulty of deciphering (a number)

are based on an invertible function such that

• it is easily computable, but
• its inverse function is difficult to compute.

For example, the inverses of the trap-door functions

• raising to a power x ↦→ xe (in the RSA algorithm), and
• exponentiating x ↦→ g x (in the Diffie-Hellman algorithm)

are given by

• the root extraction x ↦→ x1/n , and
• the logarithm logg .

They are

• easily computable on the domain of real numbers ℝ (for example, by the
bisection method for continuous functions thanks to the connectedness
of ℝ ),

• but on their őnite cryptographic domains they are almost incomputable.

Observation. Both functions are algebraic, that is, they are expressed by a formula
of sums, products, and powers. Analytical functions, that is, inőnite convergent
sums, for example, sine, cosine, . . . , are inconvenient by the rounding errors.
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5.2 Functions on Discrete Domains

The domain of these functions is not the set of integers ℤ (or that of the real
numbers ℝ that includes them), because both functions, exponentiation and
raising to a power, are continuous over ℝ:

Figure 30: The function of the exponential exp (Wassermann (2020a))
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Figure 31: The parabola of the cubic function x ↦→ x3 (Wassermann (2020b))
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If the domain of these functions wereℝ , then their inverses could be approximated
over ℝ , for example, by iterated bisection where the inverse point is besieged
in intervals that are halved at every iteration: Given y0, őnd an x0 such that
f (x) = y0 is equivalent to őnding a zero x0 of the function

x ↦→ f (x) − y0.

Figure 32: Bisection of a continuous function (Ziegler (2009))

1. (Start) Choose an interval [a,b] such that

f (a) < 0 and f (b) > 0.

2. (Recalibration) Calculate the midpoint m := (a + b)/2 of the interval [a,b]:

• If f (m) = 0 , then m = x0, and we have found our zero.

Otherwise:

• either f (m) < 0 , then replace the left edge a with m ,
• or f (m) > 0 , then replace the right edge b with m ,

and recalibrate the newly obtained interval [m,b] respectively [a,m].
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Figure 33: Intermediate Value Theorem (Abramson (2019))

By the Intermediate Value Theorem, the zero is guaranteed to be in the interval,
which at each step decreases and converges to the intersection.

Finding the zero of the polynomial

F(x) = x3 + 3x2 + 12x + 8

by bisection with starting points x1 = −5 and x2 = 0 , yields in steps i = 2, ...,15

the successive approximations

i xi F(x) xi − xi−1
2 0 8 5

3 −2.5 −18.875 2.5

4 −1.25 −4.26563 1.25

5 −0.625 1.42773 0.625
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i xi F(x) xi − xi−1
6 −0.9375 −1.43726 0.3125

7 −0.7813 −0.02078 0.15625

8 −0.7031 0.69804 0.07813

9 −0.7422 0.33745 0.03906

10 −0.7617 0.15806 0.01953

11 −0.7715 0.06857 0.00977

12 −0.7764 0.02388 0.00488

13 −0.7783 0.00154 0.00244

14 −0.7800 −0.00962 0.00122

5.3 Finite Rings

To avoid the iterative approximation of the zero of a function and thus complicate
the computation of the inverse function (besides facilitating the computation of
the proper function), the domain of a trapdoor function is a finite ring denoted
by

ℤ/mℤ = {0,1, ...,m − 1}
for a natural number m.

finite ring: A őnite set that contains 0 and 1 and over which a sum +
is explained that obeys the laws of associativity and commutativity.

In such a őnite ring
m = 1 + · · · + 1 = 0;

necessarily, every addition (and thus every multiplication and every raising to a
power) has result < m. So the addition of ℤ/mℤ is different from that on ℤ (or
ℝ). For example, for m = 7 ,

22 = 2 · 2 = 4 and 32 = 3 · 3 = 7 + 2 = 0 + 2 = 2.

We will introduce these őnite rings őrst by the examples ℤ/12ℤ and ℤ/7ℤ, the
rings given by the clock hours respectively weekdays), then for every m .

When we look at the graphs of the functions, which are so regular on ℝ , we
note that over the őnite ring ℤ/101ℤ, either graph, that of

• the exponentiation with base 2, and
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Figure 34: The graph of exponentiation with basis 2 over ℤ/101ℤ (Grau
(2018b))

• the parabola

is initially as regular over ℤ/101ℤ as over ℤ , but starting

• from x = 7 (because 27 = 128 > 100 ), respectively
• from x = 11 (because 112 = 121 > 100 )

begins to behave erratically. (Except for the symmetry of the parabola on the
central axis x = 50.5 due to (−x)2 = x2).

Task. Experiment with the function plotter Grau (2018d) to view the erratic
behavior of other function graphs over őnite domains.

5.4 Modular Arithmetic in Everyday Life

We apply modular arithmetic in everyday life when we add times in the daily,
weekly and yearly cycle of clock hours, weekdays and months. It is this circularity
that explains the naming łringž.
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Figure 35: The graph of the cubic Y = X3 over ℤ/101ℤ (Grau (2018c))

Clock. The prototypical example of modular arithmetic is the arithmetic of
the clock in which the pointer comes back to start after 12 hours; formally,

12 ≡ 0,

which implies, for example,

9 + 4 ≡ 1 and 1 − 2 ≡ 11. (1)

That is, 4 hours after 9 hours is 1 o’clock, and 2 hours before 1 o’clock is 11
o’clock. We can go further: 9 + 24 ≡ 9; that is, if it is 9 o’clock now, then in 24

hours (one day later) as well.

Days of the Week. Another example of modular arithmetic in everyday life
are the days of the week: after 7 days, the days of the week start over: If we
enumerate ‘Saturday’, ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’
and ‘Friday’ by 0 , 1 , 2 , 3 , 4 , 5 , 6 , then

7 ≡ 0,
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Figure 36: The Clock as Ring of numbers 1 , 2 , . . . , 11 , 12 = 0; J. Smith (2009)

which implies, for example,

4 + 4 ≡ 1 and 1 − 2 ≡ 5.

Indeed, 4 days after Wednesday is Sunday, and 2 days before Sunday is Friday.
We can go further: 5 + 14 ≡ 5; that is if now it is Thursday, then in 14 days (two
weeks later) as well.

Months. Another example of modular arithmetic in everyday life are the
months of the year: after 12 months, the months of the year start over. If we
number ‘January’, ‘February’, . . . for 1, 2, . . . then, as in the clock,

12 ≡ 0,

which implies, for example,

10 + 3 ≡ 1 and 1 − 2 ≡ 11;
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Figure 37: The weekly cycle of taking pills; Walmart (2019)

That is, a quarter after October the year starts over, and 2 months before
January is November. We can go further: 5 + 24 ≡ 5; that is, if it’s ‘May’ now,
then in 2 years as well.

5.5 Formalization

Formally, we derive the equation Equation 1 from the equalities

9 + 4 = 13 = 12 + 1 ≡ 0 + 1 = 1 and 1 − 2 = −1 = −1 + 0 ≡ −1 + 12 = 11.

and
9 + 24 = 9 + 2 · 12 ≡ 9 + 2 · 0 = 9.

In general, for every a and x in ℤ ,

a + 12 · x ≡ a
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or, equivalently, for all a and b in ℤ ,

a ≡ b if 12 divides a − b .

Division with remainder. Definition. Let a and b be positive integers. That a
divided by b has remainder r means that there is such an integer q that

a = b · q + r with 0 ≤ r < b .

Example. For a = 230 and b = 17 , we compute 230 = 17 · 13 + 9 . That is, the
remainder of 230 divided by 17 is 9 .

In other words, for every a and b in ℤ ,

a ≡ b

if and only if a and b leave the same remainder divided by 12.

There is nothing special about the number m = 12 (of clock hours). For example,
analogous equalities would hold if the clock indicated m = 16 hours (as many
as a day on the planet Neptune has):

Definition. Let m be a natural number. The integers a and b are congruent

modulo m, formally,
a ≡ b mod m

if m |a − b , that is, if their difference a − b is divisible by m. In other words, if a
and b leave the same remainder divided by m.

The number m is called modulus.

Or, phrased differently, a ≡ b mod m if a and b leave the same remainder
divided by m .

Congruence: Two integer a and b are congruent modulo m if they
leave the same remainder after division by m .
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Figure 38: A clock with 16 hours; Carleton (2011)
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Construction. Let us őnally deőne these őnite domains ℤ/mℤ (the ring of
integers modulom) for a natural, usually prime, numberm, on which the trap-door
functions in asymmetric cryptography live; those that make a cryptanalyst’s life
so difficult when trying to compute their inverse (in contrast to the domains ℝ
or ℤ).

Given an integer m ≥ 1, we want to deőne the ring ℤ/mℤ (loosely, a set with
an addition + and multiplication · governed by certain laws) such that

m = 1 + · · · + 1 = 0.

More exactly, such a ring

• a set that contains 0 (= the neutral element of the addition) and 1 (= the
neutral element of the multiplication),

• with two operations, the addition + (such that, for every x there is is an
inverse y = −x , that is, x + y = 0) and the multiplication ·,

• that satisfy the associative, commutative and distributive law.

If this equality for + is to hold over ℤ/mℤ, then the addition + over ℤ/mℤ has
to be deőned differently from that over ℤ. We put

• as a set
ℤ/mℤ := {0, ...,m − 1},

• as neutral elements of addition and multiplication

0 and 1;

• As operations + and ·

x + y = r(x + y) where r(x) = the remainder of x + y divided by m

and
x · y = r(x · y).

The inverse y = −x of x is given by y = m − x .

That is, to add and multiply in ℤ/mℤ,

1. we calculate the sum or product as in ℤ, and
2. We calculate its remainder divided by m.
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For example, for m = 4 we get the addition and multiplication tables

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

and

* 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Exercise. Show that an integer is divisible by 3 (respectively 9) if, and only if,
the sum of its decimal digits is divisible by 3 (respectively 9).

In Python, the modular operator is denoted by the percentage symbol %. For
example, in the interactive shell, we get:

>>> 15 % 12

3

>>> 210 % 12

6

Conditions for Invertibility of Functions. The base g of x ↦→ g x and the
exponent e of x ↦→ xe determine whether the function is invertible or not.

Exponential Function. The exponential function invertible if and only if it
is onto, that is, every number, except 0 is a value of the function. For example,
for m = 101, the values are contained in ℤ/101ℤ∗ := ℤ/101ℤ − {0}:
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• For example, for g = 2 over ℤ/101ℤ, its image is maximal, that is, it is
(ℤ/101ℤ)∗ := ℤ/101ℤ− {0} ; in other words, all the numbers (other than
zero) are powers of g . (One says that g generates ℤ/101ℤ∗.)

• However, for example g = 4 = 22 generates on the same domain only half
of ℤ/101ℤ∗, a set of 50 elements.

Theorem on the existence of a primitive root. A generator of ℤ/mℤ∗ exists if, and
only if,

• either m = 1,2,4 ,
• or m = pe respectively m = 2pe for a prime number p > 2.

Raising to a Power. A function (between a őnite domain and counter-
domain) is invertible if and only if it is injective, that is, sends different arguments
to different values.

Task. Experiment with the function plotter Grau (2018d) to őnd examples of
functions that are injective or not, that is, whose graph has two points at the
same level.

If the exponent E is even, E = 2e for an integer e , then raising to the power
x ↦→ xE satisőes (−x)E = (−x)e = ((−x)2)e = (x2)e = xe = xE, that is, sends the
arguments −x and x to the same value. Thus, it is not injective. For example,
for m = 101 and e = 1 , we observe this symmetry in Figure 39 along the central
axis x = 50,5 (but note that its restriction onto 0, ...,50 is injective).

Theorem. The raising to a power xE is injective over ℤ/mℤ

• for m = p prime if and only if E has no common divisor with p − 1 . For
example, for m = 101 , the exponent E = 3 ;

• for m = pq with p and q prime (the kind of modulus used by RSA ) if and
only if E has no common divisor with neither p − 1 nor q − 1 .

Example. For example, for m = 21 = 3 ·7 , the exponent E = 5 gives the invertible
function x ↦→ xE on ℤ/mℤ.
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Figure 39: The graph of the quadratic Y = X2 over ℤ/101ℤ (Grau (2018e))

Self-Check Questions.

1. What is the remainder of 88 divided by 7 ?

□ 1

□ 2

□ 4

□ 6

Because 8 ≡ 1 mod 7 , it is 88 ≡ 18 = 1 .

2. Why is a number divisible by 3 if and only if the sum of its decimal digits
is divisible by 3 ? Because 10 ≡ 1 mod 3 , we have 102,103, ... ≡ 1 mod 3 .

Therefore, say a = a2 · 102 + a1 · 10 + a0 ≡ a2 + a1 + a0 mod 3 . We have 3|a if
and only if a ≡ 0 mod 3 .
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5.6 Fast Raising to a Power

While the őnite domains ℤ/mℤ for a natural number m complicate the compu-
tation of the inverse function of the trapdoor function, they actually facilitate
the computation of the function itself given by the raising to a power:

• in the RSA algorithm, x ↦→ xE, and
• in the Diffie-Hellman key exchange, x ↦→ g x .

Algorithm. Given a base b and an exponent e in ℤ to calculate

be in ℤ/Mℤ,

1. expand the exponent in binary base, that is,

e = e0 + e12 + e222 + · · · + es2s with e0,e1, ...,es in {0,1},

2. compute

b1,b2,b2
2
, ...,b2

s

mod M.

Because b2
n+1

= b2
n ·2 = (b2n )2, that is, each power is the square of the

previous one (bounded by M), each power is, in turn, is easily computable.

3. raise to the power:

be = be0+e12+e22
2+···+es2s = be0 (b2)e1 (b22)e2 · · · (b2s )es

Only powers e0,e1, ...,es equal to 1 matter, the others can be omitted.

This algorithm takes 2 log2(e ) module multiplications.

Examples. To calculate 35 module 7, expand

5 = 1 + 0 · 21 + 1 · 22

and calculate

31 = 3,32 = 9 ≡ 2,32
2
= (32)2 ≡ 22 = 4 mod 7,

126



yielding:

35 = 31+2
2
= 31 · 322 = 3 · 4 ≡ 5 mod 7.

To calculate 311 module 5, expand

11 = 1 + 1 · 21 + 0 · 22 + 1 · 23

and calculate

31 = 3,32 = 9 ≡ 4,32
2
= (32)2 ≡ 42 = 1 and 32

3
= 32

2·2 = (322)2 ≡ 12 = 1 mod 5,

yielding

311 = 31+2
1+23 = 31 · 321 · 323 = 3 · 4 · 1 = 12 ≡ 2 mod 5.

Summary

Asymmetric cryptography relies on a trapdoor function, which

• must be easily computable (for example, raising to the n-th power in RSA

), but
• its inverse (for example, extraction of the n th root in RSA ) must be
practically incomputable without knowledge of a shortcut, the key!

This difficulty of calculating the inverse corresponds to the difficulty of decryp-
tion, that is, inverting the encryption. To complicate the computation of the
inverse function (besides facilitating the computation of the proper function) is
done using modular (or circular) arithmetic*, that we already know from the
arithmetic of the clock, where m = 12 is considered equal to 0.

Questions

Required Reading

Read the section on asymmetric cryptography in the article Simmons et al.
(2016). Read in Menezes, Oorschot, and Vanstone (1997), Sections 2.4, 2.5 and
2.6 on the basic notions of number theory behind public key cryptography. Use
Grau (2018d) to get an intuition for the graphs over őnite domains.
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Further Reading

See the book Sweigart (2013a) for implementing some simpler (asymmetric)
algorithms in Python, a readable beginner-friendly programming language.

Read the parts of the book Schneier (2007) on understanding and implementing
modern asymmetric cryptographic algorithms.
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6 Diffie-Hellman Key Exchange

Study Goals

On completion of this chapter, you will have learned the Diffie-Hellman key
exchange using the (Discrete) Logarithm.
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Introduction

In 1976, Whitőeld Diffie and Martin Hellman conceived that the key distribution
problem could be solved by an algorithm that satisőed:

• (computationally) easy creation of a matched pair of keys for encryption
and decryption,

• (computationally) easy encryption and decryption,

• (computationally) infeasible recovery of one of the keys despite knowledge
of:

ś the algorithm,
ś the other key, and
ś any number of matching plaintext and ciphertext pairs.

• (computationally) infeasible recovery of the plaintext for almost all keys
k and messages x .

Observation: This was the őrst public appearance of two-key cryptography. How-
ever, the British Government Communications Headquarters (GCHQ) knew it
around a decade earlier.

• James Ellis already had the idea a decade earlier but was unable to
implement it,

• Clifford Christopher Cocks invented the widely-used encryption algorithm
RSA about three years before it was independently developed by Rivest,
Shamir, and Adleman, and

• Malcolm J. Williamson discovered what is now known as Diffie-Hellman
key exchange while working at GCHQ.

The őrst published protocol to overtly agree on a mutual secret key is the
Diffie-Hellman key exchange protocol published in Diffie and Hellman
(1976).

This is not yet two-key cryptography, because the single secret key is known
to both correspondents (in the following called Alice and Bob). The asymmetric
cryptographic algorithms that build on this protocol (for example, ElGamal and
ECC), generate a unique key for every message.
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Diffie-Hellman Key exchange: overt agreement on a common
secret key whose security relies on the infeasibility of computing the
logarithm modulo a large number.

6.1 Key Exchange Protocol

Notation. Let us denote, in every asymmetric encryption algorithm,

• by an upper case letter exclusively a public number, and
• by a lower case letter preferably a secret number.

For both correspondent, say Alice and Bob, to overtly agree on a secret key,
they őrst combine

• a suitable prime number p (the modulus), and
• a suitable natural number g (the base).

Then

1. Alice, to generate one half of the key, chooses a number a ,

• calculates A ≡ g a mod p , and
• transmits A to Bob.

2. Bob, to generate the other half of the key, chooses a number b ,

• calculates B ≡ g b mod p , and
• transmits B to Alice.

3. The secret mutual key between Alice and Bob is

c := Ab ≡ (g a)b = g ab = g ba = (g b )a ≡ Ba mod p .

CrypTool 1 offers in the menu entry Individual Procedures -> Protocols

a dialogue to experiment with key values in the Diffie-Hellman.

Observation. This protocol shows how to overtly build a shared secret key. This
key can then be used to encrypt all further communication, for example, by an
asymmetric algorithm such as AES. However, the protocol shows

• neither how to encrypt a message (with a public key and decrypt it with
the private key),
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Figure 40: The steps of the Diffie-Hellman protocol in CrypTool 1 (Esslinger
et al. (2018a))

• nor how to sign one (with a private key and verify it with the public key).

ElGamal (1985) showed őrst how to build an encryption and signature algorithm
on top of the Diffie-Hellman protocol. While its encryption algorithm is rarely
employed (albeit, for example, the standard cryptography command-line tool
GnuPG offers it as őrst alternative to RSA), its signature algorithm forms the basis
of the Digital Signature Algorithm (DSA), which is used in the US government’s
Digital Signature Standard (DSS), issued in 1994 by the National Institute of
Standards and Technology (NIST).

Elliptic Curve DSA (ECDSA) is a variant of the Digital Signature Algorithm
(DSA) which uses points on őnite (elliptic) curves instead of integers. The
general number őeld sieve computes keys on DSA in subexponential time
(whereas the ideal would be exponential time) . Elliptic curve groups are (yet)
not vulnerable to a general number őeld sieve attack, so they can be (supposedly)
securely implemented with smaller key sizes.
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6.2 Security

The security of the Diffie-Hellman key exchange is based on the difficulty of
computing the logarithm modulo p . An eavesdropper would obtain the secret
key Ab = Ba from A and B, if he could compute the logarithm logg as inverse of
the exponentiation x ↦→ g x = y , that is

a = logg A or b = logg B mod p;

While a power is easily computable (even more so using the fast power algorithm
in Section 5.6), even more so in modular arithmetic, its inverse, the logarithm, the
exponent for a given power, is practically incomputable for p and g appropriately
chosen, that is:

• the prime number p

ś is large and
ś there is a large prime number q that divides p − 1 (at best, p is a safe
prime, that is, p − 1 = 2q with q prime);

• the powers g , g 2, . . . of the base g generate a large set (that is, its
cardinality is a multiple of q ).

Let us look for such appropriate numbers:

6.3 Appropriate Numbers

Euclid’s Theorem. There are inőnitely many prime numbers.

Demonstration: Otherwise, there are only őnitely many prime numbers, say p1,
. . . , pn are all of them. Consider q = p1...pn + 1 . Since q is greater than p1, . . . ,
pn , it cannot be prime. Let p be a prime number that divides q . Because p1,
. . . , pn are prime, p divides at least one of p1, . . . , pn . However, by its deőnition,
q has remainder 1 divided by every prime p1, . . . , pn . The last two statements
are in contradiction! Therefore, there must be an inőnite number of primes.

Euclid’s Theorem. There are inőnitely many prime numbers.
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Euclid’s Theorem guarantees that there are arbitrarily many big prime numbers
(in particular, > 2048 bits).

Thank Heavens, for almost every prime number p there is a prime number q
large (> 768 bits) that divides p − 1 .

The Theorem on the existence of a Primitive Root ensures that (since the modulus
is prime) there is always a number g in 𝔽 ∗

p such that

{g , g 2, g 3, ..., g p−1} = F
∗
p

That is, every number 1 , 2 , 3 , . . . , p − 1 is a suitable power of g . In particular,
the cardinality of 1 , g , g 2, . . . , g p−1 is a multiple of any prime q that divides
p − 1 . In practice, the numbers p and g are taken from a reliable source, such
as a standards committee.

6.4 Padding

Since initially (for x < logg p ) the values g x over ℤ/pℤ equal to the values g x

over ℤ , the secret numbers a and b should be large enough, that is, > logg p .
To ensure this, in practice these numbers are artiőcially increased, that is, the
message is padded.

At present, the fastest algorithm to calculate the logarithm x from g x , is an
adaption of the general number field sieve, see Gordon (1993), that achieves
subexponential runtime. That is, roughly, the number of operations to calculate
the logarithm of an integer of n bits is exponential in

n1/3.

Self-Check Questions

1. Does the Diffie-Hellman protocol explain how to encipher a message by
a public key and decipher it by a secret key? No, it only explains how to
construct a mutual secret key publicly.
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Summary

The Diffie-Hellman Key exchange protocol shows how to build overtly a mutual
secret key based on the difficulty of computing the logarithm modulo p . This
key can then be used to encrypt all further communication, for example, by an
asymmetric algorithm such as AES.

However, it shows

• neither how to encrypt a message (with a public key and decrypt it with
the private key),

• nor how to sign one (with a private key and verify it with the public key).

ElGamal (1985) showed őrst how to build an encryption and signature algorithm
on top of the Diffie-Hellman protocol; in particular, it gave rise to the Digital
Signature Algorithm, DSA.

Questions

Required Reading

Read in Menezes, Oorschot, and Vanstone (1997) Sections 3.1, 3.3 and try to
understand as much as possible in 3.2 and 3.6 on the number theoretic problems
behind public key cryptography.

Further Reading

Use CrypTool 1 to experiment with the Diffie-Hellman protocol.

See the book Sweigart (2013a) for implementing some simpler (asymmetric)
algorithms in Python, a readable beginner-friendly programming language.

Read the parts of the book Schneier (2007) on understanding and implementing
modern asymmetric cryptographic algorithms.
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7 Euclid’s Theorem

Study Goals

On completion of this chapter, you will have learned . . .

• what a trapdoor function is, and:

1. why modular arithmetic is needed to deőne such a function, and
2. what modular arithmetic is by division with rest.
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Introduction

We study multiplication in the őnite rings ℤ/nℤ. We take a particular interest
in what numbers we can divide into them. It will be the Euclid Algorithm that
computes the answer for us.

The private key

• in the RSA algorithm, or
• of the message encryption in the ElGamal algorithm (based on Diffie-
Hellman key exchange),

deőnes a function that is the inverse of the function deőned by the public
key. This inverse is computed via the greatest common divisor between the two
numbers. This, in turn, is computed by Euclid’s Algorithm, an iterated division
with rest.

We then introduce

• the notion of the greatest common divisor of two whole numbers, and
• how to calculate it by division with remainder, the so-called algorithm of
Euclid.

7.1 Euclid’s Algorithm

Definition. A common divisor of two whole numbers a and b is a natural number
that divides both a and b .The greatest common divisor of two whole numbers
a and b is the greatest natural number that divides both a and b . Denote by
gcd(a,b) the greatest common divisor of a and b ,

gcd(a,b) = thegreatestnaturalnumberthatdividesaandb .

Example. The greatest common divisor of 12 and 18 is 6 .

Iterated Division with rest yields an efficient algorithm to calculate the largest
common divisor, Euclid’s Algorithm.

Definition. The integers a and b are relatively prime if gcd(a,b) = 1, that is, if
no integer > 1 divides a and b .
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For all integer numbers a and b , integer numbers a/g and b/g for g = gcd(a,b)
are relatively prime.

Division with rest helps us build an efficient algorithm to calculate the largest
common divisor. Let us look back on Division with Rest:

Definition. Be a and b positive integer numbers. That a divided by b has quotient q
and rest r means

a = b · q + r with 0 ≤ r < b . (2)

Example. For a = 19 and b = 5, we get 19 = 5 · 3 + 4. That is, the remainder of
19 divided by 5 is 4.

Euclid’s Algorithm. A linear combination (or sum of multiples) of two
whole numbers a and b is a sum

s = λa + μb

for whole numbers λ and μ.

Example. For a = 15 and b = 9, a sum of multiples of them is

s = 2 · a + (−3) · b = 2 · 15 − 3 · 9 = 3.

In particular, looking at the division with remainder in Equation 2, for an entire
number d , we observe:

• if d divides a and b , then its linear combination r = a − q · b , and, equally,
• if d divides b and r , then its linear combination a.

That is, d divides a and b if, and only if, d divides b and r . That is, the common
dividers of a and b are the same as those of b and r . In particular,

gcd(a,b) = gcd(b ,r ).

By dividing the numbers b and r (which is < b), we obtain

b = r · q ′ + r ′ with 0 ≤ r ′ < r

e
gcd(b ,r ) = gcd(r ,r ′).

138



Iterating, and thus diminishing the remainder, we arrive at s = r
′
...

′
and r

′
...

′′

with r
′
...

′′
= 0, that is

gcd(a,b) = ... = gcd(s ,0) = s .

That is, the highest common divisor is the penultimate remainder (or the last
one other than 0).

Example. To calculate gcd(748,528), we get

748 = 528 · 1 + 220

528 = 220 · 2 + 88

220 = 88 · 2 + 44

88 = 44 · 2 + 0

thus gcd(528,220) = 44.

CrypTool 1, in the entry Indiv. Procedures -> Number Theory Interactive

-> Learning Tool for Number Theory, Section 1.3, page 15, shows an ani-
mation of this algorithm:

Theorem. (Euclidean algorithm) Let a and b be positive whole numbers with a ≥ b
. The following algorithm calculates gcd(a,b) in a őnite number of steps:

(start) Put r0 = a and r1 = b , and i = 1 .

(division) Divide ri−1 by ri with rest to get

ri−1 = riqi + ri+1 with 0 ≤ ri+1 < ri .

Then

• either ri+1 > 0 , then put i := i + 1 and continue with the step (division),
• or ri+1 = 0 , then ri = gcd(a,b) and the algorithm ends.

Demonstration: We need to demonstrate that the algorithm ends with the highest
common divisor of a and b :

• Like r0 > r1 > ..., őnally rI = 0 for I large enough, and the algorithm ends.
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Figure 41: Euclid’s algorithm in CrypTool 1, (Esslinger et al. (2008))

• For Equation 2, we have

gcd(ri−1,ri ) = gcd(ri ,ri+1) for all i = 1,2, ...

As ultimately rI+1 = 0 for I big enough, we have

gcd(a,b) = gcd(r0,r1) = ... = gcd(ri ,ri+1). = gcd(rI,0) = rI

That is, rI = gcd(a,b).

Observation: All it takes is 2 · log2 b + 1 divisions with rest for the algorithm to
őnish.

Demonstration: We demonstrate

ri+2 < 1/2 · ri . (†)

We have
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• or ri+1 ≤ 1/2 · ri , and then ri+2 < ri+1 ≤ ri ,
• or ri+1 > 1/2 · ri .

In the latter case, it follows

ri = ri+1 · 1 + ri+2

and then
ri+2 = ri − ri+1 < ri − 1/2 · ri = 1/2 · ri .

For (†) we get iteratively that just 2 · log2 b+1 divisions with rest for the algorithm
őnish.

In fact, it turns out that a factor of 1.45 is enough log2(b) + 1.68 with rest, and
on average 0.85 is enough log2(b) + 0.14.

Euclid’s Extended Algorithm. For the computation of the exponent of the
decryption function, we need more information than the largest common divisor
(calculated by the Euclid Algorithm). In fact, one observes (Euclid’s Extended
Algorithm) that in each step of the Euclid’s Algorithm the largest common
divisor gcd(x ,m) of x and m is a linear combination (or sum of multiples) of x
and m , that is,

gcd(x ,m) = λx + μm for integers x and m.

The inverse of x modulo m is one of these multiples:

Example. For a = 15 and b = 9, a sum of multiples of them is

s = 2 · a + (−3) · b = 2 · 15 − 3 · 9 = 3.

Theorem. (Euclid’s Extended Algorithm) For any positive integers a and b , their
highest common divisor gcd(a,b) is a linear combination of a and b ; that is,
there are integers u and v such that

gcd(a,b) = au + bv .

CrypTool 1, in the Indiv. Procedures -> Number Theory Interactive ->

Learning Tool for Number Theory, Section 1.3, page 17, shows an animation
of this algorithm:
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Figure 42: Euclid’s extended algorithm in CrypTool 1 (Esslinger et al. (2008))

Example. We have gcd(528,220) = 44 and, indeed,

44 = 5 · 748 − 7 · 528.

Demonstration: As r0 = a, r1 = b , and r2 = r0 − q1r1, it follows that r2 is a linear
combination of a and b . In general, since ri−1 and ri are linear combinations of
a and b , őrst qiri is a linear combination of a and b , and so

ri+1 = ri−1 − qiri

is a linear combination of a and b . In particular, if rI+1 = 0 then
rI = gcd(rI,rI+1) = gcd(a,b) is a linear combination of a and b .

CrypTool 1, in the menu entry Indiv. Procedures -> Number Theory

Interactive -> Learning Tool for Number Theory, Section 1.3, page 17,
shows an animation of this algorithm:
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Figure 43: The Euclid algorithm extended in CrypTool 1

Example. Let’s review the calculation of the largest common divisor of a = 748

and b = 528. Euclid’s algorithm did:

748 = 528 · 1 + 220

528 = 220 · 2 + 88

220 = 88 · 2 + 44

88 = 44 · 2 + 0,

which provides the linear combinations

220 = 748 − 528 · 1 = a − b

88 = 528 − 220 · 2 = b − (a − b) · 2 = 3b − 2a

44 = 220 − 88 · 2 = (a − b) − (3b − 2a) · 2 = 5a − 7b .
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Indeed,
44 = 5 · 748 − 7 · 528.

Implementation in Python. To implement the Euclid algorithm, we will
use multiple assignment in Python:

>>> spam, eggs = 42, 'Hello'

>>> spam

42

>>> eggs

Hello

The names of the variables and their values are listed to the left of = respec-
tively.

Euclid’s Algorithm. Here is a function that implements the Euclid algorithm
in Python; it returns the largest common divisor gcd(a,b) of two whole a and
b .

def gcd(a, b):

while a != 0:

a, b = b % a, a

return b

For example, in the interactive shell:

>>> gcd(24, 30)

6

>>> gcd(409119243, 87780243)

6837

Extended Euclide’s Algorithm. The // operator will őgure in the imple-
mentation of the extended Euclid algorithm; it divides two numbers and rounds
down. That is, it returns the greater integer equal to or less than the result of
the division. For example, in the interactive shell:
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>>> 41 // 7

5

>>> 41 / 7

5.857142857142857

>>> 10 // 5

2

>>> 10 / 5

2.0

We chose the following implementation of the extended Euclid algorithm:

def egcd(a, b):

x,y, u,v = 0,1, 1,0

while a != 0:

q, r = b//a, b%a

m, n = x-u*q, y-v*q

b,a, x,y, u,v = a,r, u,v, m,n

gcd = b

return gcd, x, y

7.2 Modular Units

The private key is calculated by the multiplicative reverse in the modular arith-
metic from the public key, both in the RSA algorithm and the ElGamal algo-
rithm.

We have just learned how to calculate the largest common divisor by the Euclid
Extended Algorithm; we now learn how it is used to calculate this multiplicative
reverse.

While in ℚ we can divide by any number (except 0), in ℤ only by ±1! The
numbers you can divide by are called invertible or units. The amount of invertible
numbers in ℤ/mℤ depends on them module. Roughly speaking, the fewer prime
factors in m, the more units in ℤ/mℤ.

Definition. The element x in ℤ/mℤ is a unit (or invertible) if there is y in ℤ/mℤ
such that yx = 1. The element y is the inverse of x and denoted by x−1. The set of
units (where we can multiply and divide) is denoted by

(ℤ/mℤ)∗ := the units in ℤ/mℤ.
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Euler’s totiente function # Φ is

m ↦→ #ℤ/mℤ∗;

that is, given m, it counts how many units ℤ/mℤ has.

• The neutral element 0 addition is never a unit. (But possibly, depending
on m, all other elements).

• While in ℤ the only units are ±1, in ℤ/mℤ possibly all of its elements,
except 0, are.

Examples:

• On the clock, that is, for ℤ/12ℤ the multiplication v · h of one hour h by
v corresponds to iterate v times the path taken by the indicator in h (from
0 = 12.) We note that for h = 1,5,7 and 11 there is a iteration of the path
that leads the indicator to 1 (more exactly made 1, 5, 7 and 11 times),
while for all other numbers this iteration leads the indicator to 0. These
possibilities are mutually exclusive, and we conclude

(ℤ/12ℤ)∗ = {1,5,7,11}.

That’s Φ(12) = 11.

• On days of the week, that is, for ℤ/7ℤ, we get

(ℤ/7ℤ)∗ = {1,2,3,4,5,6}.

That is, the number of units is as large as possible, that is, Phi (7) = 6, all
numbers except 0.

• For ℤ/4ℤ, the multiplication table

* 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

shows
(ℤ/4ℤ)∗ = {1,3}
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because 1 · 1 = 1 and 3 · 3 = 1 in ℤ/4ℤ. In contrast, 2 · 2 = 0 in ℤ/4ℤ,
in particular 2 is not a unit. (But a zero divisor ; in fact, each element in
ℤ/mℤ is either a unit, or a zero divider). Thus Φ(4) = 2.

• For ℤ/5ℤ, the multiplication table

* 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

reveals the units (ℤ/5ℤ)∗ = {1,2,3,4}.

Proposition. Let ℕ and x in ℤ/mℤ, that is, x in {0,1, ...,m − 1}. The number x is
a unit in ℤ/mℤ if, and only if, gcd(x ,m) = 1.

Demonstration: We observe that each common divisor of x and m divides each
sum of multiple s = ux + vm of x and m; in particular, if s = 1, then the largest
common divisor of x̄ and m is 1.

By the Extended Euclid Algorithm, there is u and v in ℤ such that

ux + vm = gcd(x ,m).

So, from the above observation, gcd(x ,m) = 1 if, and only if, there is u in ℤ

such that
ux ≡ 1 mod m.

That is, bx is a unit in ℤ/mℤ whose inverse is bx−1 = bu .

Observation. We concluded that for x in {0, ...,m − 1} with gcd(x ,m) = 1, we
obtained by the Extended Euclid Algorithm u and v in ℤ such that

ux + vm = 1

The reverse x−1 of x in ℤ/mℤ is given by the remainder of u divided by m.

In Python, we can then calculate the inverse of a in ℤ/mℤ by
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def ModInverse(a, m):

if gcd(a, m) != 1:

return None # no mod. inverse exists if a and m not rel. prime

else

gcd, x, y = egcd(a,m)

return x % m

Self-Check Questions

1. What mathematical function is used to encrypt in RSA? Raising to a power
modulo a composed integer.*

2. What mathematical function is used to decrypt in RSA? Taking a root modulo
a composed integer.

3. What is a principal use of RSA on the Internet today? The verification of
certificates.

Summary

Asymmetric cryptography relies on a trapdoor function, which

• must be easily computable (for example, raising to the n-th power in RSA

), but
• its inverse (for example, extraction of the n th root in RSA ) must be
practically incomputable without knowledge of a shortcut, the key!

This difficulty of calculating the inverse corresponds to the difficulty of decryp-
tion, that is, inverting the encryption. To complicate the computation of the
inverse function (besides facilitating the computation of the proper function) is
done using modular (or circular) arithmetic*, that we already from the arithmetic
of the clock, where m = 12 is considered equal to 0 .
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Questions

Required Reading

Read the section on asymmetric cryptography in the article Simmons et al.
(2016). Read in Menezes, Oorschot, and Vanstone (1997), Sections 3.1, 3.3 and
try to understand as much as possible in 3.2 and 3.6 on the number theoretic
problems behind public key cryptography

Further Reading

Use CrypTool 1 to experiment with Euclid’s algorithm.

See the book Sweigart (2013a) for implementing some simpler (asymmetric)
algorithms in Python, a readable beginner-friendly programming language.

Read the parts of the book Schneier (2007) on understanding and implementing
modern asymmetric cryptographic algorithms.
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8 Classic Asymmetric Algorithms: RSA, ElGamal and DSA

Study Goals

On completion of this chapter, you will have learned . . .

• what a trapdoor function is, and:

1. why modular arithmetic is needed to deőne such a function, and
2. what modular arithmetic is by division with rest.

• the most common asymmetric cryptographic algorithms and their under-
lying trapdoor functions:

ś the RSA Algorithm using the (discrete) Power Function.
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Introduction

The best-known public-key algorithm is the Rivest-Shamir-Adleman (RSA)
cryptoalgorithm from Rivest, Shamir, and Adleman (1978). A user secretly
chooses a pair of prime numbers p and q so large that factoring the product
N = pq is beyond estimated computing powers for the lifetime of the cipher.
The number N will be the modulus, that is, our trapdoor function will live on
ℤ/Nℤ = {0,1, ...,N − 1}.

RSA: algorithm that encrypts by raising to a power and whose secu-
rity relies on the computational infeasibility of factoring a product
of prime numbers.

N is public, but p and q are not. If the factors p and q of N were known, then
the secret key can be easily computed. For RSA to be secure, the factoring must
be computationally infeasible; nowadays 2048 bits. The difficulty of factoring
roughly doubles for each additional three digits in N .

8.1 Algorithm

Having chosen p and q , the user selects any integer e less than n and relatively
prime to p − 1 and q − 1, that is, so that 1 is the only factor in common between
e and the product (p − 1) (q − 1). This assures that there is another number d
for which the product ed will leave a remainder of 1 when divided by the least
common multiple of p − 1 and q − 1. With knowledge of p and q , the number d
can easily be calculated using the Euclidean algorithm. If one does not know p

and q , it is equally difficult to őnd either e or d given the other as to factor n,
which is the basis for the cryptosecurity of the RSA algorithm.

The RSA algorithm creates

• a public key to encrypt, and
• a private key to decipher.

Compared to the Diffie-Hellman protocol, it has the advantage that it is
completely asymmetric: there is no need to share a mutual secret key (and
therefore the secret key is kept in a single place only, but not two). Instead a
single correspondent has access to the secret key. However, in this case the
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communication is encrypted only towards the owner of the secret key. To
encrypt in both directions,

• either each correspondent creates an asymmetric RSA key,
• or the other correspondent enciphers and sends a symmetric key (which
is so-called hybrid encryption, as it combines an asymmetric with a
symmetric cipher).

8.2 Euler’s Formula

The keys for encrypting, E and decryption, d , will be constructed via Euler’s
Formula, which in turn is based on Fermat’s Little Theorem.

Fermat’s Theorem. Fermat’s Little Theorem. If p is a prime number, then for
any integer a ,

• or ap−1 ≡ 0 mod p if p | a ,
• or ap−1 ≡ 1 mod p if p ∤ a .

In particular, for every integer a ,

ap = a (p−1)+1 = ap−1a = a .

For example, if m = Ed , that is, E and d are such that Ed ≡ 1 mod p − 1 (so to
speak, d ≡ 1/E mod p − 1 ) then

aEd = (aE)d ≡ a mod p ,

that is,
ad = a1/E = E

√
a!

That is, the computation of the E -th root E
√· is equal to that of the d -th power

·d , a great computational shortcut! The existence of such a shortcut d given E

is assured by Euler’s formula:
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Euler’s Formula. Theorem. (Euler’s formula) Let p and q be different prime
numbers. If a is divisible by neither p nor q , then

a (p−1) (q−1) ≡ 1 mod pq .

Proof : By Fermat’s Little Theorem,

a (p−1) (q−1) = (ap−1)q−1 ≡ 1q−1 = 1 mod p

and
a (q−1) (p−1) = (aq−1)p−1 ≡ 1p−1 = 1 mod q

that is, p and q divide a (p−1) (q−1)−1 . Since p and q are different prime numbers,
pq divides a (p−1) (q−1)−1 , that is, a (p−1) (q−1) ≡ 1 mod pq .

Taking Roots. Corollary. (Taking roots modulo N) Let p and q be different
prime numbers, N = pq and ϕ(N) = (p − 1) (q − 1) . For every exponent n such
that

n ≡ 1 mod ϕ(N)

we have
an ≡ a mod N for every integer a .

Demonstration: If p or q divides a , then a ≡ 0 mod N. Otherwise, we can apply
Euler’s Formula: Because n ≡ 1 mod (p − 1) (q − 1) , that is, there is ν such that
n − 1 = ν(p − 1) (q − 1) , by Euler’s Formula,

an = aν(p−1) (q−1)+1 = (a (p−1) (q−1))ν · a ≡ 1ν · a1 = a mod N.

Observation (crucial for the RSA algorithm). If m ≡ 1 mod ϕ(N) , then by Euler’s
Formula am ≡ a mod N , that is, taking to the power is the identity function,

·m ≡ id mod N.

In particular, if m = Ed is the product of two whole numbers E and d , that
is,

Ed ≡ 1 mod ϕ(N),

then
a = am = aEd = (aE)d .
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That is, ·d = ·1/E mod N . Calculating a power is much easier than a root!

Example. If p = 3 and q = 11 then

N = pq = 33 and ϕ(N) = (p − 1) (q − 1) = 20.

If E = 7 and d = 3 , then n = Ed = 21 ≡ 1 mod 20 . For example, for base 2 ,
we check

2E = 27 = 128 = 29 + 3 · 33 ≡ 29 mod N

and
29d = 293 = (−4)3 ≡ −64 = 2 − 2 · 33 ≡ 2 mod N.

That is,
E
√
29 = 2 = 29d mod N.

8.3 Encryption Algorithm

(Recall that an upper case letter denotes a public number (and vice-versa), whereas
a lower case letter denotes a secret number.) For Alice to secretly send the message
m to Bob through an insecure channel:

1. Bob, to generate the key, chooses

• two prime numbers p and q , and
• an exponent E relatively prime to ϕ(N) := (p − 1) (q − 1) .

Bob, to transmit the key, sends to Alice

• the product N := pq (the modulus) and the exponent E (the public
key).

2. Alice, to cipher,

• calculates M = mE mod N , and
• transmits M to Bob.

3. Bob, to decipher,

• calculates (by Euclid’s extended Algorithm) d such that Ed ≡ 1

mod (p − 1) (q − 1) (and which exists because E is relatively prime
to ϕ(N) ),
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• calculates Md = md = m mod N (by Euler’s Formula).

Computing d by knowing both prime factors of N is Bob’s shortcut. CrypTool
1 offers in the menu Individual Procedures -> RSA Cryptosystem the entry
RSA Demonstration to experiment with different values of the key and message
in RSA.

Figure 44: The encrpytion steps in RSA shown by CrypTool 1 (Esslinger et al.
(2018b))

In sum, raising to the power y = xE mod N encrypts where the exponent E
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is the public key. Correspondingly, its inverse, taking the E-th root x = y1/E

mod N , decrypts. It is practically incomputable. However, modulo N , by
Euler’s formula, there is d such that

y1/E = yd mod N

for a number d that Euclid’s Algorithm calculates from E as well as p and q
. Therefore, the secret key is d , or, sufficiently, the knowledge of the prime
factors p and q of N .

8.4 Security

Since

• the modulus N ,
• the exponent E and
• the encrypted message M (= mE ),

are all public, the computational security of RSA is solely based on the difficulty
of finding a root modulo a large number

m ≡ E
√
M (= M1/E) mod N.

An eavesdropper would obtain the secret message m from N , E and M only if
he could compute

m .
E
√
M (= M1/E) mod N.

The shortcut is the knowledge of the two prime factors p and q of N = pq that
makes it possible to calculate

• the modulus ϕ(N) := (p − 1) (q − 1) , and
• the inverse multiplicative d = 1/E of E , that is, d such that

Ed ≡ 1 mod (p − 1) (q − 1);

so that, by the Euler Formula, Md = md ≡ m mod N .
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Key Size Recommendations. Euclid’s Theorem guarantees that there are
arbitrarily large prime numbers (in particular, > 15360 bits). While taking
powers is computationally easy, taking roots is computationally hard for suitable
choices of N = pq and E , that is, for large enough prime numbers p and q
(while the choice of the exponent E is free; for example, E = 2 ):

The fastest algorithm to calculate the prime factors p and q from N is the general
number sieve, see A. K. Lenstra et al. (1993). The number of operations to factor
an integer number of n bits is roughly

exp(log n1/3).

Therefore, according to Barker (2016), the National Institute for Standards and
Technology (NIST)

• recommends N to have 2048 bits, that is, p and q each have to have about
310 decimal digits.

• a key length of 3072 bits for security beyond 2030, and
• a key length of 15360 bits for security comparable to that of 256-bit
symmetric keys.

Paddings. In practice, the plaintext number m needs to be padded, that is,
the number m randomly increased. Otherwise, when the plaintext number m
and the exponent E are both small (for example, E = 3 ), then possibly the
enciphered message M = mE satisőes M < N . In this case, the equality

m =
E
√
M holds in ℤ!

Som is easily computable, for example, by the Bisection method already presented,
(or, numerically more efficient, by Newton’s method).

Attacks. A simple hypothetical attack is that by Wiener when

• d is too small, that is, d < 1/3 · n1/4 , and
• p and q are too close, that is, q < p < 2q .

If the conditions of the theorem are met, then the secret d can be computed by
a linear time algorithm as the denominator of a continuous fraction.

Observation. If E (but not d ) is too small, then an attack is much more difficult;
see Boneh et al. (1999).
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8.5 Applications

RSA is still a standard of many asymmetric cryptographic methods. One principal
use of RSA nowadays lies in the veriőcation of (older) certiőcates emitted by
certiőcate authorities. See Section 13.

Other uses are that by GPG for asymmetric cryptography, such as the OpenPGP

protocol to encrypt e-mail messages, which creates RSA keys by default:

Figure 45: Default key generation with GPG (Koch et al. (2020))

The command line program GPG creates keys and makes it possible to
(de)encrypt and sign/authenticate with them. Other (graphical) applications,
for example, the Enigmail extension for the free e-mail client Thunderbird,
use it for all these cryptographic operations.
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Self-Check Questions.

1. What mathematical function is used to encrypt in RSA? Raising to a power
modulo a composed integer.

2. What mathematical function is used to decrypt in RSA? Taking a root modulo
a composed integer.

3. What is a principal use of RSA on the Internet today? The verification of
certificates.

8.6 Signatures

Let us recall that in public-key cryptography there are two keys, a public key
and a private key. Usually:

• The public key is used to encrypt, while the private key is used to decipher.

Thus, a text can be transferred from the encipherer (Alice) to one person only,
the decipherer (Bob). The roles of the public and private keys can be reversed:

• The private key is used to encrypt, while the public key is used to decipher.

Thus, the encipherer can prove to all decipherers (those who have the public
key) his ownership of the private key; the digital signature.

digital signature: encryption of a message by the private key fol-
lowed by decryption by the public key to check whether the original
message was encrypted by the private key.

The theory (meaning the mathematics) behind the encryption by the public key
(digital messages) or private key (digital signature) is almost the same; only
the roles of the trap function arguments are reversed. (For example, in the RSA

algorithm, this exchange of variables is indeed all that happens). In practice,
however, usually encrypted by the private key are:

• paddings of the plaintext by the public key (to avoid pathologies that reveal
the key when the text is too short), and

• a cryptographic hash

That is, while
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Figure 46: Digital Signature of a document and its Veriőcation. (Acdx (2019))

• for encryption by the public key, the function used to őrst transform the
text (the padding) is easily invertible,

• for private key encryption, the function used to őrst transform the text
(the hash) is hardly invertible.

RSA Signature Algorithm. In the RSA Signature Algorithm, to sign (instead
of encrypt), the only difference is that the exponents E and d exchange their
roles. That is, the signed message is M = md (instead of mE ). For Samantha to
sign the m message and Victor to verify it,

1. Samantha, to generate a signet, chooses

1. two prime numbers p and q , and
2. an exponent E relatively prime to (p − 1) (q − 1) , and
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Samantha, to transmit the signet, sends to Victor

3. the product N = pq (the modulus) and the exponent E (the public
key).

2. Samantha, to sign,

1. calculates (by the Euclid’s extended Algorithm) d such that Ed ≡ 1

mod (p − 1) (q − 1) (which exists because E is relatively prime to
(p − 1) (q − 1) ),

2. calculates M = md mod N , and
3. transmits M to Victor.

3. Victor, to verify, calculates ME = mEd ≡ m mod N (which holds by Euler’s
Formula).

Observation. Signing and the deciphering are both given by ·d for the private key
d . So, signing an encrypted document (for the public key E that corresponds
to d ) is equivalent to deciphering it! Therefore, in practice,

• different key pairs are used

ś to encrypt / decrypt, and
ś to sign / verify, and

• a cryptographic hash h (d ) of the document d is signed, a small number
that identiőes the document.

CrypTool 1 offers in the menu Individual Procedures -> RSA Cryptosystem

the entry Signature Generation to experiment with different values of the
signature and the message.

We note that instead of the original message, it signs:

• a cryptographic hash (for example, by the algorithm MD5) of the original
message, and

• with additional information, such as

ś name of the signer, and
ś the algorithms used to encipher and calculate the hash.
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Figure 47: The signature steps by RSA in CrypTool 1 (Esslinger et al. (2008))

DSA (Digital Signature Algorithm). ElGamal (1985) showed őrst how to
build an encryption and signature algorithm on top of the Diffie-Hellman
protocol. While its encryption algorithm is rarely employed (albeit, for example,
the standard cryptography command-line tool GnuPG offers it as a őrst alternative
to RSA), its signature algorithm forms the basis of the Digital Signature Algorithm
(DSA), which is used in the US government’s Digital Signature Standard (DSS),
issued in 1994 by the National Institute of Standards and Technology (NIST).
Elliptic Curve DSA (ECDSA) is a variant of the Digital Signature Algorithm
(DSA) which uses points on őnite (elliptic) curves instead of integers.
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Self-Check Questions.

1. What is the private key used for in digital signature algorithm? signing by
encryption.

2. What is the public key used for in digital signature algorithm? verification
by decryption.

Summary

Single-key (or symmetric) cryptography suffers from the key distribution problem:
to pass the same secret key to all, often distant, correspondents. Two-key (or
asymmetric) cryptography solves this problem seemingly at once, by enabling
the use of different keys to encrypt and decrypt. However, the identity of the
key owner must be conőrmed; if not personally, then by third parties, that is,
identities with private keys that conőrm by their digital signatures that it is
Alice who owns the private key. However, the problem of the public key identity
arises again: How can we ensure the identities of these private key owners?
There are two solutions: In the approach via hierarchical authorities, private
key owners are distinguished by hierarchical levels. At the highest level lie the
root authorities on which one trusts unconditionally. In the web of trust, trust is
transferred from one to the other, that is, trust is transitive: If Alice trusts Bob,
and Bob trusts Charles, then Alice trusts Charles.

Arithmetic. Asymmetric cryptography relies on a trapdoor function, which

• must be easily computable (for example, raising to the n-th power in RSA

), but
• its inverse (for example, extraction of the n th root in RSA ) must be
practically incomputable without knowledge of a shortcut, the key!

This difficulty of calculating the inverse corresponds to the difficulty of decryp-
tion, that is, inverting the encryption. To complicate the computation of the
inverse function (besides facilitating the computation of the proper function) is
done using modular (or circular) arithmetic*, that we already from the arithmetic
of the clock, where m = 12 is considered equal to 0 .
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The Diffie-Hellman Key exchange. The Diffie-Hellman Key exchange pro-
tocol shows how to build overtly a mutual secret key based on the difficulty
of computing the logarithm modulo p . This key can then be used to encrypt
all further communication, for example, by an asymmetric algorithm such as
AES.

However, it shows

• neither how to encrypt a message (with a public key and decrypt it with
the private key),

• nor how to sign one (with a private key and verify it with the public key).

ElGamal (1985) showed őrst how to build an encryption and signature algorithm
on top of the Diffie-Hellman protocol; in particular, it gave rise to the Digital
Signature Algorithm, DSA.

The RSA algorithm. The best-known public-key algorithm is the Rivest-
Shamir-Adleman (RSA) cryptoalgorithm. A user secretly chooses a pair of prime
numbers p and q so large that factoring the product N = pq is beyond estimated
computing powers during the lifetime of the cipher; The number N will be the
modulus, that is, our trapdoor function will be deőned onℤ/Nℤ = {0,1, ...,N−1}
.

N is public, but p and q are not. If the factors p and q of N were known, then
the secret key can be easily computed. For RSA to be secure, the factoring must
be computationally infeasible; nowadays 2048 bits. The difficulty of factoring
roughly doubles for each additional three digits in N .

To sign (instead of encrypt), the only difference is that the exponents E and d
exchange their roles. That is, the signed message is M = md (instead of mE ):

The trapdoor function of of RSA is raising to a power, m ↦→ M = ME for a
message m , and its computational security relies upon the difficulty of őnding
a root modulo a large number

m ≡ E
√
M (= M1/E) mod N.

The shortcut is the knowledge of the two prime factors p and q of N = pq that
makes it possible to calculate the inverse multiplicative d = 1/E of E , that is, d
such that

Ed ≡ 1 mod (p − 1) (q − 1).

164



Then
E
√
M ≡ Md mod N;

computing a power is a lot faster than a root.

Questions

1. What is the inverse of the trapdoor function used in RSA?

□ x ↦→ x1/e

□ log

□ exp

□ x ↦→ x2

2. What is the fastest known algorithm to attack RSA?

□ General Number field sieve

□ Pollard’s ρ
□ Smart Attack
□ Baby-Step-Giant-Step

3. What is the minimum key size of RSA to be currently considered secure,
for example, by the NIST?

□ 1024

□ 2048

□ 3072

□ 4096

Required Reading

Read the section on asymmetric cryptography in the article Simmons et al.
(2016). Read in Menezes, Oorschot, and Vanstone (1997),

• Sections 3.1, 3.3 and try to understand as much as possible in 3.2 and 3.6
on the number theoretic problems behind public key cryptography

• Sections 8.1 and 8.2 on the algorithm RSA

Use Grau (2018d) to get an intuition for the graphs over őnite domains.

Read Chapter 10 on RSA.
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Further Reading

Use CrypTool 1 to experiment with RSA.

See the book Sweigart (2013a) for implementing some simpler (asymmetric)
algorithms in Python, a readable beginner-friendly programming language.

Read the parts of the book Schneier (2007) on understanding and implementing
modern asymmetric cryptographic algorithms.
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9 Primes

Study Goals
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Introduction

9.1 Detection of Primes

Let us recall Euclid’s Theorem which asserts that there are prime numbers
arbitrarily large (for example, with ≥ 2048 binary digits for the RSA):

Euclides’ theorem. There are infinitely many prime numbers.

Demonstration: Let’s suppose otherwise, that there’s only a őnite number p1, ...,pn
of prime numbers. Consider

q = p1...pn + 1.

Since q is greater than p1, . . . , pn , it is not prime. So let p be a prime number
that divides q . Therefore, p must be one of p1, . . . , pn . But, by its deőnition, q
leaves rest 1 for any p1, . . . , pn .

Contradiction! So there’s no greatest prime number. q.e.d.

Examples of Greater Prime Numbers. Marin Mersenne (Oizé, 1588 Ð
Paris, 1648) was a French Franciscan friar who tried to őnd, without success, a
formula to give all prime numbers. Motivated by a letter from Fermat in which
he suggested that all the numbers 22

p +1, Fermat’s Numbers be primes, Mersenne
studied the numbers of the form

2p − 1 for p prime .

In 1644 he published the work Cogita physico-mathematica which states that these
numbers are primes for

p = 2,3,5,7,13,17,19,31 and 127.

(and mistakenly included p = 63 and p = 257). (Only a computer could show
in 1932 that 2257 − 1 is composed.)

Mersenne’s prime numbers, in the form of 2p − 1 to p prime, are known to be

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253,
4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,
216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593,
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13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667,
42643801, 43112609, 57885161, 74207281, 77232917 e 82589933

The prime number
282 589 933 − 1

has 24,862,048 digits. It was found on December 8,2018 and is to this day the
biggest known prime number.

łCrypTool 1ž, in the menu entry łIndiv. Procedures -> Number Theory Interac-
tive -> Compute Mersenne Numbers’ allows you to calculate some of Mersenne’s
prime numbers.

Tests. A quick test if the natural number n is compound is the Small Fermat

Theorem (formulated as its contraposition): If there is a natural number a
such that

an . a mod n

then n is compound.

But the reverse implication doesn’t hold: There are n numbers (which are called
Carmichael numbers) that are compound but for every natural number a,

an ≡ a mod n .

The lowest such number n is 561 (which is divisible by 3).

The Eratosthenes sieve. The simplest algorithm to verify whether a number
is prime or not is the Eratosthenes sieve (285 ś 194 B.C.).

To illustrate this, let’s determine the prime numbers between 1 and 30.

Initially, we’ll determine the largest number by what we’ll divide to see if the
number is composed; is the square root of the upper coordinate rounded down.
In this case, the 30 root, rounded down, is 5.

1. Create a list of all integers from 2 to the value of the quota: 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29 e 30.

2. Find the őrst number on the list. He’s a prime number, 2.
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Figure 48: Eratosthenes, the third head librarian of the Alexandria Library

3. Remove all multiples from 2 to 30 from the list: 2, 3, 5, 7, 9, 11, 13, 15,
17, 19, 21, 23, 25, 27 e 29.

The next number on the list is prime. Repeat the procedure:

• In this case, the next number on the list is 3. By removing your multiples,
the list stays: 2,3,5,7,11,13,17,19,23,25 e 29.

• The next number, 5, is also prime 2,3,5,7,11,13,17,19,23 e 29.

As initially determined, 5 is the last number we divide by. The őnal list 2, 3, 5,
7, 11, 13, 17, 19, 23, 29 contains only prime numbers.

Here’s an implementation in Python:

def primeSieve(sieveSize):

# Returns a list of prime numbers calculated using

# the Sieve of Eratosthenes algorithm.
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sieve = [True] * sieveSize

sieve[0] = False # zero and one are not prime numbers

sieve[1] = False

# create the sieve

for i in range(2, int(math.sqrt(sieveSize)) + 1):

pointer = i * 2

while pointer < sieveSize:

sieve[pointer] = False

pointer += i

# compile the list of primes

primes = []

for i in range(sieveSize):

if sieve[i] == True:

primes.append(i)

return primes

The Deterministic ‘AKS’ Test. The test of AKS determines in polynomial
time whether n is compound or prime (more exactly, in time O(d )6 where d
= the number of digits d [binary] of n). In practice, the Miller-Rabin test

is usually enough to guarantee much more witnesses (= a numbers that prove
whether n is composed or not) than Fermat’s Little Theorem.

In fact, when we compare the duration between the two algorithms to check
if a number is prime on a computer with a 2GHz Intel Pentium-4 processor,
we get

prime number Miller-Rabin AKS

7309 0.01 12.34

9004097 0.01 23 : 22.55

231 − 1 0.01 6 : 03 : 14.36

The CrypTool 1 offers in the Individual Procedures -> RSA Menu an entry
to experiment with different algorithms to detect prime numbers.

The Probabilist Test Miller-Rabin. The simplistic tests, to know if a n
number is prime or not, are inefficient because they calculate the n factors.
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Figure 49: The algorithms to check if a number is prime in CrypTool 1

Instead of them, to know only if it is prime or not, there is the Miller-Rabin Test.
After your demonstration, we’ll give you your opposition; it’s in this formulation
that it’s applied.

The Miller-Rabin Test. Be p > 2 a prime number, be n − 1 = 2kq for numbers
k and q (with q odd). So, for any whole number a indivisible for p is worth

• or aq ≡ 1,
• or there’s r in 0,1, ...,k − 1 such that a2

r q ≡ −1 mod n

Demonstration: By the Little Theorem of Fermat

ap−1 = (ad )2k ≡ 1 mod p

By iteratively extracting the square root, we obtain

172



• or (aq )2r ≡ 1 mod p for all r = 1, ...,k − 1; in particular aq ≡ 1 mod p,
• or there’s r in {1, ...,k − 1} such that (aq )2r ≡ −1 mod p . q.e.d.

If for an odd number, a possibly prime number, we write n − 1 = 2kq , then by

Fermat’s Test n is not prime if there is a whole a such that a2
kq ≡ 1 mod n. The

Miller-Rabin Test explains the condition aq2
k
= (aq )2k = ((aq )2) · · · )2 . 1:

The Miller-Rabin Test. (Contraposition) It’s n odd and n − 1 = 2kq for numbers k

and q (with q odd). An integer a relatively prime to n is aMiller-Rabin Witness (for
divisibility) of n, if

• aq ≡ 1 mod n e
• a2qa2

2q
, ...,a2

k−1q such that a2
r q ≡ −1 mod n

Question: What are the chances that we declare by the Miller-Rabin Test
accidentally a prime number, that is, a number that is actually compound?

Theorem. (About the frequency of witnesses) Be n odd and compound. So at least
75 of the numbers in 1, . . . , n − 1 are Miller-Rabin Witnesses for n.

So, already after 5 attempts a1, a2, . . . , a5 without witness we know with a
chance 1/45 = 1/1024 < 0.1%, that the number is prime!

Python Implementation. Let’s implement

1. the Miller-Rabin algorithm,
2. a test for a prime number, and
3. a function to generate (large) prime numbers.

# Primality Testing with the Rabin-Miller Algorithm

# http://inventwithpython.com/hacking (BSD Licensed)

random import

def rabinMiller(num):

# Returns True if num is a prime number.

s = num - 1

t = 0
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while s % 2 == 0:

# keep halving s while it is even (and use t

# to count how many times we halve s)

s = s // 2

t += 1

for trials in range(5): # try to falsify num's primality 5 teams

a = random.randrange(2, num - 1)

v = pow(a, s, num)

if v != 1: # this test does not apply if v is 1.

i = 0

while v != (num - 1):

if i == t - 1:

return False

else:

i = i + 1

v = (v ** 2) % in a

return True

def isPrime(num):

# Return True if num is a prime number. This function does a

# quicker prime number check before calling rabinMiller().

if (num < 2):

return False # 0, 1, and negative numbers are not prime

# About 1/3 of the time we can quickly determine if num is not

# prime by dividing by the first few dozen prime numbers.

# This is quicker # than rabinMiller(), but unlike rabinMiller()

# is not guaranteed to prove that a number is prime.

lowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,

47, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,

109, 113, 127, 131, 137, 149, 151, 157, 163, 167, 173, 179, 181,

191, 193, 197, 199, 211, 223, 227, 233, 239, 241, 251, 257, 263,

269, 271, 277, 281, 283, 293, 307, 311, 313, 331, 337, 347, 349,

353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 431, 433,

439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,

523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607,
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613, 617, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,

701, 709, 719, 727, 739, 743, 751, 757, 761, 769, 773, 787, 797,

809, 811, 821, 823, 827, 829, 853, 857, 859, 863, 877, 881, 883,

887, 907, 911, 919, 929, 937, 941, 947, 967, 971, 977, 983, 991,

997]

if in a lowPrimes:

return True

# See if any of the low prime numbers can divide into one

for prime in lowPrimes:

if (num % prime == 0):

return False

# If all else fails, call rabinMiller() to check if num is a prime.

return rabinMiller(num)

def generateLargePrime(keysize = 1024):

# Return a random prime number of keysize bits in size.

while True:

num = random.randrange(2**(keysize-1), 2**(keysize))

if isPrime(num):

return num

9.2 Other Moduli

Let’s observe for modules that are not primes, that is, a product of primes
factors, that the difficulty increases linearly in the number of factors, unlike it
increases exponentially in the number of bits of each factor:

Product of Different Primes. If the m = pq module is the product of two
factors p and q without common factor, then the modular logarithm

logg mod m

can be computed, by the Chinese Theorem of the Remains, by the logarithms

logg mod p and logg mod q
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More exactly, there are integers a and b , computed (in linear time in the number
of p and q bits) by the Euclid Algorithm (extended), such that ap + bq = 1

and
logg mod m = a (logg mod p) + b (logg mod q ).

Power of a Prime. If the modulus m = pe is a power of a prime p, then
Bach (1984) shows how the modular logarithm module m for a g base

logg : ℤ/mℤ∗ → ℤ/ϕ(m)ℤ

can be computed in polynomial time from the p module logarithm. Let’s expose
the steps to a prime number p > 2:

1. Let us recall the Section 7.2 about the existence of the primitive root for
every module for which ℤ/peℤ∗ is cyclical in order (p − 1)pe−1. Therefore,
there is a multiplicative application

ℤ/peℤ∗ → μp−1 × U1

given by

x ↦→ xp
e−1

,x/xpe−1 (∗)

where
μp−1 = {ζ ∈ ℤ/peℤ∗ : ζp−1 = 1}

denote the group of (p − 1)-highest roots of the unit and

U1 = 1 + pℤ/peℤ

The unitary units.
2. We have the isomorphism

μp−1 → 𝔽
∗
p

given for x ↦→ x mod p and its inverse for X ↦→ Xp
e−1

for every X in ℤ/peℤ
such that X ≡ x mod p . (Note that the restriction of homomorphism

ℤ/peℤ∗ → U1

given by x1−p
e−1

to U1 is the identity because the order of U1 is pe−1).
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3. We have the logarithm to the g base

logg : 𝔽
∗
p → ℤ/(p − 1)ℤ

and we have the natural logarithm

log : U1 → p (ℤ/peℤ)

which is calculated in polynomial time by the formula

u ↦→ [xpe − 1]/pe ; (3)

and which provides the logarithm logg : U1 → p (ℤ/peℤ) for the base g
by the scaling

logg = log ·/log g .
4. By the Chinese Remainder Theorem, we have the isomorphism

ℤ/(p − 1)ℤ × ℤ/pe−1ℤ → ℤ/(p − 1)pe−1ℤ

given by the product and its inverse given by y ↦→ (ay mod p ,by mod pe−1)
where a and b satisfy a (p − 1) + b (pe−1) = 1 and were obtained by the
Euclid Algorithm (extended).

We conclude that, given

• the number y in ℤ/peℤ and
• its value logg (y) under logg : 𝔽 ∗

p → ℤ/(p − 1)ℤ,

the value of logg (y) of logg : (ℤ/peℤ)∗ → ℤ/(p − 1)pe−1ℤ is computed in
polynomial time.

Observation. To facilitate computing, instead of projection

ℤ/peℤ∗ → U1

given in (∗) for x ↦→ x1−p
e−1
, it’s faster to use that given in (∗) by π : x ↦→ xp−1.

However, its U1 restriction is not identity. So you need to use it instead of

log g : U1 → pℤ/peℤ

the scaled logarithm
(p − 1)−1 logg

in order to obtain

logg = (p − 1)−1 logg ◦π = (log(g )p − 1)−1 log ◦π : U1 → pℤ/peℤ.
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Discreet Logarithm To Prime Power. Let’s explain Equation 3 which deőnes
the logarithm log : U1 → p (ℤ/peℤ): let us remember the deőnition of the
exponential on ℝ for compound interest

exp(x) = lim

(
1 + 1

n

)n
,

which leads to the deőnition of the inverse function

log(x) = lim n (x1/n − 1) = x ϵ − 1

where ϵ = 1/n → 0.

Now, at ℤ/peℤ, we have 1, p, p, 2, . . . , p = 0, that is, pn , which may motivate
the idea of considering p as small. So, the good analog about U1 is

log(x) = lim
1

pe−1
(xpe−1 − 1).

In fact, over U1,

log(1 + x) = x − x
2

2
+ x

3

3
− ...

is a well deőned value in pℤ/peℤ, because if p divides x , then no denominator
of the fraction cut is divisible by p and all indivisible numbers by p are invertible
by ℤ/peℤ. Likewise, over pℤ/peℤ,

exp(x) =
∑︁
n≥0

xn

n!

is a well deőned value at 1 + pℤ/peℤ, because if p divides x , then no cut
denominator is divisible by p and all indivisible numbers by p are invertible by
ℤ/peℤ.

Of particular interest is the base e p of the natural logarithm at 1 + pℤ/peℤ, that
is, the argument y such that log y = 1. For example, for p = 7 and e = 4, we
calculate

exp(p) =
∑︁
n≥0

pn

n!
= 1 + p + p

2

2
+ p

3

3!
= 1 + 7 · 127 = 1 + 1 · 7 + 4 · 72 + 2 · 73.
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Self-Check Questions

Summary

Asymmetric cryptography relies on a trapdoor function, which

• must be easily computable (for example, raising to the n-th power in RSA

), but
• its inverse (for example, extraction of the n th root in RSA ) must be
practically incomputable without knowledge of a shortcut, the key!

This difficulty of calculating the inverse corresponds to the difficulty of decryp-
tion, that is, inverting the encryption. To complicate the computation of the
inverse function (besides facilitating the computation of the proper function) is
done using modular (or circular) arithmetic*, that we already from the arithmetic
of the clock, where m = 12 is considered equal to 0 .

Questions

Required Reading

Further Reading

Use CrypTool 1 to experiment with various prime detection algorithms.
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10 Finite Elliptic Curves

Study Goals

On completion of this chapter, you will have learned . . .

• the Diffie-Hellman key exchange using őnite elliptic curves.
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Introduction

Denote 𝔽p := ℤ/pℤ . Among all curves, the clou of the elliptic curves (given by
an equation y2 = x3 + ax + b ) is that one can add points on them: p + q + r = 0

if a line passes for p ,q and r . By restricting the solutions to points (x ,y) in
(𝔽p × 𝔽p for a large prime number p and őxing a point P on the curve,

• while it is easy to compute the exponential, that is, for n , compute

Q = nP = P + ... + P,

• in contrast, for a point Q = P + ... + P , it is difficult to compute the
logarithm: that is, how many times P has been added, the number n such
that Q = nP .

Diffie-Hellman over Elliptic Curves: (an analog of) the Diffie-
Hellman protocol, in which iterated multiplication of a number
modulo p is replaced by iterated addition of a point on a őnite
elliptic curve.

The Diffie-Hellman protocol (over 𝔽p) has an analog over Elliptic Curves:

• Instead of multiplying repeatedly (n times) the base g in 𝔽 ∗
p , that is,

computing
g n = g · · · g ,

• add repeatedly (n times) a point G , that is, compute

n · G = G + · · · +G.

The advantage of using

• the logarithm over a finite elliptic curve (that is, the function that for a given
point G and Y determines the scalar x in ℕ such that Y = xG)

• instead of the logarithm over 𝔽p (that is, the function that given numbers
g and y determines the exponent x such that y ≡ g x mod p ),

is that depending on the number of bits n of p (regarding the fastest presently
known algorithms):

• the time to compute the logarithm over an elliptic curve increases linearly
and takes about n/2 operations, while
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• the time to compute the multiplicative logarithm increases sublinearly and
takes about n1/3 operations.

For example, the security obtained by a 2048 bits key for the multiplicative
logarithm equals approximately that of a 224 bits key for the logarithm over an
elliptic curve. To a length of 512 bits of a key for an elliptic curve, corresponds
a length of 15360 bits of an RSA key.

In the next sections, we:

1. introduce these general őnite őelds (because common őnite elliptic curves
are deőned over more general őnite őelds than those of the form 𝔽p = ℤ/pℤ
for a prime number p that we know so far).

2. introduce elliptic curves.
3. study the addition of points of an elliptic curve.
4. present the Diffie-Hellman Key Exchange over elliptic curves, and
5. look at the cryptographic problem behind the curves and the algorithms

that solve it.

10.1 General Finite Fields

We realized that we already use the modular arithmetic in everyday life, for
example for the modulus m = 12 , the arithmetic of the clock, and for m = 7 ,
the days of the week. More generally, we deőned, for any integer m the finite
ring ℤ/mℤ (= a őnite set where we can add and multiply), roughly,

• as a set for 0 , 1 , . . . , m − 1 , and
• the sum (respectively product) of x and y in

ℤ/mℤ = {0,1, ...,m − 1}

is deőned by the remainder of the sum x + y (respectively product) in ℤ

divided by m .

If m = p is prime, then it can be shown that ℤ/pℤ is a field denoted by 𝔽p : for
every a in 𝔽p , except 0 , there is always a−1 in 𝔽p , the inverse multiplicative of
a deőned by satisfying aa−1 = 1 . In other words, in a őeld we can divide by
every number except 0 . (The most common examples are the inőnite őelds ℚ
and ℝ .)
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𝔽q for q = pn : A ring of polynomials with coefficients in 𝔽p of degree
n

In cryptography, elliptic curves are deőned over őelds 𝔽q whose cardinality is a
power q = pn of a prime number p (and not just 𝔽p till now); for example, q = 2n

for a large number n . The case p = 2 is particularly suitable for computing
(cryptographic). The őelds of the form 𝔽2n are called binary.

In Section 2.4, we already made acquaintance with the Rijndael őeld, which
was deőned by polynomials of degree 7 with binary coefficient. More generally,
the őeld 𝔽q to q = pn is deőned by polynomials of degree n over 𝔽p ,

𝔽q [X] = {anXn + an−1Xn−1 + · · · + a0 with an ,an−1, ...,a0 in 𝔽q }.

• The + addition of two polynomials is the addition of polynomials, that is,
the coefficient to coefficient addition in 𝔽p , and

• to multiply two polynomials,

1. multiply the polynomials, and
2. take the remainder of division by a polynomial m (X) to be deőned.

The Rijndael Field 𝔽28 . For example, for q = pn with p = 2 and n = 8 , we
get the őeld 𝔽28 used in AES . As a set

𝔽q = {a7X7 + · · · + a0 with a7, ...,a0 in 𝔽p}.

that is, the őnite sums

a0 + a1X + a2X2 + · · · + a7X7

for a0, a1, . . . , a7 in {0,1} .

• The addition + of two polynomials is the addition of polynomials, that is,
the coefficient to coefficient addition in 𝔽p , and

• Multiplication is őrst the usual multiplication of polynomials and then
the remainder of division by the polynomial

m (X) = X8 + X4 + X3 + X + 1.
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10.2 Elliptic Curves

An elliptic curve E over a őnite őeld (in which 0 ≠ 2,3 ) is an equation

y2 = x3 + ax + b

for coefficients a and b such that the curve is not singular, that is, its discriminant
is nonzero, 4a3 + 27b2 ≠ 0 .

Note.

• The equation y2 = x3 +ax +b is the form of Weierstraß, but there are several
others that have proved to be computationally more efficient, such as that
of Montgomery

By2 = x3 +Ax2 + x where B(A2 − 4) ≠ 0.

• If the characteristic is 2 , that is, 𝔽q with q = 2n , then the equation is
y2 + cxy + dy = x3 + ax + b .

After choosing a domain (for example, ℤ , ℚ , ℝ , ℂ or 𝔽p for a prime number
p ) the points (x ,y) that solve this equation, E(x ,y) = 0 , form a curve in the
plane. This plane,

• for ℝ is the usual Cartesian plane,
• for ℤ is a lattice of points, and
• for ℤ/mℤ is the őnite lattice of points inside the square of length m whose
bottom left corner is at the origin.

In addition to the points in the plane, there is also the point at inőnity (or ideal
point) that is denoted 0 . Thus, the points of the elliptic curve are given by

E := { all points (x ,y) such that E(x ,y) = 0} ∪ {0}

where the notion of point depends on the domain: On a őnite őeld 𝔽q , the number
of points #E is limited by q + 1 − t where t ≤ 2

√
q , that is, asymptotically equal

to #𝔽 ∗
q = q − 1 . It can be computed by Schoof’s algorithm Schoof (1995) in

about n5 operations for n = log2 q the number of binary digits of q .

Just as the coefficients a and b , this plane can be a rational, real, complex or
őnite plan, that is, a őnite őeld 𝔽q for a power q = pn of a prime number p .
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Continuous and Discrete Finite Curves. For the domain ℝ , the curves take
the following forms in the real plane for different a and b parameters:

Figure 50: Real elliptic curves (Corbellini (2015a))

While on őnite őelds, we obtain a discrete set of points (symmetrical around
the middle horizontal axis).

Curves used in Cryptography. For the cryptographic algorithm on this
curve to be safe, that is, the computation of the logarithm on it takes time, there
are restrictions on the choices of q = pn and the elliptic curve (that is, on its
deőning coefficients a and b ). For example,
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Figure 51: Finite elliptic curve (Grau (2018a))

• that the coefficients a and b are such that

ś the number of {pointsover𝔽q } = q (due to vulnerability to Smart’s
attack), and

ś the curve not be supersingular (due to vulnerability to Menezes,
Okamoto and Vanstone’s attack); that is, that #{pointsover𝔽q } = q +1
for p > 3 (while for p = 2,3 there are exactly three respectively four
equations that deőne supersingular curves).

The probability that a randomly generated curve (that is, one whose coefficients
a and b in the equation by2 = x3 +ax2 +x are randomly generated) is vulnerable
to one of these attacks is negligible.

• that the point G has a high order.

Ideally, these choices are publicly justiőed.

A safe choice is for example: The Curve25519 given by

y2 = x3 + 486662x2 + x
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over 𝔽q with q = p2 where p = 2255−19 (which explains its name); its number of
points is #E = 2252 + 277423177773585193790883648493 . (This curve became
popular as an unbiased alternative to the recommended, and soon distrusted,
curves by the National Institute for Standards and Technology, NIST).

• Edwards’ curves (from 2007) given by

x2 + xy = 1 + dx2y2

for an integer d ≠ 0,1 .
• Koblitz and binary curves over binary őelds given by

x2 + xy = x3 + ax2 + 1 or x2 + xy = x3 + x2 + b

for a and b in {0,1} , which allow for a particularly efficient addition
(and multiplication). Standardized examples are, nistk163, nistk283,
nistk571 and nistb163, nistb283, nistb571 deőned over the binary őeld
with 163, 283 and 571 bits.

• The őnite elliptic curve Brainpool P256r as speciőed in the RFC7027 used
to encrypt the data on the German microchip ID card.

To ensure that the coefficients are not chosen to intentionally compromise
cryptographic security, they are often obtained at random, that is,

1. obtained by a randomly generated number (a seed), and
2. transformed by a cryptographic hash such as SHA-256.

10.3 Addition (and Multiplication by an integer)

How is the sum of two points on an elliptic curve deőned? Geometrically the
sum of three points p , q and r on an elliptic curve in the Euclidean plane
(that is, in ℝ × ℝ ) is deőned by the equality p + q + r = 0 if a line passes p ,q
and r . However, over őnite őelds, this geometric intuition no longer applies,
and we need an algebraic deőnition (which is also the form that the computer
expects).
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Geometric Addition (over ℝ ). If we look at the real points of the curve E ,
that is, at all the points (x ,y) in ℝ ×ℝ such that E(x ,y) = 0 , the addition has a
geometric meaning: We have P +Q + R = 0 if P , Q and R are on the same line.
More exactly:

• If P and Q are different, then the line connecting P and Q intersects the
curve at another point −R ;

• If P and Q are the same, then we use the tangent at the point P = Q .

The reŕection of −R along the x -axis is the point R = P +Q .

CrypTool 1 demonstrates this geometric addition in an animation accessible
from the Point Addition on Elliptic Curves entry in the menu Procedures

-> Number Theory - Interactive.

Figure 52: Two-point addition on real numbers in CrypTool 1 (Esslinger et al.
(2008))
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Algebraic Addition (over a őnite őeld 𝔽p). This geometric description
of the addition leads us to the following algebraic description: Expressed by
Cartesian coordinates, the addition of two points of an elliptic curve is given
by an algebraic formula, that is, it involves only the basic operations of addition,
multiplication (and raising to a power). (Thus, we can replace the unknowns
by values in any domain, be it ℚ , ℝ , or 𝔽q .)

Proposition: Denote P +Q = R by

(xP,yP) + (xQ ,yQ ) = (xR,yR).

If the curve E is given by Y2 = X3 + aX + b and the points P , Q and R are
non-zero, then

xR = s
2 − xP − xQ and yR = s (xP − xR) − yP (∗)

where s is the degree of inclination of the line that passes through P and Q

given by

s =
yQ − yP
xQ − xP

if xQ ≠ xP, and s =
3x2P + a
2yP

if xQ = xP.

Demonstration: For a cubic curve not in the normal Weierstrass shape, we can
still deőne a group structure by designating one of its nine inŕection points as
the O identity. On the projective plane, each line will cross a cubic at three
points when considering multiplicity. For a P point, −P is deőned as the third
exclusive point in the line passing O and P . So for all P and Q , P + Q is
deőned as −R where R is the third exclusive point in the line containing P and
Q .

Be K a őeld on which the curve is deőned (that is, the coefficients of the equation
or deőning equations of the curve are in K ) and denotes the curve as E . So,
the rational K points are the E points whose coordinates are in K , including
the point at inőnity. The − -rational points set is indicated by E (K ). It also
forms a group, because the properties of the polynomial equations show that if
P is in E (K ), then −P is also in E (K ), and if two of P , Q and R are in E (K
), then it is the third. Also, if K is a subőeld of L , then E (K ) is a subgroup of
E (L ). Given the curve Y2 = X3 + aX + b on the őeld K (such that 0 ≠ 2,3 ),
and the points P = (xP, yP) and Q = (xQ , yQ ) on the curve.
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1. If xP ≠ xQ , then y = sx + d the Cartesian equation of the line intersecting
P and Q with the slope

s =
yP − yQ
xP − xQ

.

For the values xP, xQ and xR the equation of the line is equal to the curve

(sx + d )2 = x3 + ax + b ,

or, equivalently,

0 = x3 − s 2x2 − 2xd + ax + b − d 2.

The roots of this equation are exactly xP, xQ and xR; thence

(x−xP) (x−xQ ) (x−xR) = x3+x2(−xP−xQ−xR)+x (xPxQ+xR+xQxR)−xPxQxR.

Therefore, the coefficient of x2 gives the value xR; the value of yR follows
by replacing xR in the Cartesian equation of the line. We conclude that
the coordinates (xR, yR) = R = -(P + Q ) are

xR = s
2 − xP − xQ and yR = yP + s (xR − xP).

2. If xP = xQ , then

1. either yP = −yQ , including the case where yP = yQ = 0 , then the
sum is set to 0 ; so the inverse of each point on the curve is found
reŕecting it in the x axis,

2. or yP = yQ , then Q = P and R = (xR, yR) = -(P + P ) = −2P = −2Q is
given by

xR = s
2 − 2xP and yR = yP + s (xR − xP) with s =

3xP
2 + a
2yP

.

Observation. For certain speciőc curves, these formulas can be simpliőed: For
example, in an Edwards’ Curve of the shape

x2 + xy = 1 + dx2y2

for d ≠ 0,1 (with neutral element 0 the point (0,1) ), the sum of the points
p = (xP,yP) and q = (xQ ,yQ ) is given by the formula

(xP,yP) + (xQ ,yQ ) =
(
xPyQ + xQ yP
1 + dxPxQ yPyQ

,
yPyQ − xPxQ
1 − dxPxQ yPyQ

)
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(and the inverse of a point (x ,y) is (−x ,y) ). If d is not a square in 𝔽q , then there
are no exceptional points: The denominators 1 + dxPxQ yPyQ and 1− dxPxQ yPyQ
are always different from zero.

If, instead of ℝ , we look at the points with entries in a őnite őeld 𝔽q from the
curve E , that is, all points (x ,y) in 𝔽q such that E(x ,y) = 0 , the addition is
uniquely deőned by the formula (∗) .

CrypTool 1 demonstrates this addition in the entry Point Addition on

Elliptic Curves of the menu Indiv. Procedures -> Number Theory -

Interactive.

Figure 53: Two-point addition on a őnite őeld in CrypTool 1 (Esslinger et al.
(2008))

Scalar Multiplication. The addition leads to scaling by iterated addition.
That is,
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• to the exponential, that, for a őxed point P on the elliptic curve, given x in
ℕ , returns

x · P := P + · · · + P

(iterated d times) for a natural number d ; and
• to the logarithm: given Y and P points on the elliptic curve, what is the x
in ℕ such that Y = x · P ?

Base Point. As the group of points on a őnite őeld 𝔽q is őnite (of cardinality
approximately q ), necessarily for any point P the set ⟨P⟩ := {P,2P, ...} is őnite.
That is, there is n and n +m in {0,1, ...,q − 1} such that nP = (n +m)P , that is,
there is a whole m < q such that mP = 0 .

Figure 54: Cyclicity of a point on a őnite elliptic curve (Corbellini (2015a))

Grau (2018a) shows for an elliptic curve over a őnite őeld 𝔽p the addition table
between the points, and for each point P the őnite cyclic group ⟨P⟩ = {P,2P, ...}
generated by it. The cardinality m = #⟨P⟩ is the smallest m such that mP = 0

and is called the order of the point P .
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10.4 Key Exchange using Elliptic Curves

Elliptic Curve Cryptography uses Diffie-Hellman Key Exchange to

1. build a secret key,
2. turn it into a cryptographic hash, and
3. use it to encrypt communication by a symmetric cryptographic algorithm.

Encryption by the ECC is standardized by the ECIES (Elliptic Curve Integrated
Encryption Scheme), a hybrid procedure (asymmetric cryptography with sym-
metric cryptography).

Once the mutually secret c key (= a point on the őnite elliptic curve) is agreed on,
Alice and Bob derive from it a key to a symmetric cipher like AES or 3DES . The
derivation function that transforms a secret information into the appropriate
format is called a Key Derivation Function, KDF. Such a standardized function
is ANSI-X9.63-KDF with the SHA-1 option. For example, the TLS protocol

• uses the x coordinate of the point c ,
• concatenates to it numbers relating to the connection (such additional
speciőc data is called a salt), and

• calculates a cryptographic hash of this concatenated number.

Let us transfer the Diffie-Hellman protocol from multiplication in a őnite őeld
to addition on a őnite elliptic curve: Denote G a point on the curve, and

xG = G + · · · +G

the x -fold iterated addition over the őnite elliptic curve (instead of g and
g x = g · s g for a őnite őeld).

Setup. one chooses őrst

1. a prime number p that deőnes the őeld 𝔽p , and
2. the coefficients a and b that deőne the points E in the plane on 𝔽p (subject

to condition 4a3 + 27b2 ≠ uiv0 mod p to not be singular).

To resist

• against Smart’s attack #{pointson𝔽q } ≠ q , and
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• against Menezes, Okamoto and Vanstone’s attack, must not be supersingu-
lar ; that is, that #{pointsover𝔽q } = q + 1 for p > 3 (while for p = 2,3 there
are exactly three respectively four equations that deőne supersingular
curves).

Then one chooses

3. One chooses a base point G in E .

The critical cryptographic number is the order n of the base point G that should
be big enough.

To resist

• against the Pohlig-Hellman attack (which reduces the problem to its prime
numbers) should be prime,

• against the baby-step-giant-step (or Pollard’s ρ ) attack must be ≥ 2224 (to
make it computationally unviable).

To őnd a base point G whose order n is big enough, proceed as follows:

1. Randomly select coefficients a and b in 𝔽q .
2. Compute the number of points N = #E(𝔽q ) of E in 𝔽q by Schoof’s algo-

rithm.
3. Verify that N ≠ q ,q + 1 (to avoid the attacks of Smart and Menezes,

Okamoto and Vanstone). Otherwise, go back to step one.
4. Check if there is a prime factor of N such that

• n > 2224 , and
• n > 4

√
q (to prevent the attack of Pohlig-Hellman). Otherwise, go

back to the őrst step.

5. Randomly pick points g in E up to G = hG ≠ 0 to h := N/n .

That the point thus found has order n can be shown by Langrange’s Theorem
which asserts that #H|#G where

• G is a group, that is, a set with an addition + that satisőes the associative
and commutative law, has a 0 element and an inverse −x for every x in G

,
• and H is a subgroup, that is, a subset H such that if x and y in H , then
x + y in H .
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For example, G = ℤ/10ℤ is a group and 2 ·H = {0,2,4,6,8} a subgroup.

Demonstration: For every point P we have #EP = nhP = 0 by Lagrange’s Theorem.
That is, nG = 0 for G = hP , and for the Lagrange Theorem #⟨G⟩ divides n .
Since n is prime, either ⟨G⟩ = 1 , or ⟨G⟩ = p . Since ⟨G⟩ ≠ 1 , or #⟨G⟩ > 1 , so
#⟨G⟩ = n .

Example (of a base point).

The elliptic curve Curve25519 with

y2 = x3 + 486662x2 + x

over 𝔽q with q = p2 where p = 2255 − 19 , uses as base point G = (xG,yG)
uniquely determined by

• xG = 9 , and
• yG < q/2 , that is, yG = 14781619 44758954 47910205 93568409 98688726
46061346 16475288 96488183 77555862 37401).

Steps. In the ECDH (Elliptic Curve Diffie-Hellman) protocol, for Alice and
Bob to overtly build a secret key, they őrst combine

• a q power of a suitable prime number p ,
• a suitable elliptic curve E over 𝔽q , and
• a suitable point G in E .

and then

1. Alice, to generate one half of the key, chooses a number a ,

• calculates A = aG , and
• transmits A to Bob.

2. Bob, to generate another half of the key, chooses a number b ,

• calculates B ≡ bG , and
• transmits B to Alice.

3. The secret mutual key between Alice and Bob is

c := bA = baG = abG = aB.
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We note that for both to compute the same key c , the addition must satisfy
the associative and commutative law; that is, it is indispensable that E be a
group.

The ECDHE protocol, where the additional őnal E stands for ‘Ephemeral’, is,
regarding the key exchange, the same as the ECDH protocol, but discards the
keys (which are necessarily signed by permanent keys to testify the identity)
after the session. Corbellini (2015b) is an implementation in Python of ECDH.

Self-Check Questions

1. How much older is RSA compared to ECC? Around 20 years.

2. How does the ECC Diffie-Hellman key exchange compare to the original
Diffie-Hellman key exchange? The ECC Diffie-Hellman key exchange uses points
on an elliptic curve given by pairs of numbers whereas the original Diffie-Hellman

key exchange uses simple numbers.

3. How do the key sizes between RSA and ECC compare? Usual are 2048 bits
for RSA and 224 bits for ECC.

4. How much faster is ECC compared to RSA?

□ 2

□ 3

□ 5

□ 8

Summary

Asymmetric cryptography relies on a trapdoor function, which

• must be easily computable (for example, raising to the n-th power in RSA

), but
• its inverse (for example, extraction of the n th root in RSA ) must be
practically incomputable without knowledge of a shortcut, the key!
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This difficulty of calculating the inverse corresponds to the difficulty of decryp-
tion, that is, inverting the encryption. To complicate the computation of the
inverse function (besides facilitating the computation of the proper function) is
done using modular (or circular) arithmetic*, that we already from the arithmetic
of the clock, where m = 12 is considered equal to 0 .

Let us denote 𝔽p = ℤ/pℤ .

The most current cryptography widely in use uses elliptic curves (given by an
equation y2 = x3 + ax + b ) where one can add points on them: p + q + r = 0 if a
line passes for p ,q and r . By restricting the solutions to points (x ,y) in (𝔽p × 𝔽p

for a large prime number p and őxing a point P on the curve,

• while it is easy to compute the exponential, that is, for n , compute

Q = nP = P + ... + P,

• in contrast, given a point Q = P + ... + P , it is difficult to compute the
logarithm: that is, how many times P has been added, the number n
such that Q = nP . By virtue of this point addition, the Diffie-Hellman

protocol (over 𝔽p) has an analog over Elliptic Curves.

• Instead of multiplying repeatedly (n times) the base g in 𝔽 ∗
p , that is,

computing
g n = g · · · g ,

• add repeatedly (n times) a point G , that is, compute

n · G = G + · · · +G.

Security.

• instead of the logarithm over 𝔽p (that is, the function that given numbers
g and y determines the exponent x such that y ≡ g x mod p ),

• the logarithm over a finite elliptic curve (that is, the function that for a given
point G and Y determines the scalar x in ℕ such that Y = xG )

The advantage of using elliptic curves are shorter key sizes: Because, depending
on the number of bits n of the used modulus p , regarding the fastest presently
known algorithms:
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• the time to compute the logarithm over an elliptic curve increases linearly
and takes about n/2 operations, while

• the time to compute the multiplicative logarithm increases sublinearly and
takes about n1/3 operations.

For example, the security of a 2048 bit key for the multiplicative logarithm
equals approximately that of a 224 bit key for the logarithm over an elliptic
curve. To a length of 512 bits of a key for an elliptic curve, corresponds a length
of 15360 bits of an RSA key.

ECC, elliptic curve cryptography, is becoming the new standard because its
cryptographic problem (the logarithm over a őnite elliptic curve) is currently
computationally more difficult than that of RSA (the factoring in prime numbers)
or DH (the logarithm over the multiplicative group of a őnite őeld). small keys
for the ECC achieve the same level of security as large keys for the RSA or DH. As
an example, the security of a 224 bits key from the ECC corresponds to that of a
2048 bits key from the RSA or DH. This factor in reducing key sizes corresponds
to a similar factor in reducing computational costs. Regarding usability,

• an ECC public key can be shared by spelling it out (it has 56 letters in
hexadecimal notation,

• while a public key for RSA or DH has to be shared in a őle (which is for
convenience referred to by a őngerprint).

Questions

1. What key size in ECC is as secure as a 256 bit key in AES ?

□ 256

□ 512

□ 1024

□ 2048

2. What key size in ECC is as secure as a 256 bit key in AES?

□ 256

□ 512

□ 1024

□ 2048
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3. What certiőcate size in ECC is as secure as a 256 bit key in AES?

□ 256

□ 512

□ 1024

□ 2048

Required Reading

Use Grau (2018d) to get an intuition for the graphs over őnite domains.

Read Chapter 12 on elliptic curves of Aumasson (2017).

Further Reading

Use CrypTool 1 to observe the addition of points on an elliptic curve.

See the book Sweigart (2013a) for implementing some simpler (asymmetric)
algorithms in Python, a readable beginner-friendly programming language.

Read the parts of the book Schneier (2007) on understanding and implementing
modern asymmetric cryptographic algorithms.
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11 Authentication

Study Goals

On completion of this chapter, you will have learned . . .

1. . . . How a user can be authenticated by:

1. a password or personal identiőcation number (PIN),
2. smart card (that has a microprocessor that stores a private key and

runs cryptographic algorithms), or
3. biometric identiőers (recognition of the users’ signature, facial fea-

tures, őngerprint, . . . ).

2. . . . How authentication is most securely achieved over distance.

3. . . . How the secret is never revealed by challenge and response protocols.

4. . . . How no information other than the knowledge of the secret is leaked
by zero-knowledge proofs.

5. . . . How Kerberos mediates between users and servers without either one
revealing her password to the other.
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Introduction

Authentication is the identiőcation of a person or of data; the conőrmation

• that the user is who she claims to be, for example, when logging into a
server by entering user name and password, respectively

• that the message (for example, an instruction sent to a bank by e-mail)
is authentic, that is, unchanged between the time when the message was
under someone’s sight and its time of arrival.

This chapter treats exclusively the former type, the identiőcation of a person,
the user; particularly important on the Internet where the person is far away.
In this sense identification is telling a computer or a network who the user is,
usually by her user (or account) name. This is followed by authentication, the
veriőcation of the identity of a user, that is, convincing a computer that a person
is who he or she claims to be.

To authenticate, the user can use as a proof information that

• only she knows, such as a password or personal identiőcation number
(PIN),

• only she has, such as

ś software certiőcate (containing public or private keys),
ś hardware certiőcate, such as a token or smart card (that has a micro-
processor that stores a key and runs cryptographic algorithms),

ś a device, such as a phone or an e-mail account, to receive a code,

• only she is described by (what she is) such as biometric identiőers (recog-
nition of facial features, őngerprint, . . . ).

Authentication should not be confused with authorization, the őnal conőrmation
of authentication that determines the user’s eligibility to access certain contents,
that is, what a user is allowed to do or see.

The authentication protocol can be simple or two-factor, that is:

• simple : a single proof suffices, for example, a password;
• two-factor : more than one proof is necessary, for example, a PIN and a
smart card.
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and one-way or mutual, that is,

• one-way: party A, such as the user, authenticates herself to party B, and
• mutual: likewise party B, such as the server, authenticates himself to party
A.

Most operating systems (such as Linux) and applications store a hash of the
authentication data rather than the authentication data itself. During authenti-
cation, it is veriőed whether the hash of the authentication data entered matches
the hash stored. Even if the hashes are known to an intruder, it is practically
impossible to determine an authentication data that matches a given hash.

11.1 Passwords

A password is a secret sequence of letters attached to a user identity that grants
access to a system (such as a computer) after deriving it from the data of
authorized users stored on the system.

password: a secret sequence of letters attached to a user identity
that grants access to a system (such as a computer).

It is the most common approach for authentication: gratis, convenient and
private. It should be easy to memorize but difficult to guess.

Conveniences. Comparing authentication by what one knows (such as a
password) to

• what one is (biometric data such as a őngerprint), the advantages are:

ś does not require speciőc (rather sophisticated) hardware,
ś it is securely stored, and
ś cannot be forged.

• what one has (such as a smart-card), the advantages are:

ś does not have to be carried around,
ś it is transparently stored, and
ś cannot be lost, stolen or extorted.
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Criticisms.

• The user’s limitation in memorizing sequences of symbols. The more
meaningful, the more easily guessed (for example, a word of the user’s
tongue), but the more patternless, the harder to remember. A compromise
is a passphrase, that is, a complete sentence instead of a single word;
though longer, its content is more meaningful and thus more easily re-
membered than a patternless sequence of symbols. To shorten it, the őrst
letter of each word is taken. For example, łBetter to light one candle than
to curse the darkness.ž can become łB2l1ct2ctd.ž.

Another workaround is a password manager, a program that stores all
passwords in a őle encrypted by a master password.

ś therefore the passwords need no longer to be remembered,
ś thus may be arbitrarily complex,

However,

ś one has to unconditionally trust this program,
ś the master password still is a password whose exposure when used for
an insigniőcant account entails that of all other accounts, including
the most critical ones.

• Can be acquired over distance; as a workaround, two-factor authentication
requires a second ingredient to authenticate, which usually has to be
spatially close to the user, such as a hardware token.

Attacks. Attacks during the entry of another person’s password are:

• spying during the entry of the password. Workarounds are inconvenient,
for example,

ś masking the typed letters,
ś covering the keyboard,
ś using a screen keyboard.

• keylogging
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• login spooőng where one user’s account a login entry form is faked so
that the next user’s entered login data, instead of granting access, are
stored, display an error message and log the őrst user out.

• asking a user for the password, either through e-mail or on the phone as
a purported system administrator.

• asking a system administrator for the password by posing as a purported
user who has forgotten her password;

• asking a user to change her password on a purported entry form.

Attacks on another person’s stored password exploit principally the following
deőciency: Since passwords have to be memorized, they tend to be memorizable,
that is, follow patterns. For example, are built from (birth)dates, counts and
words, in particular names. Common are (reversing, capitalizing, . . . ):

• the user name
• the őrst, middle, or last name,
• the spouse’s, children’s, friend’s, or pet’s name,
• the date of birth, telephone number, house address,
• a word contained a (language) dictionary.

These more likely candidates can then be guessed őrst. Or, instead of building
likely passwords, the attacker uses those already leaked to begin with.

Self-Check Questions.

1. Which conditions must a secure but practical password fulőll? Must be easy
to memorize but difficult to guess.

2. List at least three common attacks during another person’s password
entry! spying, keylogging and login spoofing

11.2 Challenge-Response Protocols and Zero-knowledge

A challenge-response protocol poses a task that can be solved only by a user
with additional authentication data; usually:
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• either a cryptographic hash function or an enciphering function of a
symmetric cryptographic algorithm is used whose secret key is shared
among the claimant and veriőer; the veriőer generates a random number,
and the claimant responds with the result of applying the hash function
on that number.

• or a digital signature algorithm where the claimant signs with his private
key a message generated by the veriőer, which the veriőer checks with the
public key.

challenge-response protocol: poses a task that can be solved only
by a user who has the authentication data.

A Zero-knowledge Protocol goes, in theory, further, as it shows how a claimant
can prove knowledge of a secret to a veriőer such that no other information
(than this proof of knowledge) is disclosed; however:

• Proof is meant probabilistically, that is, the probability of the claim being
true is so high as beyond any reasonable doubt (though the probability
can be increased as much as desired by repeating the protocol), and

• the impossibility to gather information on the secret from that exchanged
relies on the computational difficulty to solve a mathematical problem.

Zero-Knowledge Protocol: a protocol (őrst presented in Gold-
wasser, Micali, and Rackoff (1989)) to prove knowledge of a secret
but disclose no other information.

Challenge-Response. A challenge-response protocol poses a task that can
be solved only by a user with additional authentication data. For example,

1. as challenge some (randomly) generated value is encrypted using the
password for the encryption key, and

2. as response a similarly encrypted value that depends on the original value,

thus proving that the user could decrypt the original value. For example, smart-
cards commonly use such a protocol. Such a (randomly) generated value is a
nonce (number used once) and avoids a replay attack where the exchanged
data is recorded and sent again later on.

nonce: stands for (a randomly generated) number used once used in
a cryptographic protocol (such as one for authentication).
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For example, in CRAM-MD5 or DIGEST-MD5,

• the challenge is the (iterated) hash of the password and a (randomly)
generated value, and

• the response is the hash of the password, and a value that depends on
the original value:

1. Server sends a unique challenge value challenge to the client.
2. Client computes response = hash(challenge + secret) and sends it

to the server.
3. Server calculates the expected value of response and veriőes that it

coincides with the client’s response.

Such encrypted or hashed information does not reveal the password itself, but
may supply enough information to deduce it by a dictionary (or rainbow table)
attack, that is, by probing many probable values. Therefore information that is
(randomly) generated anew enters on each exchange, a salt such as the current
time.

salt: a (randomly) generated number that enters additionally into
the input of a hash function to make its output unique; principally
if the additional input is a secret information such as a password.

Observation. Nonce, Salt and IV (Initialization Vector) are all numbers that are
(usually) randomly generated, disclosed, used once in a cryptographic process
to improve its security by making it unique. The name is given according to its
use:

• a nonce is a number used once in a cryptographic protocol to make the
exchange unique,

• a salt is used as additional input to a hash function to make its input
unique (so that the same original input hashed gives different output),
and

• an initialization vector is a number used as additional input to an enci-
phering (of a block cipher) to make its input unique (so that the same
original input encrypted with the same key gives different output).

Challenge-Response protocols such as those presented below are used, for
example, in object-relational databases such as PostgreSQL, or e-mail clients
such as Mozilla Thunderbird.

206



Digest-MD5. Digest-MD5 was a common challenge-response protocol that
uses the MD5 hash function and speciőed in RFC2831. It is based on the HTTP
Digest Authentication (as speciőed in RFC2617) and was obsoleted by Melnikov
(2011)

Challenge-Response Authentication Mechanism (CRAM). CRAM-MD5
is a challenge-response protocol based on HMAC-MD5, Hashing for Message
Authentication as speciőed in Krawczyk, Bellare, and Canetti (1997), that uses
the MD5 hash function. The RFC draft Zeilenga (2008) recommends obsoleting
it by SCRAM.

Steps.

1. The server sends the client a nonce.
2. The client is supposed to respond with HMAC(secret, nonce).
3. The server calculates HMAC(secret, nonce) and checks whether it co-

incides with the client’s response to be convinced that the client knew
secret.

Weaknesses.

• No mutual authentication, that is, the server’s identity is not veriőed.

• The used hash function MD5 is quickly computed, and thus facilitates
dictionary attacks. Instead, key stretching, that is, using a hash function
that is deliberately computationally expensive is preferable.

• Weak password storage:

ś Some implementations store the user’s plain password, while
ś others (such as Dovecot) store an intermediate hash value of the
password: While this prevents storage of the plain password, for
authenticating with CRAM-MD5, knowledge of the hash value is
equivalent to that of the password itself.
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Salted Challenge-Response Authentication Mechanism (SCRAM). Salted
Challenge-Response Authentication Mechanism (SCRAM) is a challenge-response
protocol for mutual authentication speciőed in Menon-Sen et al. (2010) (that
should supersede CRAM-MD5 as proposed in Zeilenga (2008)).

While in CRAM the client password is stored as hash on the server, now knowledge
of the hash (instead of the password) suffices to impersonate the client on further
authentications: The burden has just been shifted from protecting the password
to its hash. SCRAM prevents this by demanding additional information (on top
of the authentication information StoredKey stored on the server) that was
initially derived from the client’s password (ClientKey). Advantages of SCRAM
in comparison to older challenge-response protocols, according to loc.cit., are:

• The authentication information stored on the server is insufficient to
impersonate the client. In particular,

ś a dictionary attack (so-called rainbow tables) after an authentication-
database leakage is prevented by salting the information,

ś the server cannot impersonate the client to other servers because it
stores only partial authentication information,

ś password reuse after data breach is prevented by binding the hash
to a single server: only the salted and hashed version of a password
is used during login and the salt on the server is immutable.

• supports mutual authentication (by the client and server).

Key Creation, Transmission and Storage. When the client creates a pass-
word Password, the server stores derived keys StoredKey and ServerKey to-
gether with the parameters used for its derivation, as follows:

1. The client:

1. computes SaltedPassword by applying the password hashing func-
tion PBKDF2 (which is variable; by default it is PBKDF2, but nowadays,
for example, bcrypt is recommended) IterationCount many times
on the input given by the password Password and the salt Salt, that is,
SaltedPassword := PBKDF2(Password, Salt, IterationCount)
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2. computes ClientKey respectively ServerKey by applying the
HMAC function on SaltedPassword with the public con-
stant strings łClient Keyž respectively łServer Keyž, that
is, ServerKey := HMAC(SaltedPassword,′ ServerKey′) and
ClientKey := HMAC(SaltedPassword,′ClientKey′)

3. computes StoredKey by hashing ClientKey, that is, StoredKey :=

H(ClientKey) and sends ServerKey and StoredKey to the server
(but not ClientKey).

2. The server stores StoredKey, ServerKey, Salt and IterationCount to
later check proofs from clients and issue proofs to clients: ClientKey is
used őrst to authenticate the client against the server and ServerKey is
used later by the server to authenticate against the client.

Figure 55: Dependency graph in which each oriented edge is the output of a
one-way function, Cesar (2020)

The server only stores the public part of the root (Salt and IterationCount)
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and the leafs (StoredKey and ServerKey) of this tree. That is, the password is
never sent to the server, but only:

• the salt,

• the iteration count,

• ServerKey and StoredKey, that is,

ś HMAC(SaltedPassword,′ ServerKey′), and
ś H(HMAC(SaltedPassword,′ClientKey′)).

Thus, after a database breach, that is, after an attacker has stolen a ServerKey,
a client’s password does not need to be replaced, but only the salt and iteration
count changed and ClientKey and ServerKey replaced.

iteration count: Given an initial input, apply a hash function that
many times (−1 ) to the output.

Client Authentication to the Server. For the server to authenticate the
client:

1. The client sends to the server an authenticator (containing her
client-name and a client-nonce).

2. The server sends to the client a salt salt, iteration count ic and a
server-nonce.

Therefore, both, the client and server know AuthMessage := client-name,

client-nonce, salt, ic, server-nonce.

3. The client

1. creates proof of her knowledge of StoredKey by computing

ClientSignature := HMAC(StoredKey, AuthMessage)

ClientProof := ClientKey XOR ClientSignature

2. and sends ClientProof to the server.

4. The server

1. recovers ClientKey by
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1. computing ClientSignature (by knowing StoredKey from stor-
age and AuthMessage from this exchange), and

2. deciphering ClientKey' from the one-time pad ClientProof by
computing

ClientKey' = ClientProof XOR ClientSignature

2. computes StoredKey' by H(ClientKey), and

3. checks whether the computed StoredKey' coincides with the stored
StoredKey; if so the client is successfully authenticated.

If just ClientSignature were sent, then an attacker who knows StoredKey

could impersonate the client. Instead, ClientProof additionally requires the
client to know ClientKey. Therefore, the value of ClientKey' that is calculated
on the server should be immediately and irreversibly (say, by zeroing) deleted
after veriőcation.

Client Authentication to the Server.

1. The client initiates the protocol by sending the Client’s First Message to
the server that contains:

• the client’s user name, and
• a client nonce ClientNonce randomly generated by the client.

2. In response to the reception of a valid message from the client, the server
sends the Server’s First Message to the client that contains:

• a server nonce ServerNonce randomly generated by the server.
• a salt salt randomly generated by the server that enters with the
password as input of a hash function.

• an iteration count IterationCount generated by the server that
indicates how many times the hash function is applied to the salt
and the password to obtain its output.

The concatenation of the client’s and server’s message is AuthMessage

AuthMessage = username, ClientNonce, ServerNonce, salt, IterationCount
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3. The client creates the proof for the server by computing:

1. ClientSignature = HMAC(StoredKey, AuthMessage), and
2. ClientProof = ClientKey ⊕ ClientSignature

where StoredKey can be recomputed by StoredKey = H(ClientKey)

and ClientKey = HMAC(SaltedPassword,′ClientKey′) using the salt and
IterationCount from AuthMessage and the user’s password.

Figure 56: Dependency graph in which each oriented edge is the output of a
one-way function, Cesar (2020)

4. The client sends ClientNonce and ClientProof to the server
5. The server checks the proof ClientProof from the client by

1. recalculating

1. ClientSignature = HMAC(StoredKey, AuthMessage),
2. ClientKey by ClientKey′ = ClientProof ⊕ ClientSignature,
3. StoredKey' = H(ClientKey'), and

2. checking whether StoredKey′ = StoredKey.
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If just ClientSignature were sent, then an attacker that knows StoredKey could
impersonate the client. Instead, ClientProof additionally requires the client to
know ClientKey. Therefore, the value of ClientKey' that is calculated on the
server should be immediately and irreversibly (say, by zeroing) deleted after
veriőcation.

We conclude that instead of the client’s password, sent were

• the client nonce ClientNonce and server nonce ServerNonce,
• the salt salt,
• the iteration count IterationCount,
• ClientProof = ClientKey ⊕ ClientSignature where ClientSignature =

HMAC(Stor edKe y ,AuthMe s sag e ) ,

6. The server computes ServerSignature = HMAC(ServerKey,

AuthMessage)

7. The server sends ServerSignature

8. The client checks ServerSignature from the server by

1. recalculating

1. ServerKey := HMAC(SaltedPassword,′ ServerKey′)
2. ServerSignature′ = HMAC(ServerKey,AuthMessage)

2. checking whether ServerSignature′ = ServerSignature.

We conclude that instead of the server’s key, sent was

• ServerSignature = HMAC(ServerKey, AuthMessage).

Caveat. If an attacker knows

• the StoredKey from the server, and
• the AuthMessage and ClientProof from an authentication exchange,

then he can calculate ClientSignature, thus ClientKey and can impersonate
the client to the server.
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Zero-knowledge Proofs. A Zero-Knowledge Protocol shows how a
claimant can prove knowledge of a secret to a veriőer such that no other
information is disclosed; that is, not a single bit of information, other than
the validity of the claimant’s claim, is disclosed (to anyone, including the
veriőer).

Proof is meant probabilistically, that is, the claim is true beyond any reasonable
doubt. More so, because the proofs are independent of each other, the prob-
ability can be increased as much as desired by increasing their number. The
impossibility to gather information on the secret from that exchanged relies on
the computational difficulty to solve a mathematical problem.

That no information whatsoever is leaked cites the following beneőts:

• The veriőer cannot obtain any information even if she does not adhere to
the protocol; every proof is independent of each other.

• The veriőer cannot impersonate the claimant to a third party: A recording
of the proof does not help in convincing a third party, because the sequence
could have been mutually őxed in advance.

Comparison to Classic Protocols. While claiming to know the secret alone
is unconvincing, the leakage of information during classical protocols in which
a claimant C proves knowledge of a secret to veriőer V, still compromises the
secret as follows:

• If C transmits his password to V, then V and everyone who eavesdropped
this transmission obtains all data to impersonate C from this moment on.

• In a challenge-response protocol, a new challenge is used in every occur-
rence of the protocol. Therefore, V and an eavesdropper can during every
occurrence accumulate new information on the secret so that it eventually
yields to it. For example, if the challenge is the encryption of a plaintext,
and the attacker can choose this plaintext, then this is a chosen-plaintext
attack.

Public Key. To weigh up the advantages and inconveniences between a
zero-knowledge proof and a digital signature by a private key (veriőed by its
corresponding public key):
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• Like every challenge-response protocol, every signature, that is, encryption
of a document by the user’s private key, leaks information. In the extreme
case that the attacker can choose this plaintext, this is a chosen-plaintext
attack.

• However, zero-knowledge protocols require less computation than public-
key protocols. Since digital signatures are practically secure and many
devices, such as smart cards, have little computing power, in practice
digital signatures are more common.

The security of both, most zero-knowledge protocols and public-key protocols,
depends on the unproved assumption that cryptanalysis is computationally
as difficult as a mathematical problem (such as the computation of quadratic
residuosity, the decomposition of an integer into its prime factors, discrete
logarithm, . . . ).

History. The concept of

• Interactive zero-knowledge proofs was introduced in Goldwasser, Micali,
and Rackoff (1989).

• Non-interactive zero-knowledge proofs in Blum, Feldman, and Micali
(2019).

An interactive protocol is turned into a non-interactive one by taking the hash
of the initial statement and then send the transcript to the veriőer (who also
checks that the hash was computed correctly).

Practical protocols were introduced in Fiat and Shamir (1987) and Feige, Fiat,
and Shamir (1988).

The latter introduced so-called sigma protocols in three steps:

1. the claimant commits to a value by sending it to the veriőer,
2. the veriőer chooses a random challenge,
3. the claimant łopensž a combination of the original value and the challenge.

IEEE 1363.2 deőnes zero-knowledge password proof as łan interactive zero-
knowledge proof of knowledge of password-derived data shared between a
prover and the corresponding veriőerž.
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Ali Baba’s Cave. Ali Baba’s cave illustrates the principles behind a zero-
knowledge proof: In a circular cave there is a door invisible from the entrance
that bars any passage if not opened by a password (such as łSesamež). For C to
prove to V that he knows the password without disclosing it:

1. C enters the cave unobserved from V till standing in front of the door’s
left or right.

2. V demands C to return to the entrance coming from the left or right.

Because the probability that C entered the cave on the same side as V asked for to
leave on is one half and all proofs are independent, for example, after 10 proofs
the chance C does not know the password is 2−10, less than a thousandth.

While V is convinced that C knows the password, she cannot convince anybody
else. Even if V recorded the sequence, then it could have been mutually őxed in
advance.

Schnorr’s Sigma Protocol. Schnorr (1991) presented a zero-knowledge
protocol simple enough to run on smart cards. Knowledge of discrete logarithms
is proved, that is,

• the prover P knows an integer x , and
• the veriőer V knows g x mod p

where p is a prime number. For P to prove knowledge of x without revealing
it:

1. P chooses some integer a and sends g a to V .

2. V tosses a coin and sends the result c in 0,1 to P .

3. P sends to V

• either a , whenever c = 0 ,
• or a + x , whenever c = 1 .

This is a zero-knowledge protocol, because

• if c = 0 , then nothing about x is revealed (but only a )
• if c = 1 , then the veriőer learns a+x mod p , but again, as long as nothing
about a is revealed (where we count on the difficulty of computing log

mod p ), neither anything about x is revealed.
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If c = 0 , then no knowledge of x is needed. If c = 1 however, then V can verify
whether P knows a + x by g a+x = g ag x where both values on the right-hand side
are known. Since the probability that c = 1 is 1/2 and all proofs are independent,
after, say, 10 proofs the chance V does not know x is 2−10 < 1/1000 .

Fiege-Fiat-Shamir protocol. The security of the Fiege-Fiat-Shamir protocol
rests on the assumed computational difficulty of extracting square roots modulo
large composite integers whose prime factors are unknown (similar to RSA):

1. An arbiter (a trusted, independent entity) generates a product n of two
large random primes; in practice a number of 1024 bits.

2. The arbiter then generates a public and private key pair for the prover P,
as follows:

1. choose a number v , which is a quadratic residue modulo n ; that is,
x2 ≡ v mod n has a solution, and v−1 mod n exists.

2. let the public key be v , and
3. let the private key be the smallest s such that s 2 ≡ v mod n , that is,
s ≡ v−1/2 mod n .

3. P, the prover,

1. chooses a random number r that shares no divisor with n .
2. computes x ≡ r 2 mod n , and
3. sends x to the veriőer V .

4. V, the veriőer,

1. tosses a coin, and
2. sends the result c in {0,1} to P .

5. P, the prover,

• If c = 0 , then sends her r .
• If c = 1 , then sends her y ≡ r · s mod n .

6. V, the veriőer,

• if c = 0 , then veriőes that x ≡ r 2 mod n , proving that P knows
x1/2 = r .

• if c = 1 , then veriőes that x ≡ y2 · v mod n , proving that P knows
(x/v )1/2.
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If c = 0 , then no knowledge of the private key s is needed. If c = 1 however,
then V can verify whether P can compute (x/v )1/2, thus presumably knows s .
Because the probability that c = 1 is one half and all proofs are independent,
for example, after 10 proofs the chance V does not know x is 2−10, less than a
thousandth.

This is nearly a zero-knowledge protocol, however, care must be taken:

• P should always choose a new r in each round. Otherwise, V could gather
information by manipulating the łrandomž bits.

• This protocol leaks information: If the answer is y = r · s , then this backs
up that v is indeed a square modulo n ; because this is a sound protocol,
after a certain number of iterations, we can conclude that this is true.

Self-Check Questions.

1. How does a challenge-response protocol authenticate a client? By posing a
task to the user that she can only solve if having authentication data.

2. What is a salt? A (randomly) generated number that enters additionally into the
input of a hash function to make its output unique.

3. How does storage of the identiőcation data differ between SCRAM and
CRAM? In CRAM a hash of the client password is stored as is on the server, while
in SCRAM additional data (salt) enters.

4. Name an advantage and inconvenience of zero-knowledge proof in com-
parions to a digital signature. The proof of knowledge does not leak any
information on the user’s private key, while a digital signature requires less

computation.

5. On the computational difficulty of which mathematical function does
the zero-knowledge property of Schnorr’s protocol rely? On the discrete
logarithm.

11.3 Biometric Authentication

Biometric authentication identiőes the user of a computer by

• either physical human characteristic, such as:

ś őngerprints (which have been around for a long time),
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ś face characteristics, such as the relative positions of facial features
such as eyes, nose, lips, jaw, and

ś eye characteristics, such as the pattern of blood vessels in the iris.

• or behavioral human characteristic, such as:

ś typing characteristics such as the speed of keystrokes or the occur-
rence of typos (particularly useful to supplement a log-in dialogue);

ś handwriting characteristics; either static where an image is used, or
dynamic where the traces on a tablet are evaluated by the functions
(of time):

* x and y -coordinates,

* pressure, and

* inclination

ś voice properties (speaker recognition; particularly useful to verify the
identity of telephone customers). Each spoken word is decomposed
into its formants, the dominant frequencies, and then physiological
and behavioral characteristics identiőed:

* the physiological characteristics describe the shape of the per-
son’s vocal tract, that is, of her nose, mouth, jaw, tongue, . . .

* the behavioral characteristics describe the movement of the nose,
mouth, jaw, tongue, . . . that change the accent, tone, pitch, pace,
. . .

Advantages. Comparing authentication by what one is (for example, a
őngerprint) to

• what one knows (for example, a password), the advantages are:

ś that even when known, it requires some effort to replicate, and
ś it cannot be forgotten.

• what one has (for example, a token), the advantages are:

ś does not have to be carried around, and
ś it cannot be lost or stolen.
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Limitations.

• it requires sophisticated hardware, and
• is exposed and thus imitable:

For example, the German Chaos Computer Club (CCC) and its collaborators
have demonstrated time and again the ease of forging őngerprints, for example,
using wood glue and sprayable graphene. The many successful forgery attacks
against biometric identiőcation, such as őngerprints and photo ID, leads to the
conclusion to treat them, instead of a replacement for passwords or smart-cards,
rather

• either as a complement to them, a second factor,
• or even merely as a replacement for a username: publicly known informa-
tion that must be complemented by secret information, such as a password,
to authenticate.

Self-Check Questions.

1. List advantages of authentication by what one knows over what one is:

• stored securely,

• cannot be forged,

• does not require specific hardware.

11.4 Authentication in a Distributed System

In a (distributed) system, only if

• the identity of the system against which to authenticate is guaranteed,
and

• nobody is possibly eavesdropping,

then the secret itself for authentication could be responsibly sent in the clear.
Otherwise, to ensure that the secret for authentication is seen by none other
than possibly the intended recipient, the secret itself must never be sent in the
clear. Instead, both the user and the system convince each other they know
the shared secret (usually a password). That is, the identiőcation data itself is
never sent, but only proof she has access to it beyond any doubt. In practice,
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for a system that is password-based, the most popular approach are challenge-
response systems. A challenge-response protocol poses a task that can be
solved only by a user with additional authentication data: Usually,

• either a cryptographic hash function or the enciphering function of a
symmetric cryptographic algorithm is used whose secret key is shared
among the claimant and veriőer: the veriőer generates a random number,
and the claimant responds with the result of applying the hash function
on that number;

• or a digital signature algorithm where the claimant signs with her private
key a message generated by the veriőer, which the veriőer checks with the
public key.

challenge-response protocol: poses a task that can be solved only
by a user who has the authentication data.

As best practice, even though the secret itself is never sent, it is still advisable to
encrypt all communication to establish authentication, for example, by public-
key encryption.

Other approaches are:

• to reveal the secret only partially, for example in a single-use system uses
the identiőcation data only once. For example, TANs (TransAction Num-
bers) in banking. However, if the identiőcation data can be eavesdropped
and its use for authentication, and thus invalidation, be prevented (for
example, by logging into a forged copy of the bank’s Website), then it can
be used later.

• to send additional secret information via a second-channel. For example,
the sending of an SMS in the mobile TAN (mTAN) system.

single-use system: the identiőcation data is only used once.

second-channel system: the identiőcation data is sent via a second
channel.
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FIDO 2. The FIDO (Fast IDentity Online) Alliance was officially founded in
February 2013 to develop open and license-free industry standards for authenti-
cation on the Internet in arrangement with many companies such as Google or
Microsoft. On December 9, 2014, the őrst standard FIDO v1.0 was released
that speciőes:

• The standard U2F (Universal Second Factor) for hardware and software
for two-factor authentication.

• The standard UAF (Universal Authentication Framework) for the associ-
ated network protocol for password-less authentication.

These standards aim to facilitate authentication on the Internet by using a
user’s

• belongings (what she has), such as security tokens, or
• properties (what she is), such as őngerprint,

instead of

• knowledge (what she knows), such as passwords or personal identiőcation
numbers

That is, no longer needs a user to memorize numerous secure passwords (though
at the cost of the drawbacks discussed in Section 11.1). In comparison with
previous methods of two-factor authentication such as SMS veriőcation codes,
FIDO2 requires the key, such as the smart phone, to be physically near your
computer. FIDO2 (łMoving the World Beyond Passwordsž) consists of the

• W3C Web Authentication Standard (WebAuthn) that allows users to log
into Internet accounts using biometrics, mobile devices and/or FIDO
security keys.

• the Client to Authenticator Protocol (CTAP) of the FIDO Alliance that is
based on U2F. (While, with the release of FIDO2, U2F was renamed to
CTAP1.) CTAP is, among other use cases, for authentication in desktop
applications and web services.

Personal data and private keys are always and exclusively in the hands of the
user and are not stored on public servers. To register via FIDO2 an account on
a server:

1. The server sends a request.

222



2. The FIDO2-key generates a public and a secret key from a secret initial
key and the server address.

3. The public key is transmitted to the server, which stores it, and thus can
uniquely identify the FIDO2-key in the future.

This way, the FIDO2-key can identify itself with an individual key at each
server without the server obtaining information on the key pairs for the same
FIDO2-key on other servers. That is, the FIDO2-key generates a separate key
pair for each service, based on the domain of the other party. For example, Ebay
and Google, cannot determine which of their users use the same FIDO2-key.
In practice, this is an advantage (on the server-side!) to authentication by a
password where a user often uses similar passwords on different servers.

Key. A FIDO2 key (or authenticator or token) is the device by which to
authenticate oneself to a service. It can be

• either an external device to connect to the user’s PC or smart phone via
USB, NFC or Bluetooth; such as

ś a security token to be inserted into a USB port
ś a smart card to be inserted into a card reader,
ś an NFC token (Near Field Communication; a wireless communication
technology to exchange data between closely located devices, that is,
about a decimeter apart; jointly developed by Sony and Philips and
approved an ISO standard in December 2003),

ś Smartphones with Bluetooth-Interface IEEE 802.15.1
ś Bluetooth Tokens (Bluetooth V4.0 Low Energy 2,45 GHz)

• or an internal authenticator. That is, software that uses the crypto chip
of your PC, smart phone or tablet for FIDO2, supported by Windows 10
and Android 7 and above.

Against misuse of the FIDO2 key, it can be additionally secured biometrically
or with a password/PIN. If the stick is lost, then either a registered backup
key is available or one has to identify oneself again by, say, the mobile phone
number in combination with an e-mail address or alike.
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Adaption. A FIDO2 key can either be used instead of a password or in
addition to it, as a second factor. Depending on how a service has implemented
FIDO2, the key suffices for logging in (one-factor authentication) or additionally
entering a password (two-factor authentication) is necessary. FIDO2 one-factor
authentication already is available for Microsoft.com, Outlook.com, Office 365
and OneDrive in the Edge browser. FIDO2 two-factor authentication works, for
example, with Google, GitHub, Dropbox and Twitter.

Kerberos. One solution to the problem of key distribution, that is,

• to secretly pass the same key to all correspondents,
• the many keys needed for a group of correspondents to communicate
securely to each other,

is a central authority who is

• unconditionally trusted by all correspondents, and
• from whom each user can securely obtain a session key for each corre-
spondence,

so that each correspondent has only to protect one key, while the responsibility
to protect all the keys among the correspondents is shifted to the central
authority.

Kerberos (pronounced łkur-ber-uhsž) is named after Cerberus, the three-headed
watchdog at the gate to Hades; while Cerberus authenticates dead souls, Ker-
beros mutually authenticates users over a network:

Authentication and Ticket-Emission Components. Kerberos is a network
protocol (as speciőed in RFC 1510 Ð The Kerberos Network Authentication
Service V5) which permits users to securely authenticate to each other over an
insecure network by a trusted third party, the Key Distribution Center (KDC) .
Once a user is authenticated (Kerberos), she is authorized by access protocols
such as LDAP (Lightweight Directory Access Protocol).

Kerberos: a network protocol to securely authenticate clients to
servers over an insecure network by a trusted third party.
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Key Distribution Center (KDC): stores the symmetrical keys of all
registered users and servers to securely authenticate them.

The Key Distribution Center (KDC) stores the symmetrical keys of all registered
users (be it client or server) to authenticate them as an intermediary third-
party. Due to its critical role, it is good practice to have a secondary KDC as a
fallback.

Kerberos groups users into clients and (service) servers (SSs) that host services
for the clients. The authentication protocol authenticates a client only once so
that she is trusted by all SSs for the rest of her session. This is achieved by

• a ticket, a one-use credential emitted by the KDC to authenticate a client
to a server from which she is requesting a service, encrypted using the
server’s key; it contains the server’s and the client’s ID, the client’s network
address, a timestamp, a lifetime, and a session key encrypted using the
client’s key.

• an authenticator, a credential, encrypted using the session key shared
between the client and the server, that accompanies the ticket to authen-
ticate the client; it contains the client’s ID, the client’s network address
and a timestamp.

The ticket, to further obstruct man-in-the-middle attacks (in comparison to a
mere key authentication),

• (cryptographically) links the granted access, in addition to the client’s ID,
also to her network address, and

• has a timestamp and lifetime.

The KDC is split up into :

• an Authentication Server (AS): To authenticate each user in the network,
the AS stores a symmetric key for each user, be it client or service server
(SS), and which is only known to itself, the AS, and the user.

1. After the AS has authenticated a client by the client’s key,
2. the AS sends her a Ticket-Granting Ticket (TGT) and a session key

encrypted using the client’s key.

• a Ticket-Granting Server (TGS):
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1. After a client has sent her TGT,
2. has been authenticated by the TGS, and
3. requests a service of an SS,
4. the TGS emits a ticket and two copies of a session key, one encrypted

using the user’s TGT session key and the other encrypted using
the SS’s key, to authenticate the client to the SS and secure their
communication.

Service Server (SS): the server that hosts a service the user wants
to access.

Authentication Server (AS): stores for each user (be it client or
server) in the network a symmetric key known only to itself, the AS,
and the user.

Ticket-Granting Server (TGS): generates a session key as part of
a ticket between two users of the network after authentication.

Authentication Protocol. To allow a user (commonly referred to as client)
to securely communicate with another user (commonly referred to as Service
Server or Application Server (SS or AP), the server that hosts a service the
client wants to access) via the KDC, the Kerberos protocol deőnes ten messages,
among them:

Code Meaning

KRB_AS_REQ Kerberos Authentication Service Request
KRB_AS_REP Kerberos Authentication Service Reply
KRB_TGS_REQ Kerberos Ticket-Granting Service Request
KRB_TGS_REP Kerberos Ticket-Granting Service Reply
KRB_AP_REQ Kerberos Application Request
KRB_AP_REP Kerberos Application Reply

1. The client, to authenticate to the AS,

1. authenticates to the authentication server (AS) (KRB_AS_REQ) using
a long-term shared secret (client’s key), and
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Figure 57: The authentication and subsequent ticket granting between a user
and a server mediated by Kerberos server; Bentz (2019)
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2. receives a short-term shared secret (session key) and a (ticket-
granting) ticket from the authentication server (KRB_AS_REP).

2. The client, to authenticate to the SS via the AS,

1. authenticates to the AS using her TGT, and
2. requests (KRB_TGS_REQ) a ticket from the TGS (KRB_TGS_REP) that

contains a session key between the client and the SS.

3. The TGS, to create the ticket,

1. generates a client-to-server session key,
2. encrypts, using the key of the client, the session key,
3. encrypts, using the key of the SS, the client-to-server ticket that

contains the client’s ID, the client’s network address, a timestamp, a
lifetime, and the session key, and

4. sends the results of both encryptions to the client.

4. The client, to authenticate directly to the SS:

1. decrypts the client-to-server session key using her own key, and

2. sends to the SS (KRB_AP_REQ and KRB_AP_REP)

• the client-to-server ticket, encrypted using the SS’s key, and
• an authenticator that contains the client’s ID and a timestamp
N , encrypted using the client-to-server session key.

5. The SS

1. retrieves the client-to-server session key by decrypting the client-to-
server ticket using his own key,

2. decrypts, using the session key, the authenticator and checks it. If
the check succeeds, then the server can trust the client.

3. The SS authenticates to the client by sending the client N + 1 , the
timestamp of client’s authenticator incremented by 1 , encrypted
using the client-to-server session key.

6. The client decrypts, using the client-to-server session key, the incremented
timestamp and checks it. If the check succeeds, then the client can trust
the server and can start issuing service requests to the server.

The server provides the requested services to the client.
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History. The Kerberos protocol is based on the Needham-Schroeder authen-
tication protocol, invented by Roger Needham and Michael Schroeder in 1978,
and designed to securely establish a session key between two parties on an
insecure network (the Internet, for example) by a symmetric-key algorithm.

MIT developed Kerberos to protect network services provided by Project Athena
that aimed at establishing a computing environment with up 10,000 workstations
on varying hardware, but where a user could on every workstation access all őles
or applications in the same user interface; similar to what a browser achieved
today. Versions 1, 2 and 3 were only used at MIT itself. Version 4 employed the
Data Encryption Standard encryption algorithm, which uses 56-bit keys, and
was published in 1989.

In 2005, the Internet Engineering Task Force Kerberos working group introduced
a new updated speciőcations for Kerberos Version 5, and in 2007, MIT formed
the http://www.kerberos.org for continuation of development.

MIT Kerberos is the reference implementation that supports Unix, Linux,
Solaris, Windows and macOS, but other commercial and non-commercial
implementations exist: Most notably, Microsoft added a slightly altered version
of Kerberos V5 authentication in Windows 2000.

Kerberos originally used the DES algorithm for encryption and the CRC-32,
MD4, MD5 algorithms for hashing, but nowadays Kerberos implementations
can use any algorithm for encryption and hashing.

Weak Spots.

• Single point of failure in the permanent availability of the key distribution
center (KDC), which can only be alleviated by fall-back KDCs, referred
to as łKerberos slave serversž which synchronize their databases from the
master Kerberos server.

• The tickets are managed locally on the client computer in the /tmp direc-
tory and only deleted after their expiration, thus, in multi-user system,
risk to be stolen.

• To avoid replay attacks (where the attacker uses recorded data), the RFC
requires synchronizing all clocks (no more than 5 minutes difference and
preferably achieved by the Network Time Protocol; NTP) of the involved
parties because of the period of validity
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• The administration protocol is not standardized and differs between
implementations, but password changes are described in RFC 3244.

Protocol Steps. Let us detail each step from logon and authentication to
service authorization and request

Figure 58: Kerberos Messages exchanged between the client and the AS = Au-
thentication Server, TGS = Ticket-Granting Server and SS = Service
Server (Omerta-ve (2012))

Client Logon.

1. A user enters a username and password on the client.
2. The client applies a one-way function (mostly a hash function) on the

entered password, and this becomes the secret key of the client.

Client Authentication.

1. The client sends a cleartext message to the Authentication Server (AS)
asking for services on behalf of the user (KRB_AS_REQ).

2. The AS checks whether the client is in his database.
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3. If she is, then the AS sends back the following two messages to the client:

a. Client/Ticket-Granting Server (TGS) Session Key, encrypted using
the secret key of the client.

b. Ticket-granting Ticket (TGT), encrypted using the secret key of the
TGS, and which includes the

• client ID,
• client network address,
• ticket validity duration, and
• the Client/TGS Session Key.

4. Once the client receives messages A and B, she retrieves the Client/TGS
Session Key by decrypting message A using her secret key.

The Client/TGS Session Key is used for further communication with TGS. At
this point, the client has enough information to authenticate herself to the
TGS.

We observe that neither the user nor any eavesdropper on the network can
decrypt message B, since they do not know the TGS’s secret key used for
encryption.

Client Service Authorization.

1. To request services, the client sends the following two messages C and D

to the TGS:

c. Composed of the

• TGT (message B), and
• the identiőcation number (ID) of the requested service.

d. Authenticator, encrypted using the Client/TGS Session Key, and which
is composed of the

• client ID, and
• timestamp

2. Once the TGS receives messages C and D, he retrieves the Client/TGS
Session Key by
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1. retrieving message B out of message C, and
2. decrypting message B using the TGS secret key.

3. The TGS

1. retrieves the client ID and its timestamp by decrypting message D

(Authenticator) using the Client/TGS Session Key, and

2. sends the following two messages E and F to the client:

e. Client/Server Session Key, encrypted using the Client/TGS Ses-
sion Key.

f. Client-to-Server ticket, encrypted using the Service Server ’s
(SS) secret key, which includes the

• client ID,
• client network address,
• ticket validity duration, and
• Client/Server Session Key.

At this point, after the client receives messages E and F from the TGS, the client
has enough information to authenticate herself to the SS.

Client Service Request.

1. The client connects to the SS and sends the following two messages F and
G:

f. from the previous step (the Client-to-Server ticket, encrypted using the SS's secret

g. a new Authenticator, encrypted using the Client/Server Session Key, and which includes

- client ID, and

- timestamp.

2. The SS

1. retrieves the Client/Server Session Key by decrypting the ticket using
his own secret key,

2. retrieves the Authenticator by decrypting it using the session key,
and
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3. authenticates to the client by sending the following message H to the
client :

h. Timestamp found in the client’s Authenticator plus 1 , encrypted
using the Client/Server Session Key.

3. The client checks whether the timestamp is correctly updated by decrypt-
ing Message H using the Client/Server Session Key. If so, then the client
can trust the server and can start issuing service requests to the server.

4. The server provides the requested services to the client.

Self-Check Questions.

1. What does FIDO2 achieve? Standardizes authentication on the Internet by
what one has, such as a USB key or smart phone, instead of what one knows,

such as a password.

2. Which parties are involved in establishing a Kerberos ticket granting
ticket? The client, the authentication server and the ticket granting server.

3. What is the single point of failure in a Kerberos network? The key distribu-
tion center.

11.5 Smart cards

A smart card has the form of a credit card, but contains a microprocessor to
securely store and process information. (In contrast, a magnetic-stripe card only
stores little information (around < 100 bytes) but cannot process it.) Security
algorithms are implemented on the card so that only properly authorized parties
can access and change this data after they have authenticated themselves.

History. The őrst smart card was invented in 1973. While it initally consisted
only of read and write memory, a microprocessor was added in 1976. In 1981,
the French state telephone company introduced it to store a pre-paid credit,
which was reduced when calls were made. As memory capacity, computing
power, and data encryption capabilities of the microprocessor increased, smart
cards are graudally replacing cash, credit or debit cards, health records, and
keys.
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Components.

• Random-Access Memory (RAM) reads and writes data, but only stores
information as long as there is electricity and not permanently.

• Read-Only Memory (ROM): No information can be written, but it can be
stored permanently. The Operating System and encryption algorithms
are stored. For improved security, the ROM is buried in lower layers of
silicon.

• Electrically Erasable Programmable Read Only Memory (EEPROM)
stores information permanently, but is slow and one can only read/write
to it a limited number of times (around 100 000 times). Typically, a
smart card has 8K ś 128 kByte of EEPROM. For improved security, the
EEPROM is shielded in a metal coating.

• The Processor used to be an 8-bit microcontroller, but increasingly more
powerful 16 and 32-bit chips are being used. A coprocessor is often
included to improve the speed of encryption computations.

Most of the processing in smart cards is dedicated to cryptographic operations;
in particular, encryption between on-chip components To function, a smart
card needs external power and clock signal provided through contact with a
smart card reader (that usually can write as well). The operating system on
most smart cards implements a standard set of control commands such as those
standardized in ISO 7816 or CEN 726.

There is a single Input/Output port controlled by small data packets called
APDUs (Application Protocol Data Units). Because data ŕows only at around
9600 bits per second and half-duplex, that is, the data can either ŕow from the
reader to the card or from the card to the reader, but not simultaneously in
both directions, the smart card can only be read out slowly, thus complicating
attacks. The reader sends a command to the smart card, the card executes
the command and returns the result (if any) to the reader; then waits for the
next command. The smart card and the reader authenticate each other by a
challenge-response protocol using a symmetric key encryption:

1. The card generates a random number and sends it to the reader,
2. The reader encrypts the number with a shared encryption key and returns

it to the card.
3. The card compares the returned result with its own encryption.
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(and possibly with interchanged roles). Once mutually authenticated, each
exchanged message is veriőed by a message authentication code (HMAC)
which is calculated using as input the message, encryption key, and a random
number.

SIM cards. For example, the UICC (Universal Integrated Circuit Card) or
Universal Subscriber-Identity Module (USIM) is a smart card used in mobile
phones in GSM and UMTS networks. It ensures the integrity and security of
all kinds of personal data, and it typically holds a few hundred kilobytes. The
Subscriber Identiőcation Modules (SIM) is an application in the UICC that
stores the subscriber’s information to authenticate her with the network:

• mobile phone service subscriber’s identifying key,
• the subscriber’s subscription information, and
• subscriber’s preferences, text messages, contacts, and last dialed numbers;
therefore has a lager EEPROM than credit cards.

Advantages. Comparing authentication by what one has (for example, a
smart card) to

• what one knows (for example, a password), the advantages are:

ś cryptographic keys do not need to be remembered and thus can be
arbitrarily complex;

ś cryptographic keys cannot be acquired over distance;

• to what one is (for example, the őngerprint), the advantages are:

ś less sophisticated and expensive hardware (such as an iris scanner),
and

ś cryptographic keys are stored securely on a device; thus avoids
forgeries with őngerprints or vein scanners; In particular, storing
keys on a smartcard, that is accessed by a USB reader with its own
keyboard, instead of a digital őle has the advantage that reading the
keys from a smart card:

* is much more difficult than from a őle (stored, say, on a USB
stick or hard disk), and
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* leaves fewer traces: it never reveals the key, but provides only the
information derived from it that was asked for, and it is immune
to keyloggers that record keystrokes.

Self-Check Questions.

1. List advantages of authentication by what one knows over what one has:

• does not have to be carried around,

• it is transparently stored,

• cannot be lost, stolen or extorted,

2. List disadvantages of authentication by what one knows over what one
has or is:

• must not be forgotten, and therefore is limited in its complexity,

• can be acquired over distance.

11.6 Identity and Anonymity

Anonymity:. Anonymity comes from the Greek word anonymía, łname-lessž,
and means łnamelessnessž. Colloquially, it means that a person’s identity is
unknown. More abstractly, that an element (for example, a person or a computer)
within a set (for example, a group or network) is unidentiőable (within this
set).

Surőng. Protecting one’s identity from being disclosed is not only necessary
for someone who acts against the law, for example, when attempting to exploit
a computer in a network, but also as a precaution to a possible abuse; for
example, to amass data of the user’s online habits to build a proőle for targeted
advertising.

Countermeasures are

• a proxy server between the user and the Internet, that, among other taks
such as caching frequently used data and restricting access to some users,
can hide IP addresses (which uniquely identiőes a computer in a network),
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• the Tor project which encrypts all the user’s traffic and routes it through
many relays, which do not know of each other,

• Virtual Private Networks, such as OpenVPN or IPsec, which encrypts all
the user’s traffic and routes it towards a central server.

However, these countermeasures involve inconveniences, such as an involved
setup and slower data transfer. As a less compromising practical measure is
to adapt best practices for protecting one’s privacy on the world wide web, for
example, by using the Firefox browser with add-ons that őlter out

• trackers (for example, by cookies),
• referrers (the URL of the previous webpage from which a link was fol-
lowed), and

• requests to centralized content delivery networks (CDNs),

such as

• uBlock Origin,
• Privacy Badger

• Don't track me Google, and
• Decentraleyes.

Datasets. Also, there is a need for anonymised datasets, for example:

• for hospitals to release patient information for medical research but with-
hold personal information.

• to verify whether a password has leaked, for example, by the I Been Pwned

web form by Troy Hunt that contains over half a billion leaked passwords.
This prevents Credential Stuffing where usernames and passwords from
compromised websites are entered into website forms until compromised
user accounts are found; an attack likely to succeed, because

ś users use the same password on different websites.
ś websites often limiting the number of login tries by a challenge login
request, potentially enabling brute force attacks by using common
passwords for a given user,

ś some websites do not hash passwords,
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ś others do, but their database could leak and the password hashes be
reversed offline by GPUs or FPGAs using a dictionary of passwords
(especially fast for the MD and SHA family of hash algorithms, less
so for the intentionally slow ones like Argon2, PBKDF2 and BCrypt),

For example, the I Been Pwned web form transmits only the őrst őve digits of
the SHA-1 of the password to compare, thus leaking little personal information.
This achieves what is generally called k-Anonymity where a data set has for each
record k − 1 identical copies.

Identity theft:. Identity, from Late Latin identitas, from Latin idem, same,
and entitas, entity, are the characteristics by which someone or something
is uniquely recognizable, that is, held by no other person or thing. Identity
theft is the assumption of another person’s identity, usually another person’s
name or other personal information such as her PINs, social security numbers,
driver’s license number or banking details, to commit fraud, for example, to
open a fraudulent bank or credit card account to receive loans. With the advent
of digitalized records and (the anonymity on) the Internet, identity theft has
become more and more common.

For example, in SIM-card swapping, the attacker obtains a victim’s mobile-
phone number to assume, temporarily, her online identity. The attacker initially
obtains personal data about the victim, usually her name, mobile phone number
and postal address. He then exploits that mobile operators usually offer their
customers a new SIM card, for example, after the phone is lost, onto which
the previous phone number is transferred. The attacker now pretends to be
the actual customer to the mobile phone operator, for example, by phone in
the customer service center (where often the date of birth and postal address
suffice to identify oneself if no customer password was agreed on signing the
contract). For example, it suffices to know the mobile phone number to reset
the password of an Instagram account.

Self-Check Questions.

1. What does anonymity of a computer in a network mean? That the identity
of the computer in a network is unknown.
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2. How does the Tor network achieve anonymity? By onion routing in which
every node only knows its predecessor and successor, and in which all traffic

between both endpoints is indecipherable to every node but the endpoints.

Summary

Identification is telling a computer who the user is, usually by her user (or
account) name. This is followed by authentication, the veriőcation of the user’s
identity, that is, convincing a computer that a person is who he or she claims to
be. To authenticate, the user prove her identity by information that

• only she knows such as a password,
• only she has, hardware such as a smart card,
• only she is described by (what she is), such as biometric identiőers (őn-
gerprint, . . . ).

Each method with its proper advantages and disadvantages. In particular, pass-
words, the most common method, have to be memorizable, which in practice
weakens them. The FIDO2 standard aims at replacing (or at least complement-
ing) them by hardware and biometric authentication.

Instead of revealing the secret itself when authenticating, it is safer to prove
only its knowledge. In a challenge-response authentication protocol, the success-
ful response to the challenge requires its knowledge (such as encryption and
decryption of random data by the secret key). In a zero-knowledge protocol, in
contrast to a challenge-response protocol, no information whatsoever can be
won on the secret key provided the computation of a mathematical function is
assumed infeasible.

The Kerberos protocol mediates between users and servers by a central server
that stores symmetric keys of all parties; then instead of the parties mutually
proving the knowledge of their symmetric keys, it creates for each correspon-
dence a session key of limited validity.

Questions

• Which protocol is not a challenge-response authentication protocol? Digest-
MD5, CRAM, TAN, SCRAM
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• On the computational difficulty of which discrete mathematical function
does Schnorr’s protocol rely on? logarithm, quadratic root, exponential,
square?

• Which data does not enter the computation of the salted password in
SCRAM? IterationCount, password, salt, current time

• How many minutes difference does Kerberos allow for between the differ-
ent authenticating parties times? 1,2,5,10

• How many times does a client encrypt a TCP packet before sending it
to the server on the Tor network? as many as there are nodes, twice as
many, once, twice.

Required Reading

Read Bentz (2019) to get an idea how Kerberos works and Quisquater et al.
(1989) for zero-knowledge proofs.

Further Reading

Read Schnorr (1991) to understand a basic zero-knowledge protocol.

Have a look at Menon-Sen et al. (2010) to get acquainted with the format
of Request for Comments, in particular, thoroughly understand the SCRAM
protocol.
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12 Cryptanalysis Ð how to break encryption

Study Goals

On completion of this chapter, you will have learned . . .

• . . . against which cryptographic attacking scenarios to protect.
• . . . which additional (physical) information leaks (such as computation
time) can be exploited (side-channel attacks).

• . . . how to estimate how long an exhaustive key-search (brute-force attack)
takes.

• . . . how to speed up such an attack by testing likely candidates őrst
(rainbow tables).

• . . . how to break monoalphabetic substitution ciphers by frequency analy-
sis.

• . . . how to break a block cipher with little diffusion by differential crypt-
analysis.
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Introduction

Let us recall that the preőx Crypto-, comes from Greek kryptós, łhiddenž and
analysis from the Greek analýein, łto untiež: the breaking of ciphers, that is,
recovering or forging enciphered information without knowledge of the key.

Cryptanalysis: Recovering or forging enciphered information with-
out knowledge of the key.

History delivers plenty cryptanalytic success-stories; for example, among many
others, the decryption of the German rotor machine Enigma by the Polish and
British forces.

• During World War I:

ś British cryptanalysis of a telegram from the German foreign minister,
Arthur Zimmermann, to the German minister in Mexico City, Hein-
rich von Eckardt, enticing Mexico to ally with Germany, enkindling
the U.S.’s entry into war on the side of the Allies.

ś French cryptanalysis of the ADFGVX cipher used by the German forces
within a month just before the German army entered in Paris in 1918
(however, still too late to save much).

• During World War II:

ś Polish and British cryptanalysis of

* the German rotor machine Enigma, and

* the telegraphers Lorenz-Schlüsselmaschine and Siemens &
Halske T52).

ś The U.S. Army’s Signal Intelligence Service’s (SIS) cryptanalysis
of the Japanese rotor machines . The pivotal Battle of Midway for
the naval war in the Paciőc was won by awareness of the Japanese
attack on the Aleutian Islands being a diversionary maneuver and
the Japanese order of attack on Midway.

ś In World War II the Battle of Midway, which marked the turning point
of the naval war in the Paciőc, was won by the United States largely
because cryptanalysis had provided Admiral Chester W. Nimitz with
information about the Japanese diversionary attack on the Aleutian
Islands and about the Japanese order of attack on Midway.
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• During a debate over the Falkland Islands War of 1982, a member of
Parliament, in a now-famous gaffe, revealed that the British were reading
Argentine diplomatic ciphers with as much ease as Argentine code clerks.

• Cryptanalytic feats were achieved also by the defeated powers, but no
success-stories to be told.

While we will present some established principles of cryptanalysis, in practice the
cryptanalyst’s intuition and ability to recognize subtle patterns in the ciphertext
were paramount, but difficult to convey. Today, however, cryptanalysis is based
on mathematics and put into practice by efficient use of extensive computing
power.

12.1 Frequency Analysis

Cryptanalysis of single-key ciphers relies on patterns in the plaintext carrying
over to the ciphertext. For example, in a monoalphabetic substitution cipher
(that is, each alphabetic letter a, b, . . . in the plaintext is replaced, independently
of its position, by another alphabetic letter), the frequencies of the occurrences
of the letters in the plaintext alphabet are the same as those in the ciphertext
alphabet. This can be put to good cryptanalytic use by

1. recognizing that the cipher is a monoalphabetic substitution cipher and,
2. giving the likeliest candidates of plaintext letters.

Latin Alphabet. A substitution by any permutation of the letters of the
alphabet, such as,

A B . . . Y Z
↓ ↓ . . . ↓ ↓

E Z . . . G A

has
26 · 25 · · · 1 = 26! > 1026

keys, so a brute-force attack is computationally infeasible. But it violates the
goals of diffusion and confusion: If the key (that is, the given permutation of the
alphabet) exchanges the letter α for the letter β , then there’s
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• bad confusion because the substitution of β in the key implies only the
substitution of each letter β in the ciphertext,

• bad diffusion because the substitution of a letter α in the plaintext implies
only the substitution of the corresponding letter β in the ciphertext.

In fact, the algorithm allows statistical attacks on the frequency of

• letters,
• bigrams (= pairs of letters) and
• trigrams (= triples of letters).

in English For example,

• the most frequent letter in English is e,
• the most frequent bigram in English is th, and
• the most frequent trigram in English is the.

Thus substituting

• the most frequent letter from ciphertext to the most frequent letter in
English (= e),

• the most frequent bigram from coded text to the most frequent bigram in

English (= th), . . .
• the most frequent trigram of the ciphertext to the most frequent trigram in

English (= the), . . .

is a good starting point to decipher the text: The more ciphertext, the more
likely that this substitution coincides with that the text was enciphered by.

Example. For example, using these frequencies on the ciphertext

ACB ACBGA ACSBDQT

gives

THE THE** TH*E***

for yet to be deciphered letters marked by *. By the restrictions of English
vocabulary and sentence structure, yielding
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THE THEFT THREAPS

As an exercise, Dear reader, build a short English sentence with common letter
frequencies, ask a friend to encrypt it and try your hands at cryptanalyzing
it!

Homophones.

Homophones: Multiple cipher symbols for the same plaintext letter.

To hide the frequencies of the alphabetic letters, one approach is to use homo-
phones, a number of ciphertext symbols for the same alphabetic plaintext letter,
chosen in proportion to the frequency of the letter in the plaintext; for example,
twice as many symbols for E as for S and so forth, so that each cipher symbol
occurs on average equally often in the ciphertext. However, other frequencies
in the plaintext (partially) still resist encryption (and ease cryptanalysis), such
as digraphs: TH occurs most often, about 20 times as frequently as HT, and so
forth.

Self-Check Questions.

1. What is a monoalphabetic substitution cipher? Each alphabetic letter in the
plaintext is replaced, independently of its position, by another alphabetic letter.

2. Which patterns preserves a monoalphabetic substitution cipher? Among
many others, (single) letter, bigram and trigram frequencies.

3. Which patterns preserves a substitution cipher using homophones? The
frequencies of pairs of letters (bigrams), triples (trigrams), . . .

12.2 Brute-force attacks

In practice the security of a cipher relies foremost

• on its resistance to the most efficient (known!) methods of cryptanalysis
(the quest for an Ð overlooked?! Ð back door into the system), and
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• the computational effort needed to check all keys (a brute-force attack).
Given the time and computational resources, the right key will eventually
be found: If only the ciphertext is available, say, that of a block cipher,
then a brute-force attack would decrypt a block of the cipher with one
key after another until a block of meaningful text was produced (although
not necessarily of the original plaintext). In this case, proceed likewise
for the next block.

In contrast to single-key cryptography whose cryptanalysis exploits statistical
patterns, by its reliance on computationally difficult mathematical problems
(that is, whose runtime grows exponentially in the bit-length of the input), the
cryptanalysis of two-key cryptography is that of computational mathematics: to
őnd an algorithm that quickly computes the solutions of the difficult mathemati-
cal problem. Ideally, one whose runtime is polynomial in the number of input
bits. However, in practice, for example, for

• the prime factor decomposition used in RSA or
• the discrete logarithm in the Diffie-Hellman key exchange,

algorithms whose runtime grows slower than exponentially in the number of
input bits (sub-exponential) are known, but none with polynomial runtime.

Comparison of Computational Efforts. ECC, elliptic curve cryptography, is
becoming the new standard because its cryptographic problem (the logarithm
over a őnite elliptic curve) is (from what we know) computationally more difficult
than that of RSA (the factoring in prime numbers) or DH (the logarithm over the
multiplicative group of a őnite őeld). Therefore, small keys for the ECC achieve
the same level of security as large keys for the RSA or DH. As an example, the
security of a 224 bits key from the ECC corresponds to that of a 2048 bits key
from the RSA or DH. This factor in reducing key sizes corresponds to a similar
factor in reducing computational costs. Regarding usability,

• an ECC public key can be shared by spelling it out (it has 56 letters in
hexadecimal notation,

• while a public key for RSA or DH has to be shared in a őle (which is for
convenience referred to by a őngerprint).

Let us compare the cryptographic problem behind ECC to that of RSA and DH:
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Exponential and Generic Logarithm. Both groups, the multiplicative group
of a őnite őeld and the group of a őnite elliptic curve, are finite cyclic groups,
that is, generated by an element g of finite order n . Mathematically speaking,
they are equal to a group of type

G = ⟨g ⟩ = {g 0, g 1, g 2, ..., g n−1} ≃ {0,1,2, ...,n − 1} = ℤ/nℤ

However, one way of this identiőcation, from ℤ/nℤ to G , is a lot faster than
the other way around:

Exponential. Given a generator g in G , the identiőcation of ℤ/nℤ with G

for x ↦→ g x , the exponential

exp: ℤ/nℤ → G

is quickly computed in every commutative group G : Given d in 1, ...,n − 1 , to
calculate g d , expand d in binary base

d = d0 + 2d1 + 22d2 + · · · + 2mdm

for d0, . . . , dm in 0,1 and calculates by multiplying by 2 successively g 2 , . . . ,
g 2m}. So

g d = g d0+2d1+2
2d2+···+2mdm = g d0g 2d1g 2d2 · · · g 2mdm .

That is, we calculate g d in ≤ 2 log2 n group operations.

Example. For G the group of points of an elliptic curve, P in G , and d in ℕ

we calculate successively 2P , 22 = 2 · P , 23P = 2 · 2 · 2P . Let i0, i1, . . . be the
indices of the binary digits . . . that are different from 0 . So

dP = 2i0P + 2i1P + · · ·

Generic Logarithm. Given a g generator in G , the computation of the
reverse identiőcation, the logarithm

log : G → 𝔽p ,

that is, given y in G , calculate x in 0, ...,n − 1 such that y = g x is usually hard:
By Shoup’s theorem in Shoup (1997), every generic algorithm, that is, using

247



only the operations of the group, takes at least n1/2 operations (of the group)
to calculate the logarithm.

A generic algorithm that achieves this speed (except a 2 factor) is the Baby

Step, Giant Step (or Shanks algorithm): Given h in ⟨g ⟩ , to calculate d in
{0,1, ...,n − 1} such that h = g d :

1. Put m := ⌈
√
n − 1⌉ (where ⌈·⌉ indicates the smallest integer above or equal

to the real number · ).
2. Calculate α0 := g 0 , α1 := gm , α2 := g 2m , . . . , αm−1 := g (m−1)m}. (The

giant step)
3. Calculate β0 := h , β1 := hg −1 , β2 := hg −2 , . . . , hg −(m−1) until you őnd

some βi that equals some α j from the above list. (The baby step)
4. If βi = α j , then the result is d = jm + i .

This algorithm works, because:

• Every d in {0, ...,m2 − 1} is by division with remainder by m of the form
d = qm + r for q ,r < m ; so every h element in ⟨g ⟩ is of the form g qm+r = h
;

• If βi = α j , then gm = hg −i , hence g jm+i = h .

Note. For elliptic curves, Pollard’s ρ -algorithm is slightly faster.

Speciőc Logarithms. This estimation of the operations necessary to com-
pute the logarithm of a group, that is, which uses only the operations of the
group, applies to generic algorithms. However, specific algorithms, that is, those
that use group-speciőc properties (such as the units of a őnite őeld or that of an
elliptic curve), may use less.

For example, for the multiplicative group of a őnite őeld, there are indeed faster
algorithms (called sub-exponential) to calculate the prime factors of a product
and the logarithm. They are based on Index Calculus which makes use of the
properties of this speciőc group. For example, for the cryptographic problems
of RSA and Diffie-Hellman on the multiplicative group of a őnite őeld, that
is,

• or the factoring of an integer in its prime factors,
• or the logarithm of the multiplicative group of a őnite őeld,
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there are indeed faster algorithms (called sub-exponential). They are based on
Index Calculus which makes use of the properties of this speciőc group. The
fastest known algorithm is the General Number Field Sieve; see A. K. Lenstra et
al. (1993) for the computation of the prime factors and Gordon (1993) for that
of the logarithm.

Its complexity is sub-exponential, roughly for large n , the number of group
operations is

2n
1/3 (C+o (1)) (log n)2/3

where C = 64/9 and o (1) means a function f over ℕ such that f (n) → 0 to n∞
.

In contrast, all known algorithms for the ECC cryptographic problem, that is,
calculating the logarithm over a őnite elliptic curve, are generic algorithms.
For these generic algorithms, by Shoup’s Theorem, the complexity 2n/2 in the
number of bits n of input is as small as possible. The fastest algorithm at present
is Pollard’s ρ -algorithm, which has a roughly exponential complexity of

2n/2+C

where C = log2(π/4)1/2 ≃ −0.175 .

Minimal Key Length. World’s fastest supercomputer, IBM’s Summit (taking
up 520 square meters in the Oak Ridge National Laboratory, Tennessee, USA)
has around 150 petaŕops, that is, 1.5 · 1017 ŕoating point operations per second.
The number of ŕops needed to check a key depends for example, on whether
the plaintext is known or not, but can be very optimistically assumed to be
1000. Therefore, Summit can check approximately 1.5 · 103 keys per second,
and, a year having 365 · 24 · 60 · 60 = 31536000 ≈ 3 · 108 seconds, approximately
4.5 · 1011 keys a year.

To counter the increasing computing power, one prudently applies a Moore’s
Law that stipulates that computing power doubles every other year. Therefore,
every twenty years computing power increases by a factor 210 = 1024 ≈ 103.
Therefore, to ensure that in, say, sixty years, a key not surely be found dur-
ing a yearlong search by world’s fastest supercomputer at least 4.5 · 1020 key
combinations have to be used.

For a key of bit length n, the number of all possible keys is 2n . If n = 80, then
there are are 280 ≈ 1.2 · 1024 possible key combinations. While this number is
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sufficient for now, the probability for the key to be found during a yearlong
search by world’s fastest supercomputer being around 1/250, the projected
fastest super computer in twenty years will likely őnd it in half a year. Instead,
to be safe in 40 years, a minimal key length of 112 is recommended.

Comparison of Key Sizes. This Table from A. Lenstra and Verheul (2001)
compares the key sizes in bits to a security level comparable between

• a symmetrical algorithm like the AES,
• an asymmetric algorithm by elliptic curves, and
• an asymmetric algorithm such as Diffie-Hellman or RSA.

Symmetric Key Asymmetric Elliptic Key Classic Asymmetric Key

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360

The numbers in the table are estimated by the fastest known algorithm to solve
the cryptographic problem: Given an input key with n bits,

• for the symmetric algorithm AES , the fastest known algorithm is to try
out all possible keys, whose complexity (= the number of operations) is
2n ,

• for the logarithm over a őnite elliptic curve, the fastest algorithm today is
the generic baby step, giant step algorithm (or, slightly faster, Pollard’s ρ
-algorithm) whose complexity is roughly 2

√
n , and

• for classic asymmetric algorithms, either RSA or Diffie-Hellman , on a
őnite őeld, the fastest algorithm is the General number field sieve whose

complexity, roughly, for large n is 22
3√n log(n)2/3 .

In practice, the smaller ECC keys speed up cryptographic operations by a
factor of > 5 compared to RSA and Diffie-Hellman (in addition to facilitating
their exchange among people and saving bandwidth). However, there are also
disadvantages to ECC compared to RSA, for example: its signature algorithm
depends on the generation of an additional ephemeral key pair by a random
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number generator that, if its output is predictable or repetitive, reveals the
private signature key!

• ECC is newer, so:

ś less proven than the RSA, and
ś some implementations are still patented (for example, by Certicom).

Self-Check Questions.

1. Which minimal key size is currently recommend as secure for RSA and
Diffie-Hellman?

□ 512 bits
□ 1024 bits
□ 2048 bits

□ 4096 bits

2. Which minimal key size is currently recommend as secure for Elliptic
Curve Cryptography?

□ 128 bits
□ 256 bits

□ 512 bits
□ 1024 bits

3. Which minimal key size is currently recommend as secure for AES?

□ 112

□ 128 bits
□ 256 bits
□ 1024 bits

12.3 Rainbow Tables

Rainbow tables are a method of password cracking that compares a password
hash to precomputed hashes of the most likely passwords; a time-memory
trade-off: more memory for less computation.
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Lookup Table as Time-Memory trade-off. A lookup table is a data structure,
usually an array, used to replace a runtime computation by an array indexing
operation. That is, a value is őrst computed and then looked up to save runtime,
because retrieving a value from memory is usually faster than computing it. For
example, values of a common mathematical function, say the logarithm, can be
precomputed to look up a nearby value be from memory.

Rainbow Tables. A rainbow table is a table of cryptographic hashes of the
most common passwords. Thus, more likely passwords are revealed sooner.
The generation of the table depends on

• the character set used, the password length, the number of table entries
and so forth.

• the cryptographic hash functions.

Common cryptographic hash algorithms such as MD4/5, SHA . . . are fast; thus
they are unsuitable for password creation because they are vulnerable to brute-
force attacks. For example, MD5 as a cryptographic hash function is designed to
be fast and thus lends itself towards a rainbow table attack, while hash functions
such as PBKDF1, PBKDF2, bcrypt, scrypt and the recent Argon2 were designed
to prevent this kind of attack by being:

• deliberately slow, such as bcrypt,
• deliberately memory hungry, such as scrypt.

A rainbow attack can however most effectively be prevented by making the
used hash function unique for each password. This is achieved by adding a
salt, an additional unique, usually random, argument.

Meet-in-the-Middle Attack on DES. The key size of the symmetric industry
standard cryptographic algorithm DES was merely 56 bits, so little that it ceded
to brute-force attacks shortly after its vetting. Therefore, a twofold encryption
for two different keys was thought to effectively double the key size to 112

bits. However, the meet-in-the-middle attack by Diffie and Hellman trades off
memory for time to őnd the key in only 2n+1 encryptions (using around 2n

stored keys) instead of the expected 22n encryptions: Assume the attacker knows
a plaintext P and its ciphertext C , that is,

C = EK′′ (EK′ (P)),
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where E denotes the encryption using K′ respectively K′′ . The attacker:

1. computes EK(P) for all possible keys K and stores the results in memory.
2. decrypts the ciphertext by computing DK(C) for every K , and
3. looks for matches between these two sets, whose keys likely match those

used to encrypt P to C .

Therefore, triple encryption, 3DES was necessary to effectively double the key
size and harden decryption for the computing power to come.

Self-Check Questions.

1. Why is encrypting twice for different keys less secure than encrypting
thrice? Because the meet-in-the-middle attack uses a memory-time trade-off to
find the used key of n bits in only 2n+1 encryptions.

12.4 Known/Chosen Plain/Ciphertexts

Asymmetric cryptography uses mathematical methods, more exactly modular
arithmetic, to encipher. The security, the difficulty of deciphering, of asymmetric
cryptography is based on computational mathematical problems that have
been recognized as difficult for centuries. Symmetric cryptography (like hash
functions) uses more artisanal methods of ciphering, which aim to maximize
diffusion and confusion, mainly by iterated substitution and permutation. The
security of symmetric cryptography is simply based on its resistance to years of
ongoing attacks. That is, it is satisfactory from a practical standpoint, but less
so regarding the struggle for eternal truths.

Perfect Security. Plaintexts generally do not occur with the same proba-
bility. It depends, for example, on the language, jargon or protocol used. A
cipher is perfectly secure if none of its ciphertext reveals anything about the
corresponding plaintext. That is, the probability that a plaintext and a key
resulted in a given ciphertext is the same for all plaintexts and all keys.

perfect security: the probability that a plaintext and a key resulted
in a given ciphertext is the same for all plaintexts and all keys.
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More exactly: A cipher is called perfectly secure if, for every plaintext, its probabil-
ity is (stochastically) independent of any ciphertext. Let p denote a plaintext and
by P(p) its probability. In formulas, for every plaintext p and every ciphertext c
, we have P(p |c ) = P(p) . In practice, this means that if an attacker intercepts a
ciphertext c , then he has no advantage, that is, his probability of knowing the
plaintext is the same as if he does not know c .

In 1949, Shannon proved the following theorem on the conditions for a cipher
to be perfectly secure: Given a őnite number of keys and plaintexts with positive
probabilities, that is, P(p) > 0 for every plaintext p . The cipher is perfectly
secure, if

• the probability distribution is uniform, that is, all probabilities are equal,
and

• for each plaintext p and every ciphertext c , there is a unique key k to get
c from p .

That is, statistical deviations tend to weaken the cipher. In particular, it is
important to use a completely random number generator for the keys.

One-time pad. The only perfectly secure cipher is the one-time pad where
a key (of the same size as the plaintext) is added (bit by bit) to the plaintext.
Such a perfectly secure cipher is however impractical. For real-time applications,
such as on the Internet, it is little used.

The One-time pad adds (by the XOR operation) each bit of the plaintext t with
the (positionally) corresponding bit of a key c that

• is of the same length, and
• is discarded after use, that is, it will not be used to encrypt other plaintexts.

One-time pad: The key is as long as the plaintext and they are
added letter by letter (or bit by bit) to obtain the ciphertext.

That is, the ciphertext T = (T1,T2, ...) is

T = t ⊕ c = (t1 ⊕ c1,t2 ⊕ c2, ...).

This cipher is as safe as theoretically possible!

254



If the plaintext has a single block t , then this simple (XOR ) addition of a key,
the one-time pad , is a secure algorithm. However, it is often inconvenient or
even close-to impossible to have a key as large as the plaintext: For example,

• to encrypt a hard drive, you need another one of the same size to store
the key, and

• to encrypt communication over a (for example, wireless) network, you
would need to know already before how much text will be transferred. to
encrypt communication over a network, it must be known beforehand how
much data will be transferred.

In practice, imagine an agent duplicating gigabytes of noise on two storage
media, for example, a hard disk and a ŕash drive, and taking one of these media
to encrypt his communication by the one-time pad.

Unfortunately, it is a bad idea (though natural) to use the same key for two
different blocks: if, for example, the plaintext has two blocks b′ and b′′ , then,
with this algorithm, the sum (XOR)

(b′ ⊕ c ) ⊕ (b′′ ⊕ c ) = b′ ⊕ b′′

of the two cipher blocks b′ ⊕ c and b′′ ⊕ c equals the sum b′ ⊕ b′′ of the two clear
blocks (because the addition XOR is by deőnition auto-inverse, that is x ⊕ x = 0

regardless of whether the binary digit is x = 0 or x = 1 )!

Figure 59: The sum of two plaintexts may reveal each one of them! (R. Smith
(2008))

It can be seen as the ciphering of the őrst block by one-time pad whose key is
the second block. Unfortunately, the second block is not a good key, because
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far from being random; on the contrary, usually its content is similar to that of
the őrst block, that is, the key is predictable.

Proven Security. As perfect security is unfeasible, security is demon-
strated

• or by resistance against known attacks,
• or by reducing the computational difficulty to that of a (computational
mathematical) problem recognized difficult (called proven security).

Although there are provenly secure symmetric ciphers the most efficient and
widely used algorithms, such as AES, prove their resistance only against known
attacks, such as those of differential or linear cryptanalysis.

Formally Proven Security. The mathematical problems on which the diffi-
culty of the decryption in asymmetric cryptographic algorithms are based, are
all NP-complete, that is, its solutions are veriőable in polynomial runtime (in
the bit-length of the input) and all other such problems can be reduced to it.
That is, every cryptographic algorithm (enciphers or) deciphers a message with
the key in polynomial runtime in the bit-length of the key.

In contrast, all known algorithms for deciphering without the key take expo-
nential time in the bit-length of the key. By the P-versus-NP conjecture, there is
no algorithm that takes polynomial runtime (in the bit-length of the key). For
now, the conjecture being unresolved, there may theoretically exist polynomial
algorithms for deciphering without the key in polynomial runtime; however,
after decades of continuous vain efforts by the community of cryptanalysts, it
is assumed unlikely.

Example. The initial example of such a provenly secure cipher was semantic
security (in Goldwasser and Micali (1984)) which reduces the difficulty of
decipherment to that of the computation of the Quadratic Residue: Given x and
N a product of two primes, it is difficult to determine whether x is quadratic
modulo N (that is, whether there is y such that x = y2 mod N or not) if, and
only if, the so-called Jacobi symbol for x is +1 and the prime factors of N are
unknown.

This (Goldwasser-Micali) cipher consists of:
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• a key generation algorithm that produces

ś the private key as two primes p and q , and
ś the public key N = pq and a number x which is quadratic neither
modulo p nor modulo q (such that Jacobi’s symbol of x for N is +1
, and for both his factors p and q is −1 ). For example, if p ,q ≡ 3

mod 4 , then x = N − 1 will do.

• a probabilistic encipherment algorithm: If m = (m1,m2, ...) are the bits of
the plaintext, then numbers y1 , y2, . . . that are indivisible by p and
q are generated and the enciphered message is M = (M1,M2, ...) with
M1 = y

2
1x
m1 , M2 = y

2
2x
m2 , . . .

• a deterministic decipherment algorithm: If M = (M1,M2, ...) is the enci-
phered message, then m1 = 0 if, and only if, M1 is quadratic modulo N ,
. . . which is quickly determined by knowledge of both factors p and q of
N .

Paradox. Caution: Theoretical security remains an insufficient idealization
for reality: For example, Ajtai and Dwork (1999) presented a cipher and proved
it theoretically secure; however, it was broken a year later. Proven does not mean
true: a provenly secure system is not necessarily truly secure, because the proof
is made in a formal model which assumes

• certain operation principles, attackers and a set security objective and
• difficulty of the problem to which the proof is reduced.

For example,

• The implemented cipher differs from the formal cipher.
• A partial objective is already sufficient for the attacker: If, for example, the
security objective is that the attacker does not derive the entire plaintext
from the ciphertext, then it may already be enough for him to derive a
passage of the plaintext.

Besides, the proof may be wrong! Despite this uncertainty, a proof of security is
a useful criterion (though theoretically necessary, but practically insufficient)
for the security of a cipher.
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Attacking Scenarios. What does security mean? The criterion that the
attacker cannot derive the plaintext from the ciphertext is insufficient, because
he could acquire other useful (partial) information about the plaintext. But even
the impossibility to derive useful information on the plaintext is insufficient in
some circumstances: If

• the public-key encryption is deterministic (that is, if the same input always
returns the same output, as is the case with RSA encryption as implemented
in a textbook) and

• the attacker can limit the number of possible plaintexts (he knows, for
example, that the ciphertext is łyesž or łnož),

then he can encrypt all these possible plaintexts with the public key and compare
the ciphertexts to the encrypted texts. For an asymmetric algorithm, the attacker
should be assumed to know the public key. Thus, he can encrypt any plaintext
of his choice and compare it to the ciphertext; that is, he can mount a Chosen-
Plaintext Attack (CPA).

Generally, the attacking scenarios are categorized by how much the cryptana-
lyst’s knows about the ciphertext (ordered below from less to more knowledge):

• ciphertext only,
• probable or known ciphertext/plaintext pairs, and
• chosen plaintext or chosen ciphertext.

For example, to break a monoalphabetic cipher, the ciphertext alone usually
suffices thanks to frequency analysis. But often the cryptanalyst either will know
or can guess some of the plaintext, such as a preamble of a letter (like a formal
greeting) or a computer őle format (like an identiőer). Lastly, most opportunely,
he can ask the sender to encrypt a plaintext that he chose or the recipient to
decrypt a ciphertext that he chose.

Ciphertext-Only Attack. The attacker has the ciphertexts of several mes-
sages that were encrypted by the same algorithm. His task is to recover as much
plaintext as possible or, better, to recover the (algorithms and) keys that were
used.
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Probable-Plaintext Attack. The attacker has the ciphertext and suspects
that the plaintext contains certain words (a crib) or even whole sentences. His
task is to recover as much plaintexts as possible or, better, to recover the
(algorithms and) keys that were used. For example, Enigma, the cryptographic
electromechanical rotor-machine used by the power axes in World War II, was
broken by the repetitiveness of the messages it enciphered: for example, the
weather report was sent on a daily basis and announced as such (Wetterbericht
in German) at the beginning of every such message.

crib: a text probably contained in the plaintext of a given ciphertext.

Known-Plaintext Attack KPO. The attacker has a ciphertext and the corre-
sponding plaintext. His task is to recover the (algorithm and) key that was used.
(For example, linear cryptanalysis falls into this scenario). For example, an
attack from 2006 on the Wired Equivalent Privacy (WEP) protocol for encrypting
a wireless local area network exploits the predictability of parts of the encrypted
messages, namely the headers of the 802.11 protocol.

Chosen (or Adaptive) Plaintext Attack CPA. The attacker has the ciphertexts
of the plaintexts that he can freely choose; so that the attacker can freely adapt
the plaintext depending on the text obtained after each decipherment and
analyze the resulting changes in the ciphertext. His task is to recover the
(algorithm and) key that was used. (For example, differential cryptanalysis falls
into this scenario).

This is the minimal attacking scenario to be prepared against for asymmetric
cryptography! Since the encryption key is public, the attacker can encrypt
messages at will. Therefore, if the attacker can reduce the number of possible
plaintexts, for example, if he knows that they are either łYesž or łNož, then he
can encrypt all possible plaintexts by the public key and compare them with
the intercepted ciphertext. For example, the RSA algorithm in its textbook form
suffers from this attack. Therefore, to protect against this CPA attack, every
implementation of this algorithm must pad the plaintext with random data
before encryption.

259



Chosen (or Adaptive) Ciphertext Attack CCA. The attacker has a ciphertext
c and the plaintexts of the ciphertexts (except c ) that he can freely choose; so
that the attacker can freely adapt the plaintext depending on the text obtained
after each decipherment and analyze the resulting changes in the ciphertext.
His task is to recover the (algorithm and) key that was used. For example,
the attacker has to analyze a cipher machine black-box, that is, whose inner
workings are unknown.

Few practical attacks fall into this scenario, but it is important for proofs of
security: If resistance against the attacks of this scenario can be proven, then
resistance against every realistic attack of chosen ciphertext is granted.

Semantic Security. If an asymmetric algorithm is used, then the attacker
should be assumed to know the public key. Thus, he can encrypt any plaintext
of his choice and compare it to the ciphertext. That is, he can mount a chosen-
plaintext attack (CPA).

A cipher is secure against IND-CPA (indistinguishability of the ciphertext for chosen
plaintexts), if no attacker can distinguish which one of two plaintexts, that he
selected before, corresponds to the ciphertext that he receives afterwards. More
exactly, the cipher is indistinguishable under chosen-plaintext attack if every
probabilistic polynomial-time attacker has only an insigniőcant ładvantagež
over random guessing:

IND-CPA-secure: no attacker has a probability signiőcantly higher
than 1/2 to distinguish two ciphertexts.

The four steps of the game IND-CPA with polynomial-runtime restriction (in the
bit-length of the key k ) on the attacker’s computations (carried out on creating
the two plaintexts, step two, and on choosing the plaintext that corresponds to
the ciphertext, step four):

1. A pair of keys is created, one secret and one public, both with k bits. The
attacker receives the public key.

2. The attacker computes two plaintexts M0 and M1 of the same size.

3. The cipher machine

1. randomly chooses a bit b in {0,1}
2. enciphers Mb , and
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3. passes the ciphertext to the attacker.

4. The attacker chooses a bit b′ in {0,1} .

The attacker who chooses the bit b′ in the fourth step randomly is right with a
probability of 1/2 . A cipher is IND-CPA-secure if no attacker has a probability
of success P(b = b′) signiőcantly higher than 1/2: That is, if every attacker’s
difference P(b = b′) − 1/2 = ϵ (k ) is insignificant, that is: for every (nonzero)
polynomial function p there is k0 such that ϵ (k ) < 1/p (k ) for every k > k0.

An insigniőcant difference should be granted, because the attacker easily in-
creases his probability of success above 1/2 by guessing a secret key and trying
to decipher the ciphertext with it.

Observation. Although the above game is formulated for an asymmetric cipher,
it can be adapted to the symmetric case by replacing the public key cipher by
a cryptographic oracle, a black-box function, that is, whose inner workings are
unknown, that retains the secret key and encrypts arbitrary plaintexts at the
attacker’s request.

Semantically Secure Algorithms. Secure semantic encryption algorithms
include El Gamal and Goldwasser-Micali because their semantic security can be
reduced to solving some difficult mathematical problem, that is, irresolvable
in polynomial runtime (in the number of input bits); in these cited examples,
the Decisory Diffie Hellman Problem and the Quadratic Residue Problem. Other
semantically insecure algorithms, such as RSA, can be made semantically se-
cure by random cryptographic paddings such as OAEP (Optimal Asymmetric
Encryption Padding).

Example. The Elgamal encryption method is IND-CPA-secure under the as-
sumption that the Decisory Diffie Hellman Problem is difficult. To prove security,
let us transform

• a winner A from the IND-CPA game for El Gamal , that is, given the
ciphertext of one among two plaintexts under the public key, she identiőes
the corresponding plaintext (among the two) with probability 1/2 + ϵ ),

• into a decision maker S for DDH , that is, given a base g and exponents
x , y and z in 1, ...,p − 1 , she decides in polynomial runtime whether
g z ≡ g xy mod p or not;
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as follows: Given a base g and exponents x , y and z in 1, ...,p − 1 .

1. S simulates the creation of a key pair by giving g x as public key to A (but
not knowing the corresponding secret key).

2. A produces two plaintexts m0 and m1.
3. S simulates the encipherment by randomly choosing a bit b and deőning

the ciphertext as g y , g zmb .
4. A decides whether the plaintext is m0 or m1.

• If g z = g y , then the cipher is indistinguishable from a normal cipher and
A wins with probability 1/2 + ϵ .

• If g z is random, then A just guesses and wins with probability 1/2 .

S ’s strategy is therefore to opt for g z = g y if, and only if, A is correct. Thus, the
probability that S is correct is 1/2 + ϵ/2 .

Semantic Security IND-CCA. Let us recall that:

• A cipher is secure against IND-CPA (indistinguishability of ciphertext for
chosen plaintexts), if no attacker can distinguish which one of two plaintexts,
that he selected before, corresponds to the ciphertext that he receives
afterwards.

• In the chosen (or, more exactly, adaptive) ciphertext attack CCA the attacker
has a ciphertext c and the plaintexts of the ciphertexts (except c ) that he
can freely choose;

A cipher is secure against IND-CCA (indistinguishability of ciphertext for chosen
ciphertexts), if the attacker, in the second and fourth steps of the IND-CPA game,
can ask for any ciphertext to be deciphered (except the one in question c ),
and still cannot distinguish which one among two plaintexts corresponds to the
ciphertext:

1. The oracle creates a secret key.

2. The attacker asks for the decryption of any ciphertext (except c ), and
creates two plaintexts M0 and M1 of equal size.

3. The oracle

• randomly picks a bit b in 0,1

• encrypts Mb , and
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• passes the ciphertext to the attacker.

4. The attacker asks for the decryption of any ciphertext (except c ), and
chooses a bit b′ in {0,1} .

Example. Bleichenbacher’s attack on PKCS#1 from 1998 is secure against the
RSA variant of IND-CPA (but precisely not against IND-CCA!).

Bellare and Namprempre showed in 2000 for a symmetric cipher that if

• the cipher resists against IND-CPA, and
• the unidirectional function resists (is not forgeable) against an attack of
chosen messages,

then the cipher with łEncrypt-then-MACž resists an łIND-CCAž attack.

Self-Check Questions.

1. Is the one-time pad perfectly secure in theory?

□ Yes

□ No

2. What are all known perfectly secure cipher in theory? one-time pad

3. Is the one-time pad perfectly secure in practice?

□ Yes
□ No

4. What is a practical inconvenience of the one-time pad? Its key must be as
long as the plaintext.
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12.5 Side-channel attacks

A side-channel attack uses information from the physical implementation of a
cipher machine. For example, measures of timing, power consumption, electro-
magnetic or sound emissions.

side-channel attack: an attack that uses information on the physical
implementation of a cipher machine.

We will restrict to timing attacks that measure the runtimes of cryptographic
operations (of a speciőc software on a speciőc hardware) and compare them
to estimated ones. A timing attack can be carried out remotely, however, the
measurements often suffer from noise, that is, random disturbances from sources
such as network latency, disk drive access times, and correction of transmission
errors. Most timing attacks require that the attacker knows the implementation;
however, inversely, these attacks can also be used to reverse-engineer.

timing attack: an attack that measures the runtime of cryptographic
operations and compares them to estimated ones.

We will restrict to the example of a timing attack that measures the time for
computing integer powers. For this, we őrst have to understand how integer
powers are computed:

Exponentiating by squaring. Exponentiating by squaring (or square-
and-multiply algorithm or binary exponentiation) is an algorithm to quickly
compute large integer powers of a number by binary expansion of the exponent;
especially useful in modular arithmetic. To compute bn , instead of b multiplying
b by itself n times, only 2 · log2 n multiplications are needed:

Exponentiating by squaring (or square-and-multiply algorithm

or binary exponentiation): an algorithm to quickly compute integer
powers of a number by binary expansion of the exponent.

Given a nonnegative integer base b and exponent e , to compute be mod M :

1. Expand the exponent binarily, that is,

e = e0 + e12 + e222 + · · · + es2s with e0,e1, ...,es in {0,1},
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2. Compute

b1,b2,b2
2
, ...,b2

s

mod M.

Because b (2
n+1) = b2

n ·2 = (b2n )2 , that is, each power is the square of the previous
one (and at most M ), each power, one after the other, is easily computable,
yielding:

be = be0+e12+e22
2+···+es2s = be0 (b2)e1 (b22)e2 · · · (b2s )es

(In hindsight, only powers with e0,e1, ...,es equal to 1 count, the others can be
omitted.)

Example. To calculate 35 mod 7 , expand

5 = 1 + 0 · 21 + 1 · 22

and calculate

31 = 3,32 = 9 ≡ 2,32
2
= (32)2 ≡ 22 = 4 mod 7;

yielding

35 = 31+2
2
= 31 · 322 = 3 · 4 ≡ 5 mod 7.

Vulnerable Algorithms. The execution time of binary exponentiation de-
pends linearly on the number of bits equal to 1 in the exponent. While the
number of these bits alone is insufficient information to őnd the key, statistical
correlation analysis (and the Chinese remainder theorem) on exponentiations
with different bases (but the same exponent) derives the exponent.

Crypto-algorithms that encipher using exponentiation modulo a large prime
number, and as such are vulnerable to this attack, include RSA, Diffie-Hellman
and ElGamal and the Digital Signature Algorithm (that derives from the for-
mer).

For example, in (textbook) RSA , the message is the base b and the key is the
exponent e . Brumley and Boneh (2005) demonstrated a network-based timing
attack on SSL-enabled web servers using RSA that successfully recovered the
private key in a day; this lead to the widespread deployment of concealment
techniques to conceal correlations between key and encryption time.
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Example for the Exponential (as used in Diffie-Hellman). Kocher (1996)
exposed a ŕaw in the following algorithm to compute modular exponentiation,
that is, to compute R(y) = yx mod n for n public and y known, but x secret.
The attacker, by computing R(y) for several values of y and knowing n , y and
the computation time, can derive x as follows:

Let w be the bit length of x and put s_0 = 1.

For k ranging from 0 to w-1:

If the k-th bit of x is 1, then

put R_k = (s_k * y) mod n;

Otherwise,

put R_k = s_k.

Put s_{k+1} = R_kˆk mod n

End (of For loop)

Return (R_{w-1})

According to the value of the k -th bit of x , either (sk × y) mod n or nothing is
computed; therefore, the execution time of the algorithm, for different values of
y will eventually yield the value of the k -th bit.

To prevent this attack, the algorithm can be changed so that all calculations,
whatever the key bits, take the same time (slowing it down, but, security counts
more than speed):

Let w be the bit length of x and put s_0 = 1.

For k ranging from 0 to w - 1:

Put temp = (s_k y) mod n.

If the k-th bit of x is 1, then

put R_k = temp;

Otherwise,

put R_k = s_k.
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Put s_{k+1} = Rˆ2_k mod n.

End (of For loop)

Return (R_{w-1})

Self-Check Questions.

1. Name examples of side-channel attacks: measures of timing, power consump-
tion, electromagnetic or sound emissions.

12.6 Modern Cryptanalytic Algorithms

To understand the reasons behind the design choices of each step of a block
cipher algorithm, such as AES, one must understand which attacks it deőes. A
powerful modern cryptanalytic algorithms is differential cryptanalysis, applica-
ble to block ciphers. It assumes a chosen-plaintext attack: The attacker sends
pairs of (slightly) differing plaintexts, whose ciphertexts he receives. He then
studies how differences in the input propagate (on so-called differential trails)
through the network of encipherment transformations to differences at output.
The resistance of AES against this resistance by so-called wide trails was proved
in the paper of proposal Daemen and Rijmen (1999).

Prototypical Feistel Cipher by Heys. Let us demonstrate this technique in
the toy model of a Feistel Cipher given in Heys (2002) that

• divides the plaintext into blocks of 16 bits, and
• subdivides each block into 4 blocks of 4 bits.

For each round, there is a corresponding (independent) key. In each one of the
őrst three rounds 1, 2 and 3:

1. Add the round key C to the block B, in formulas: B ↦→ B ⊕ C .

2. Substitute each of the 4 sub-blocks bits according to the table (in hexa-
decimal notation)
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0 1 2 3 4 5 6 7 8 9 A B C D E F

E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

3. Swap bit i from the sub-block j with j from the sub-block i ;

In the penultimate 4th round:

1. Add the round key to the block, B ↦→ B ⊕ C .
2. Substitute each of the 4 sub-blocks of 4 bits with the table.

In the last 5th round

1. Add the round key to the block, B ↦→ B ⊕ C .

That is:

• In the last 5th round, the last two steps, substitution and permutation,
are omitted, because, the algorithm being public (following Kerckhoff’s
principle), can be undone by any decipherer without knowledge of the
key. That is, from a cryptographic point of view, they are superŕuous.

• In the 4th round, the last step, the permutation, is omitted as it would
only permute the last 5th round key. That is, from a cryptographic point
of view, it is superŕuous.

The substitution table originates from the DES algorithm and is commonly called
the S-box, Substitution box.

Differential Cryptanalysis. A cryptanalyst’s dream is to learn whether a part
of the chosen key is correct, that is, whether it coincides with the corresponding
part of the key used to encrypt the text: For example, in Heys’s cipher the key has
16 bits: If one could learn whether, say, one half (8 bits) of the whole key tried
out matches the corresponding half of the correct key, then the cryptanalyst

• instead of testing out all possible combinations, of which there are 216 =
65536 ,

• only, needs to test out all possible combinations of these 8 bits (of which
there are 28 = 256 ) and the remaining 8 bits (of which there are 28 = 256

).
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That is, the number of combinations that need to be tested out has been reduced
from 216 = 65536 to 2 · 256 = 512 .

Criterion for Decipherment. In a brute-force attack, the cryptanalyst de-
ciphers the enciphered text with each possible key. To know whether the key
tried out is correct, that is, if it coincides with the key used to encrypt the text,
he checks whether the content is intelligible; for example, by a criterion such
as

1. counting the frequencies of the letters, pairs and triples of the deciphered
text, and

2. comparing them to the frequencies of the likely tongue in which the
plaintext was written: If they come close, then the plaintext is probably
intelligible and the key tried out was that used by the encipherer.

If the cipher has a single round, then this criterion is applicable. However,
if the cipher has two or more rounds, and the decipherer executes the last
round of the decryption algorithm with a certain key, then this criterion is no
longer applicable, because the text obtained is the output of the encryption
algorithm (with the same key) from the penultimate round. Instead, the criterion
of differential cryptanalysis for having found the correct key is probabilistic: the
key tested out is probably correct if, for a certain łincomingž difference ΔX and
a certain łoutgoingž difference ΔY , plaintext pairs with difference ΔX result
with a certain probability in cipher pairs with difference ΔY .

For differential cryptanalysis to be applicable, the cryptanalyst must be able

1. to encrypt by the same key any number of freely chosen plaintexts, and
2. to examine the encrypted texts.

Differential cryptanalysis exploits the high probability of a difference ΔX := X′⊕
X′′ between two plaintexts X′ and X′′ propagating to a difference ΔY = Y′ ⊕ Y′′

between the two ciphertexts Y′ and Y′′ (for X′ and X′′ ) (in the penultimate
round); here X′ ⊕ X′′ is the addition XOR , bit per bit, where the output is 1
if, and only if, the two entries are different. (In particular, the addition XOR is
auto-inverse, that is, the reverse operation to ⊕ is ⊕; in contrast to the + operation
with its reverse − . Therefore, the difference is given by the addition XOR. That
is, ΔX , indicates all the bits in which X′ and X′′ differ.) The pair D = (ΔX,ΔY)
is the differential.
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The difference of X′ and X′′ is ΔX := X′ ⊕ X′′

A differential is a pair D = (ΔX,ΔY) of input respectively output
differences ΔX respectively ΔY .

For differential cryptanalysis to be efficient, there must be a differential D with
high probability pD(to be quantiőed in Equation 4); that is, among all incoming
pairs with difference ΔX , the probability of an outgoing pair having difference
ΔY (in the penultimate round) is pD. More exactly, the encipherer will encipher
a statistically signiőcant number of pairs (> 1/pD) of plaintexts with difference
ΔX to count the number of the enciphered pairs of ciphertexts with difference
ΔY .

Frequency of Differences for a Substitution Table. An affine transfor-

mation A is the composition

• of a linear application, that is, A(x ⊕ y) = A(x) ⊕ A(y) for all x and y ,
and

• of a translation, that is, A(x) = x ⊕ x0 for some őxed x0).

Observation. For an affine transformation A , the outgoing difference ΔY is
independent of the incoming pair X′ and X′ (but only depends on ΔX ): The
transformation A :

• if it is linear, then always, that is, for every incoming pair with difference
ΔX , the outgoing difference is ΔY = A(ΔX) , and

• if it is a translation, then always ΔY = ΔX .

Regarding the őrst and second function of each round of a Feistel cipher:

• the addition of the key is a translation,
• the permutation is linear,

that is, the outgoing difference is independent of the incoming pair. However,
the outgoing difference ΔY of the substitution is not determined by the incoming
difference ΔX alone, but it depends on X′ and X′′ ! We examine the substitution
table to őnd a differential D of high probability pD, that is, to őnd an incoming
difference ΔX with a large number of pairs X′ and X′′ that yield an outgoing
difference ΔY : Given ΔX , there are 24 = 16 possible inputsX′ (which determines
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X′′ = X′ ⊕ ΔX ), and we count the frequencies of the 24 = 16 possible outgoing
differences ΔY = 0,1, ...,F :

Table 22: S-box in binary notation.

0000000100100011010001010110011110001001101010111100110111101111

1110010011010001001011111011100000111010011011000101100100000111

This table lists the outgoing differences of each incoming pair whose difference
is one of 1011, 1000 or 0100 :

Table 23: the outgoing differences ΔY for three incoming differences ΔX (listed
horizontally) and all possible inputs X (listed vertically).

X/ΔX 1011 1000 0100

0000 0010 1101 1100

0001 0010 1110 1011

0010 0111 0101 0110

0011 0010 1011 1001

0100 0101 0111 1100

0101 1111 0110 1011

0110 0010 1011 0110

0111 1101 1111 1001

1000 0010 1101 0110

1001 0111 1110 0011

1010 0010 0101 0110

1011 0010 1011 1011

1100 1101 0111 0110

1101 0010 0110 0011

1110 1111 1011 0110

1111 0101 1111 1011

Let us count, for every incoming difference ΔX , how many times each outgoing
difference ΔY appears among all the incoming pairs X′ and X′′ such that
X′ ⊕ X′′ = ΔX .
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Table 24: The frequency of outgoing differences ΔY (listed horizontally) for all
incoming differences ΔX (listed vertically).

ΔX/ΔY 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 0 0 2 0 2 4 0 4 2 0 0
2 0 0 0 2 0 6 2 2 0 2 0 0 0 0 2 0
3 0 0 2 0 2 0 0 0 0 4 2 0 2 0 0 4
4 0 0 0 2 0 0 6 0 0 2 0 4 2 0 0 0
5 0 4 0 0 0 2 2 0 0 0 4 0 2 0 0 2
6 0 0 0 4 0 4 0 0 0 0 0 0 2 2 2 2
7 0 0 2 2 2 0 2 0 0 2 2 0 0 0 0 4
8 0 0 0 0 0 0 2 2 0 0 0 4 0 4 2 2
9 0 2 0 0 2 0 0 4 2 0 2 2 2 0 0 0
A 0 2 2 0 0 0 0 0 6 0 0 2 0 0 4 0
B 0 0 8 0 0 2 0 2 0 0 0 0 0 2 0 2
C 0 2 0 0 2 2 2 0 0 0 0 2 0 6 0 0
D 0 4 0 0 0 0 0 4 2 0 2 0 2 0 2 0
E 0 0 2 4 2 0 0 0 6 0 0 0 0 0 2 0
F 0 2 0 0 6 0 0 0 0 4 0 2 0 0 2 0

The entries for each row add up to 16 , the number of all possible pairs for
a given difference. The őrst row conőrms that two equal inputs result in two
equal outputs. The highest number is 8 and reached for ΔX = B and ΔY = 2 .
In addition, the number 6 comes up őve times.

We will choose our differentials among those with these high frequencies:

Example. In the frequency table

• of a translation, such as the addition of the secret key, all boxes are null
except those in the őrst column which have value 16 ;

• for a linear operation, such as a permutation of bits, in each row all the
entries are null except one of value 16 .

Differential Trails. Given a Feistel cipher, a differential trail is a őnite
sequence of differences

(ΔU1,ΔU2, ...)
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so that every entry ΔUi is the input of the S-box of the i -th cipher round. Given
the outgoing difference ΔVi of the S-box of round i , the incoming difference
of the next round ΔUi+1 is the result of applying the permutation to ΔVi . (The
key addition, as a translation, does not change the difference.)

differential trail: a tuple of differences ΔU1, ΔU2, . . . so that every
entry ΔUi is the input of the S-box of the i -th cipher round.

We want to őnd the most probable differential trail D in the Heys cipher

D = (ΔU1,ΔU2,ΔU3,ΔU4)

or at least a trail in which each differential (ΔUi ,ΔVi ) is among the most
probable. Every differential consists of 4 sub-differentials, corresponding to the
4 sub-blocks of 4 bits that constitute block of 16 bits. To őnd such a probable
differential trail, in each round:

• maximize the frequency of each sub-differential, that is, the number of times
the S-box transforms the incoming difference (of the sub-differential) into
the outgoing difference;

• in particular, minimize the number of (so-called active) nonzero sub-differentials.

An example of such a trail D is the following: Let the difference in the őrst
round be

ΔU1 = [0000 1011 0000 0000],

which is by S-box 2 replaced by

ΔV1 = [0000 0010 0000] .

By the subsequent permutation, we obtain as difference entering the second
round

ΔU2 = [0000 0000 0100 0000]

which is by S-box 3 replaced by

ΔV2 = [0000 0000 0110 0000] .

Because the bits number 2 and 3 are nonzero, we obtain by the subsequent
permutation as incoming difference of the third round that with two active
sub-differentials

ΔU3 = [0000 0010 0000]
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which is by S-boxes 2 and 3 replaced by

ΔV3 = [0000 0101 0000] .

Finally, by the subsequent permutation, the fourth round input is

ΔU4 = [0000 0110 0000 0110] .

Let Si ,j denote the substitution of the sub-block j by the S-box in the i -th
round. On our differential trail, we enlist

• for each round i = 1,2,3 and
• for each sub-differential j = 1,2,3,4 different from zero,

the probability of substitution Si ,j transforming the incoming difference ΔX (in
hexadecimal notation) into outgoing difference ΔY :

Substitution In Out Probability

S12 B 2 8/16

S23 4 6 6/16

S32 2 5 6/16

S33 2 5 6/16

If we suppose that the differentials of one round are independent of the differ-
entials of the previous round (which is a negligibly inaccurate simpliőcation),
then the probability pD of the concatenated substitutions transforming

ΔU1 = [0000 1011 0000 0000]

into
ΔU4 = [0000 0110 0000 0110] .

is the product of the probabilities of each substitution,

pD = 8/16 · 6/16 · (6/16 · 6/16) = 27/1024.

To őnd the key, for

• every possible combination of K5,5, ...,K5,8 and K5,13, ...,K5,16 ,
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• an (integer) multiple m of 1/pD ≈ 38 pairs of plaintexts U′
1 and U′′

1 with
difference ΔU1,

the cryptanalyst

1. enciphers the pair U′
1 and U′′

1 ,
2. reverses the cipher up to the S-box input in the fourth round by the round

key
K5 = [0000 K5,5, ...,K5,8 0000 K5,13, ...,K5,16]

to obtain the pair υ′4 and υ
′′
4 with difference υ4, and

3. compares the difference Δυ4 to ΔU4; if they match, then he increments
the count n by 1 .

If for a combination of sub-blocks K5,5, ...,K5,8 and K5,13, ...,K5,16 the count
yields n/m ≈ pD, that is, the ratio between

• the number n of matched pairs and
• the number m of total pairs

is close to the probability pD, then these sub-blocks are probably the sub-blocks
2 and 4 of the round key 5 used by the cipher.

Observation. To conclude that we found the correct sub-blocks, we use the
hypotheses

1. that the differentials of a round are independent of the differentials of the
previous round, and

2. that a probability of matching pairs close to that calculated indicates the
correct key.

Both have no rigid mathematical foundation, but are only plausible, because,
respectively:

1. Each round tries to diffuse as much as possible, that is, to make the value
of each output bit practically independent of all input bits, and

2. there is unlikely a key which is different but reproduces the same proba-
bility.
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Note that for this attack to be faster, that is, to be more effective, than the
brute-force attack (which simply tries out all possible keys), it is necessary
that

#{ active bits } − log2 pD < #{ key bits } (4)

where

• a bit is active if it belongs to an active sub-differential in the penultimate
round (in our differential trail, these are the bits of the sub-differentials 2
and 4),

• the probability pD is that of the incoming differential ΔU1 from the őrst
round leading to the incoming differential ΔU4 from the penultimate
round (on our trail, we have log2 pD = log2(27/1024) ≈ −5 ), and

• the key is that from the last round (which has 16 bits in this őgure).

Therefore, it is necessary that the trail is strict, that is, has few active blocks,
in order to be able to learn whether the tested key is correct, that is, coincides
with the key used, only in these active blocks (which reduces the number of
combinations logarithmically). In the example given, only 2 out of the 4 sub-
differentials are active, which allowed the cryptanalyst to learn whether the key
is correct in only these 2 blocks: the number of combinations that need to be
proved was accordingly reduced from 216 = 65536 to 2 · 256 = 512 .

Self-Check Questions.

1. What is a differential in a substitution and permutation network? A pair
D = (ΔX,ΔY) of input respectively output differences ΔX respectively ΔY
.

2. What is a differential trail in a substitution and permutation network? A
tuple of differences ΔU1, ΔU2, . . . so that every entry ΔUi is the input of
the S-box of the i -th cipher round.

3. How to őnd the most likely differential trail? By maximizing the number
of times the S-box replaces the incoming difference with the outgoing
difference of the sub-differential.

Summary

Cryptanalysis is the art of breaking ciphers, that is, recovering or forging enci-
phered information without knowledge of the key. Historically, the cryptanalyst’s
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intuition and ability to recognize subtle patterns in the ciphertext were para-
mount. Today, however, cryptanalysis is based on mathematics and put into
practice by efficient use of extensive computing power.

Brute-Force Attacks. In practice, the security of a cipher, and thus the
recommended key sizes, relies foremost

• on its resistance to the most efficient (known!) methods of cryptanalysis
(using a back door), and

• the computational effort needed to check all keys (taking the front door)
by checking the decrypted output for probable patterns of a plaintext.

Rainbow Tables. It the secret information, for example, passwords, was
stored as cryptographic hashes, then a practically more efficient brute-force
attacks uses a rainbow table, a table of the cryptographic hashes of the most
common passwords to reveal more likely passwords sooner. This is particularly
promising against quickly computed hash functions such as MD4/5, whereas
hash functions used for hashing passwords, such as bcrypt, were designed to be
deliberately slow. Such a rainbow attack is however most effectively prevented
by making the used hash function unique for each password by adding a salt,
an additional unique, usually random, argument.

Attacking Scenarios. The only perfectly secure cipher is the one-time pad
where a key (of the same size as the plaintext) is added (bit by bit) to the
plaintext; too unwieldy to be useful in practice.

Asymmetric cryptography uses mathematical methods, more exactly modu-
lar arithmetic, to encipher. The security, the difficulty of deciphering without
knowledge of the key, of an asymmetric cryptographic algorithm is based on
mathematical problems that have been established as computationally difficult.
Symmetric cryptography (like hash functions) uses more artisanal methods
of ciphering, which aim to maximize diffusion and confusion, mainly by iter-
ated substitution and permutation. The security of symmetric cryptographic
algorithms is simply based on its resistance against years of ongoing attacks.
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Side-Channel Attack. A side-channel attack uses information from the
physical implementation of a cipher machine. For example, measures of timing,
power consumption, electromagnetic or sound emissions. In particular, a timing

attack measures the runtimes of cryptographic operations, and compares
them to the estimated ones. For example, one exploits that the runtime of the
computation of a power depends on the number of nonzero bits of its exponent
(which, in RSA and Diffie-Hellman is the key).

Differential Cryptanalysis. Among all modern cryptanalytic algorithms,
one of the most powerful ones is differential cryptanalysis that applies to block
ciphers and assumes a chosen-plaintext attack: The attacker sends pairs of
(slightly) differing plaintexts whose ciphertexts he receives. He then studies
how differences on input propagate (on so-called differential trails) through
the network of encipherment transformations to differences at output. The
resistance of AES against this resistance by so-called wide trails was proved in
the paper of proposal Daemen and Rijmen (1999).

Questions

1. Which minimal key size is currently recommend as secure for RSA and
Diffie-Hellman?

□ 512 bits
□ 1024 bits
□ 2048 bits

□ 4096 bits

2. Which minimal key size is currently recommend as secure for Elliptic
Curve Cryptography?

□ 128 bits
□ 160 bits
□ 256 bits

□ 512 bits

3. Which minimal key size is currently recommend as secure for AES?

□ 80 bits
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□ 112 bits

□ 128 bits
□ 256 bits

4. Which computationally difficult problem is the security of RSA based on?

prime number decomposition, discrete logarithm, point counting, quadratic
residue

5. Which computationally difficult problem is the security of the Diffie-
Hellman key exchange based on?

prime number decomposition, discrete logarithm, point counting, quadratic
residue

Required Reading

Read Heys (2002) to understand the basic principles of differential cryptanaly-
sis.

Unit 5. Read the submissions Daemen and Rijmen (1999) and Daemen
and Rijmen (2002) that present the algorithm AES and show its security by its
resistance against differential cryptanalysis.
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13 Cryptology and the Internet

Study Goals

On completion of this chapter, you will have learned . . .

1. How the Internet and its protocols came about,
2. what a Virtual Private Network, in particular IPSec, achieves.
3. how the Transport Layer Security protocol encrypts and authenticates

Internet connections,
4. how secure e-mails can be sent by protocols such as TLS, S/MIME or PGP,

and
5. how domain names such as ongel.de are looked up and how this look

can be authenticated and encrypted by Secure DNS.
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Introduction

While before the Internet age it was unimaginable to use cryptography in
everyday life, today everyday life on the Internet would be unimaginable without
(public-key) cryptography; for example, for securely shopping online. Besides
ciphering, cryptography establishes trust where previously paper documents
were used, for example, for signing, identity authentication, granting authority,
license, or ownership. And cryptography achieves this more securely so: While
a written signature is imitable, a digital signature is uniquely linked to (the
contents of) the signed document.

To secure transactions on the Internet, for example, in electronic banking, com-
merce or mailing, a cryptographic protocol (such as Transport Layer Security,
TLS, formerly Secure Sockets Layer, SSL):

1. Establishes trust: When a client connects to a web server, then the server’s
identity has to be guaranteed to avoid a man-in-the-middle attack; to this
end, central authorities issue digital X.509 certiőcates.

2. Encrypts all traffic: For example, in an open wireless-network, such as
those using log-in portals in public places, no traffic between the router
(that connects to the Internet) and the client is being encrypted, neither
by the router nor by the client.

13.1 The Internet Protocols

The various protocols that standardize the processing of exchanged data on the
Internet can be grouped into layers, ordered according to how highly structured
the processed data is:

• The lower layers format the raw data and serve as interfaces for the upper
layers, whereas

• the upper layers are closer to the user’s applications and handle more
abstract data.

Among these protocols, the two most important protocols (and those that were
deőned őrst) are

• the Transmission Control Protocol (TCP), and
• the Internet Protocol (IP).
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that specify how data should be formatted, addressed, transmitted, routed and
received at the destination. Though the TCP/IP protocol reliably delivers data
packets over the Internet, it

• neither guarantees security, neither conődentiality nor authenticity,
• nor manages sessions between a client and the server (for example, sus-
pension, termination and restart of a session).

Most Internet applications rely on a higher (application) layer, such as the
HTTP protocol for Web servers.

The best known stacks of such layers of Internet protocols are:

• The Open Systems Interconnection (OSI) reference-model with seven
layers, created by the International Standards Organization (ISO) as the
international standard for the architecture of computer networks, and

• the Internet Protocol Suite with four layers, speciőed in Section 1.1.3 of
Braden (1989). It is sometimes called the DoD(-Layer) Model, because
development began in the late 1960s with a study under the supervision
of the United States Department of Defense (DoD).

OSI model: model by the International Standards Organization
(ISO) that stacks the various protocols of the Internet protocol suite
into seven abstraction layers.

Internet Protocol Suite: TCP/IP stacks the various protocols of
the Internet protocol suite into four layers.

World Wide Web. First, the Internet is not to be confused with the World

Wide Web (WWW, for short the Web) which is an application of the Internet,
albeit the most popular serves linked documents. A web document is written in
HyperText Markup Language (HTML), transmitted by the HyperText Transfer
Protocol (HTTP) and retrievable at an online address called a Uniform Resource
Locator (URL). The web does not include, for example, e-mail, instant messaging
and őle sharing.

World Wide Web: an application of the Internet that serves on
a graphical user interface linked documents written in HyperText
Markup Language (HTML), transmitted by the HyperText Transfer
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Protocol (HTTP) and retrievable at an online address called a
Uniform Resource Locator (URL).

Originally, the Web was developed to let scientists around the world exchange
information instantly. In 1989, English computer scientist Timothy Berners-Lee
developed at the Conseil Européen pour la Recherche Nucléaire (CERN, the
European Organization for Nuclear Research) the őrst Web server and client,
a hypertext browser and editor, and speciőed the URL, HTTP and HTML formats
on which the Web depends. The Web was made available within CERN in
December 1990 and on the Internet at large in the summer of 1991. (Since
1994, Berners-Lee is Director of the W3 Consortium, which coordinates Web
development worldwide.)

History of the Internet. The Internet itself evolved out of an early wide
area network called ARPAnet: President Dwight D. Eisenhower saw the need
for the Advanced Research Projects Agency (ARPA), after the Soviet Union’s
launch of Sputnik, world’s őrst satellite, in 1957. The ARPA followed suite by
developing the United States’ őrst successful satellite in 18 months. Several years
later ARPA developed computer network of funded research laboratories that
eventually evolved into ARPAnet in the 70s. It was expanded in the United States
to some laboratories and academic institutions, and then to Europe, where the
European Organization for Nuclear Research (CERN) was one of the nodes.

ARPAnet: computer network developed by the Advanced Research
Projects Agency (ARPA) between a number of laboratories and
academic institutions

A driving force behind the creation of the ARPAnet was the desire to share
computer resources more efficiently:

Time Sharing. Computer time in the 50s was so costly access time had to
be limited and scheduled. Much time on the computer was used for input and
output, but not computing, so the computing power often went unused, and
the computer was practically idle. To use computer resources more efficiently,
the idea of łTime-sharingž to run multiple programs (seemingly) łat the same
timež was born: The computer switched from user to user while receiving input
or returning output, giving them the impression of a live interaction with the
computer instead of taking turns. The Ethernet protocol was created (by the
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Xerox Corporation) to connected different computers into a single (so called
local-area) network. These interactions then took place on a local area network,
but the more users, the less responsive the computer.

Networking. The idea was born to share computational resources by con-
necting various local networks to a single larger network. In 1966 the Information
Processing Techniques Office (IPTO) funded the creation of a high-speed net-
work among the funded research laboratories, which eventually evolved into
the ARPANET that differed from existing computer networks by:

• connecting a network of computers (among equals) instead of sharing a
single computer (server) among many terminals (hosts).

• so-called packet switching, that is, messages had a designated destination
and return address but no mandatory delivery route (as in the telephone
system):

Such a decentralized network, without critical paths, sparked the interest of
the military, since it could reroute messages even if part of the network was
destroyed (while the destruction of a telephone operation center entails that of
its entire dependent network).

ARPAnet. The American computer scientist Vinton Cerf at Stanford Univer-
sity wrote the őrst TCP protocol with Yogen Dalal and Carl Sunshine, called
Speciőcation of Internet Transmission Control Program (RFC 675), published
in December 1974. From 1972-1976, Cerf co-designed the TCP/IP protocol-suite
with Robert Kahn that would form the basis of the Internet. Cerf worked at
the United States Defense Advanced Research Projects Agency (DARPA) from
1976 to 1982 and funded various groups to develop TCP/IP. When Robert Kahn
became IPTO director in 1979, the DARPA had multiple incompatible packet-
switching networks, which on 1 January 1983, adopted the suite of TCP/IP
protocols. After some demonstrations of the network technology, such as linking
the networks of SATNET, PRNET and ARPANET from Menlo Park, CA to
University College London and back to USC/ISI in Marina del Rey, CA in
November 1977, the Internet started in 1983.
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Comparison between the OSI and TCP/IP reference-model. Since the
Internet runs on the TCP/IP reference-model, which has only four layers, the
standard ISO 7-layer stack is more of a theoretical abstraction than a practical
standard. Unlike the standard ISO 7-layer stack, the TCP/IP 4-layer stack evolved
by being used rather than drafted and thus is testiőed to work, even cross-
platform. While the Internet Protocol Suite is descriptive, the OSI reference-
model was intended to be prescriptive: the OSI model is a wonderful abstract
construction; though the network, which exists and works, does not fully follow
it. However, the iOS Model is of historical and conceptual interest, as it precedes
the former, and the same principles apply.

When the models are (incorrectly) used interchangeably, both are referred to as
the Internet reference-model.

Layers.

Table 26: approximative comparison table between the OSI and TCP-IP layers:

OSI Layer TCP/IP Layer Examples

Applications (7) Applications (4) HTTP(Hypertext Transfer Protocol
FTP(File Transfer Protocol)
SMTP(Simple Mail Transfer)
IMAP(Instant Message Access
Protocol) DHCP(Dynamic Host

Conőguration)
Presentation (6)

Session (5) SOCKS (Socket Secure)
Transport (4) Transport (3) TCP Transmission Control

Protocol) UDP(User Datagram
Protocol)

Network (3) Internet (2) IPv4/6(Internet Protocol)
ICMP(Internet Control Message)

Data Link (2) Network Access
(1)

IEEE 802.3 (Ethernet LAN) IEEE
802.11,802.11a -- g (Wi-Fi)

Bit Transmission (1)

1. The physical layer provides only the means to transmit raw bits. Electrical
speciőcations such as Network hardware or physical cabling are speciőed.
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2. The network access layer (Link Layer) does not contain protocols of the
TCP/IP family, but subsumes those for data transmission from point-to-
point, to connect different subnets, such as Ethernet, Point-to-Point_Protocol
(PPP) or 802.11 (Wireless_LAN).

3. The Internet layer comprises all protocols for the forwarding and routing
of packets, that is, determining the next intermediate destination for a
received packet and to forward the packet there; also segmenting, error
detection and error correction. The core of this layer is the [Internet
Protocol] (IP) in version 4 or 6

4. The transport layer comprises all protocols for establishing, prioritizing,
maintaining, and terminating the communication between two computers
on a network and checking that data sent from one computer to another
has correctly reached its destination. Most importantly, the Transmission
Control Protocol (TCP) to reliably send data streams, but also unreliable
protocols such as the User Datagram Protocol (UDP).

5. The session layer comprises protocols keeps track of the progress of data
transfers, for session hibernation (checkpointing), suspension, termina-
tion and restart procedures, for example, after a transmission error or
interruption.

6. Presentation Layer: For the formatting of messages, converting data into
a format understandable by an application such as a Web Server, for
example, encryption and decryption (or codeset conversions, say from
ISO Latin-1 to UTF-8).

7. The application layer comprises all protocols to exchange application-
speciőc data over the network, for example, the Mozilla HTML engine
used by FireFox and Chrome, or the SMTP protocol used by e-mail
programs

However, different application protocols (such as HTTP, FTP, IMAP, . . . )
implement the functions of Layer 5, 6 and 7 differently, and do not separate
these layers strictly; hence, practitioners, such as network engineers, subsume
all those layers as Layer 5+, the application layer, just like the Internet Protocol
Suite does.

Self-Check Questions.

1. Please name the layers of the OSI model! Applications , Presentation , Session
, Transport , Network , Data Link , Bit Transmission
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2. Please name the layers of the DoD model! Applications , Transport , Internet,
Network Access

3. Please provide example protocols for őve layers of the OSI model! HTTP,
SOCKS, TCP, IP, Ethernet

4. Please provide example protocols for each layer of the DoD model! HTTP,
TCP, IP, Ethernet

13.2 IPsec

A private IP network is a network (commonly a local area networks (LANs) in
residential and enterprise environments) whose computers have IP addresses
which fall into the ranges speciőed by IPv4 (in RFC 1918; analogue ones exist
in IPv6):

• from 10.0.0.0 to 10.255.255.255,
• from 172.16.0.0 to 172.31.255.255, and
• from 192.168.0.0 to 192.168.255.255

These addresses can be used without approval from an Internet registry. (Where
here and henceforth we often mean computer to mean an endpoint of the
network; this includes tablet, smartphones and other network devices.)

Private Network: network that uses private IP addresses without
any need of approval from an Internet registry.

A Virtual Private Network (VPN) is a private network made up of (at least)
two (spatially separate) closed networks connected via an open network (such
as the Internet). For example, to connect

• networks between two companies (to form a so-called extranet),
• various networks within the same company (so-called intranets), and
• a single client via the Internet to an intranet (so-called remote access; the
most common use of VPNs for the end-user).

VPN: A private network made up of two or more (spatially sepa-
rate) closed networks connected via an open network (such as the
Internet).
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To establish privacy, the connections between two closed networks use authen-
tication and encryption: The parties authenticate mutually using a previously
set shared secret (such as a password or certiőcate); then the exchanged data is
encrypted and decrypted at the end points.

Gateway. Brieŕy, a gateway is a device that links two networks such as a
router that distributes network traffic ŕow. An internet connection at home
usually uses a router to deliver internet data packets to the devices at home, for
example, a smartphone, tablet or laptop. This is the őrst router the device at
home connects to for an Internet connection; also known as a default gateway.
By convention the gateway has the lowest IP address in the subnet (a group of
addresses).

A Firewall őlters data packets to protect an inner (private) network from an
outside (public) network. It is usually located on a gateway, or possibly as
software on a user’s computer, for example, as part of the operating system
such as the łMicrosoft Windows őrewallž.

Many (consumer) devices are both a router and a őrewall. Therefore, these three
terms, Gateway, Router and Firewall, are sometimes used interchangeably.

Router. Routing is the directing of data packets from their source toward
their ultimate destination through intermediary nodes, called routers, over the
network. A router is a computer networking device that distributes data packets
across a network of (two or more) networks toward their destinations, through
a process known as routing, that is,. Routing occurs at layer 3 (the Network
layer) of the OSI seven-layer model. To compute the best routes to network
destinations the routers use routing tables: a basic routing table stores details
of every computer in the network and the connections between them; others
also the current state of the network with respect to the amount of traffic.

The simplest routing is hop-by-hop routing: each routing table lists, for all
reachable destinations, the address of the next device along the path to that
destination; the next hop. If the routing tables are consistent, then the simple
algorithm of relaying packets to their destination’s next hop thus suffices to
deliver data anywhere in a network. In practice, hop-by-hop routing is now
replaced by the newer Multiprotocol Label Switching (MPLS), where a single
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routing table entry can select the next several hops resulting in less table lookups
and faster arrival.

Routing Protocols specify how routers (mutually) exchange the (changes in
their) routing tables. In the basic Router Information Protocol (RIP) they are
periodically exchanged entirely. Because this is a rather inefficient process, RIP
is replaced by the newer Open Shortest Path First(OSPF) protocol (RFC2178
from 1998) which causes smaller, more frequent updates (but require more
processing power and memory).

Firewall. A Firewall is a software that monitors network traffic, usually
between two networks, one trusted (for example, a private local-area network
at home or at a company), the other one not, (for example, a public wide-area
network such as the Internet), to provide security by blocking access from
the public network to certain services in the private network. It can run on a
multi-purpose device (like a personal computer) or a dedicated device (like a
router, especially for larger networks).

A simple Firewall (known as packet őlter or screening router) has a set of
rules, which are applied to each data packet according to its attached metadata,
(where it is from, where it should be sent to, . . . ), to decide whether to allow a
packet through. In the simplest case, a őrewall only refuses data packets based
on its port. It works at the network OSI layer. Simply put, the private network
is the castle, the őrewall the bulwark and (network) ports holes that have to be
drilled into it for access to the public network.

An application-layer őrewall not only looks at the metadata but also at the
actual data (so-called deep packet inspection, DPI). For example, a user of a
private network could install a backdoor trojan by surőng to a Website with
malicious code or by opening an email attachment.

A őrewall can run on the computer in the private network connected to the
public network, for example, on a personal computer running Linux or Windows
connected to the Internet. However, the larger the private network, the more
points of failure (such as out-of-date or disabled őrewalls), including other
devices such as a printer or TV. Therefore, it is prudent in larger private
networks (such as those in a company) that connect to a public network to have
a dedicated őrewall for the whole network.
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Gateway. A Gateway is a device, often a dedicated computer, that works
as a gateway from the computers of one to those of another network; that is,
that joins two different networks, usually an internal (local-area) network to
a wide-area network such as the Internet. For example, the connection of a
modem to the Internet via an Internet Service Provider (ISP) is shared among
the computers of a home or company network via a router or a őrewall. For
these computers, the router or őrewall is the gateway. However, gateway is
more general a term than router or őrewall, because it takes care of all possible
conversions between different network architectures, for example, from one
protocol or character encoding to another: say from TCP-IP to a proprietary
protocol used by a subnetwork. It works at level 4 and higher of the OSI
reference-model.

NAT. Network Address Translation (NAT) translates public IP addresses
into private ones in an Internet Protocol(IP) network by changing the the source
or destination address in every packet header (and adjusting the checksums): It
replaces the host’s internal source address in the IP packet header by the NAT
device’s external IP address. Typically, NAT is implemented on gateways (such
as router or őrewalls).

Network Address Translation (NAT): translates the public IP ad-
dresses of an IP network into private ones.

Port Address Translation (PAT) replaces the host’s source port number in the
TCP (or UDP) header by one from a pool of available ports. The NAT device
stores an entry in a translation table that maps the host’s internal IP address
and source port to the source port it was replaced with. While the internal host
knows the IP address and TCP (or UDP) port of the external host, the external
host only knows the public IP address of the NAT device and the port used to
communicate with the internal host. However, a host’s internal applications that
use multiple simultaneous connections (such as an HTTP request for a web
page with many embedded objects) can deplete available ports. To avoid this,
the NAT device tracks the destination IP address in addition to the internal
port (thus sharing a single local port with many remote hosts).

For peer-to-peer applications such as VOIP and VPNs, external hosts must
connect directly to a particular internal host. The internal addresses all map to
the same publicly accessible address of the NAT device. This poses no problem
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if the NAT is a full cone or has Endpoint-Independent Mapping and Filtering (as
categorized in RFC 3489 or RFC 4787), that is, maps an internal IP address to a
static TCP/UDP port. However, NAT traversal (NAT-T) is needed, for example,
if

• the NAT is a (port) restricted cone or has Address-Dependent (and Port)
Filtering, that is, only allows incoming traffic (on a speciőc port) only in
reply to outgoing traffic,

• the NAT is symmetric (RFC 3489) or Address-Dependent Mapping (RFC
4787), that is, the source external socket (IP address and TCP/UDP
port) depends not only on the source’s internal socket, but only on the
destination socket.

To this end IPsec-VPN encapsulates Encapsulating-Security-Payload (ESP) pack-
ets into UDP packets using port 4500. VOIP employs

-either the Session Traversal Utilities for NAT (STUN) protocol (as speciőed in
RFC5389) that uses hole punching : For Alice to establish a connection to Bob, a
public relay server őrst passes Alice’s public socket (IP address and UDP port)
to Bob. Bob then sends an initial (usually rejected) packet to this socket so that
Bob’s őrewall allows a connection from it (as reply to this outgoing connection),
- or, if STUN fails, the Traversal Using Relay NAT (TURN) protocol (as speciőed
in RFC 5766), in which the public relay server not only mediates the socket
information but the entire traffic between Alice and Bob.

Masquerading. Most networks use NAT to enable multiple hosts on a
private network with different private IP addresses to connect to the Internet
using a single public IP address assigned through an Internet Service Provider
(ISP). That is, NAT hides an entire (private network) address space behind a
single IP address in the public domain address space.

NAT keeps track of the łstatež of the network connections and uses translation
tables whose entries can be őlled by the network administrator (static NAT or
port forwarding). This allows traffic originating in the public łexternalž network
to reach selected hosts in the private łinternal masqueradedž network. In
particular, Port Address Translation (PAT) translates TCP or UDP connections
made to a host and port on an outside network (Internet) to a host and port
on an inside network (LAN) by mappings different internal IP addresses to
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different outside ports. This way a single external IP address is used for many
internal hosts; almost as many as there are ports: over 64000 internal hosts.

Host-to-Host NAT-Traversal (NAT-T). NAT changes the source or destina-
tion address in the packet header (and adjusts the checksums). In particular,
PAT attaches to an IP packet a new IP address and source port. IPSec authen-
ticates (and encrypts) the data packet, but the Network-Address Translation
in-between breaks authenticity:

• The encapsulated address of the source computer (in the payload, the
actual data) does NOT match the source address of the IKE packet
because it is replaced by the address of the NAT device. Any change to
the IP addresses (what NAT is all about) lets IKE discard the packet:

• In addition, the IP addresses and ports are encrypted in IPsec. Depending
on the encryption level, the payload and in particular the headers are
encrypted in IPSec ESP. NAT cannot access this encrypted information,
therefore cannot exchange neither addresses nor ports.

Because ESP does not use ports that could be łtranslatedž, it fails on networks
that use PAT (like common home routers) and only a single client in the local
network can establish a VPN tunnel. Therefore connections between hosts in
private TCP/IP networks, which use NAT devices; for example, of peer-to-peer
and VoIP applications, cannot be established.

NAT Traversal (NAT-T or UDP encapsulation) solves this incompatibility
between NAT and IPSec: After detecting one or more NAT devices, NAT-T adds
a layer of User Datagram Protocol (UDP) encapsulation to IPsec packets, so they
are not discarded after address translation. RFC3947 deőnes the negotiation
during the IKE phase and RFC3948 the UDP encapsulation (both from 2005).
(According to loc.cit.: łBecause the protection of the outer IP addresses in IPsec
AH is inherently incompatible with NAT, the IPsec AH was left out of the scope
of this protocol speciőcation.ž) For NAT-Traversal, three ports must be open on
the NAT device:

• UDP port 4500 (used for NAT traversal),
• UDP port 500 (used for ISAKMP/IKE), and
• IP protocol 50 (ESP).
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NAT-T encapsulates both IKE and ESP traffic within UDP( source and destina-
tion) port 4500:

1. If a NAT device has been determined to exist, NAT-T will point all
ISAKMP/IKE packets change from UDP port 500 to UDP port 4500.

2. NAT-T encapsulates the Quick Mode (IPsec Phase 2 IKE) exchange inside
UDP 4500 as well.

3. NAT-T adds a UDP header, which encapsulates the IPSec ESP header.

This encapsulating UDP packet is NOT encrypted; therefore the NAT device
can change its addresses and process the message.

Endpoints. The VPN can connect:

• gateway-to-gateway; the simplest case, where both endpoints are directly
accessible with hard-coded addresses and ports, for example, on the same
LAN or both publicly accessible.

• host-to-gateway (Remote Access). This is the common case of one of the
two parties being behind a gateway; for example, a notebook of a sales
representative or a home office computer, behind a (public of private)
router that connects to a public server (for example, the company’s central
server) via the Internet which can be reached under a őxed IP address or
domain on the Internet.

• host-to-host (Peer-to-peer). This case is less common. Network Address
Translation (NAT) allows an Internet Protocol(IP) network to translate
public IP addresses into private ones (of hosts behind a gateway); often
by mapping many private IP addresses to a single public one by assigning
different ports to them (Port Address Translation, PAT). While sometimes
possible, generally direct NAT-to-NAT connections are infeasible on mod-
ern networks because most NAT routers are strict about randomizing
the port (that is, port address translation as needed for NAT), making it
impossible to coordinate an open port for both sides ahead of time. In
this case, both ends will usually forward through an intermediary bounce
server. Instead, a signaling server (such as STUN) must be used that
stands in the middle and communicates which random source ports are
assigned to the other side. (Session Traversal Utilities for NAT, STUN,
is a standardized protocol for such address discovery including NAT
classiőcation. STUN allows applications to discover the public IP address
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and TCP/UDP port mappings that they can use to communicate with their
peers.) Both clients make an initial connection to the public intermediate
łsignallingž server, then it records the random source ports and sends
them back to the clients. (This is how WebRTC works in modern P2P
web apps.) Even with a signalling server and known source ports for
both ends, sometimes direct connections are impossible because the NAT
routers are strict about only accepting traffic from the original destination
address (the signalling server), and will require a new random source
port to be opened to accept traffic from other IPs (for example, the other
client attempting to use the originally communicated source port). This
especially happens in cellular networks, and is where NAT-T (see below)
comes in.

Underlying Transport Protocols. A VPN connection commonly uses one
of the following two protocols underneath:

• either TCP (Transmission Control Protocol):

ś the more reliable, but slower option.
ś useful for obfuscating VPN traffic to look like regular HTTPS traffic
which has less chance of being blocked.

• or UDP (User, or, jocular, Unreliable, Datagram Protocol): Packets are
sent without any conőrmation; that is, no guarantee that sent data arrived
correctly. This duty is shifted to applications that use the protocol (for
example, VOIP applications). The faster and preferable option for con-
necting a VPN, if the above two restrictions that TCP circumvents do not
apply.

UDP: Internet Protocol used for fast transport of data across a
TCP-IP network due to the absence of reliability checking;

Ports. A Port is a software, rather than a hardware concept. It is a number
(between 0 and 65535) that stands for a data channel into and out of a computer
in a network. The header of a packet of the Transmission Control Protocol
(TCP) (or the User Datagram Protocol, UDP) contains a source and destination
port number. This TCP (or UDP) packet is encapsulated in an Internet Protocol
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(IP) packet, whose IP header contains a source and destination IP address. An
Internet Socket can be deőned as the pair of an IP Address and TCP Port.

Port numbers fall into three distinct ranges:

• the Well-Known Ports (0 ś 1023);
• the Registered Ports (1024 ś 49151), and
• the Dynamic (or Private) Ports (49152 ś 65535).

Some Well-Known (or Dedicated) ports are dedicated to certain protocols, for
example, port 80 usually to the HTTP protocol for retrieving web pages. Their
numbers are assigned by the Internet Assigned Numbers Authority (IANA).
They can be used only by system processes (or by privileged users’ such as
root).

Table 27: Well-Known Ports of well-known protocols

port protocol

13/tcp Daytime Protocol
17/tcp Quote of the Day
21/tcp FTP: The őle transfer protocol - control
22/tcp SSH: Secure logins, őle transfers (scp, sftp) and port forwarding
23/tcp Telnet, insecure text communications
25/tcp SMTP: Simple Mail Transfer Protocol (E-mail)
53/tcp DNS: Domain Name System
53/udp DNS: Domain Name System
79/tcp Finger
80/tcp HTTP: HyperText Transfer Protocol (WWW)
88/tcp Kerberos Authenticating agent
110/tcp POP3: Post Office Protocol (E-mail)
119/tcp NNTP: used for usenet newsgroups
139/tcp NetBIOS
143/tcp IMAP4: Internet Message Access Protocol (E-mail)
443/tcp HTTPS: used for securely transferring web pages
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Table 28: Well-Known Ports of well-known protocols

port protocol

21/tcp FTP: The őle transfer protocol - control
22/tcp SSH: Secure logins, őle transfers (scp, sftp) and port forwarding
25/tcp SMTP: Simple Mail Transfer Protocol (E-mail)
53/tcp DNS: Domain Name System
53/udp DNS: Domain Name System
80/tcp HTTP: HyperText Transfer Protocol (WWW)
143/tcp IMAP4: Internet Message Access Protocol (E-mail)
443/tcp HTTPS: used for securely transferring web pages

IPsec. Internet Protocol Security (IPsec) is a stack of protocols that secures
Internet Protocol (IP) communications by authenticating (and optionally en-
crypting) each packet (over public and insecure networks). It is mainly used
for VPNs and is, at least in the business market, the most established protocol.
IPsec was developed by the Internet Engineering Task Force (IETF) as an
integral part of IP version 6. Recommend official sources to gain an overview
of the entire IPsec protocol suite are the documentation roadmap RFC2411
and its security architecture RFC4301. (See also Friedl (2005) for an illustrated
informal guide.)

IPsec as a VPN offers Interoperability with IP protocols: It operates at the
Internet Layer of the Internet Protocol Suite (comparable to network layer in
the OSI model). Other common Internet security protocols, such as Secure
Sockets Layer (SSL), Transport Layer Security (TLS) and Secure Shell (SSH),
operate on a higher application layer protocol. This makes IPsec more ŕexible,
because applications can ignore IPsec in contrast to the other higher-layer
protocols.

Tunnel Mode. Tunnel mode is usually used between gateways through the
Internet and connects two networks between two gateways. The end devices
themselves connected via the two networks do not have to support IPsec. The
security of the connection is only provided on the partial route between the two
gateways. Tunnel mode encrypts the whole IP packet. A new external IP header
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is used. The IP addresses of the two communication end points are located in
the inner protected IP header.

Tunnel mode: encrypts the whole IP packet.

Transport Mode. Transport mode is usually used when the őnal destination
is not a gateway. It uses an additional IPsec header between the IP header and
the transported data. It is less secure than tunnel mode as it only encrypts the
data portion but leaves the original IP addresses as plaintext.

Tunnel mode: encrypts the data portion but leaves the original IP
addresses as plaintext.

IPsec Protocols. IPSEC essentially consists of the Internet Key Exchange
(IKE) and Encapsulated Security Payload (ESP) protocol. IKE is the technical
implementation of the Internet Security Association and Key Management
Protocol (ISAKMP) framework. IKE uses UDP at port 500 for the initial key
exchange (IKE) and port 50 for the IPSEC encrypted data. ESP (for NAT
traversal) uses UDP port 4500 and TCP port 10 000.

Internet Key Exchange (IKE):. Establishes a common secret key

• either manually through the exchange of public keys,
• or automatically by the certiőcates from a trusted certiőcate server.

The cryptographic Internet Security Association and Key Management Protocol
(ISAKMP) deőned by RFC 2408 describes the key exchange protocol, but does
not specify the used cryptography. IKE implements the ISAKMP and establishes
a mutual secret key by the Diffie-Hell. IKEv2 is a tunneling protocol that is
standardized in RFC 7296 (a joint project between Cisco and Microsoft) and
it stands for Internet Key Exchange version 2 (IKEv2). It extends IKE and
simpliőes conőguration and connection establishment. The őrst version of IKE
came out in 1998 and version 2 in December 2005.

To be used with VPNs for maximum security, IKEv2 is paired with IPSec. In
comparison to other VPN protocols, the single most important beneőt of IKEv2
is its ability to reconnect quickly after VPN connection loss. In particular useful
on mobile devices, which usually support IKEv2 (natively).
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1. IKE Phase 1 establishes a secure connection channel. This includes the
authentication between the parties, either with certiőcates or keys shared
before. This secure connection channel is then used to securely negotiate
the parameters from Phase 2 between the VPN partners.

2. IKE Phase 2 negotiates the encryption and authenticity parameters with
which the actual data is secured. After negotiating the Security Associ-
ations (SAs; a unidirectional secure ŕow of data between two gateways
deőned by a destination address, a Security Parameter Index (SPI) and a
security protocol) in IKE phase 2, (usually) the ESP protocol is used to
transport the encrypted data.

Internet Key Exchange (IKE): uses UDP at port 500 for the initial
key exchange, either manually or automatically by certiőcates

Authentication Header (AH):. Provides authentication and protection
against replay attacks, but no conődentiality. That is, the user data is not
encrypted and can therefore be read by anyone. AH protects the invariant
parts of an IP datagram: IP header őelds that can be changed by routers on
their way through an IP network (for example, TTL) are not considered. If
routers with activated Network Address Translation (NAT) are passed on the
way through the network, then they change the actually invariant parts of an
IP datagram, and authentication is therefore no longer possible. Thus NAT
and AH are incompatible by design! Instead, ESP is possible, which essentially
superseded AH.

Authentication Header (AH): Provides authenticity, but no conő-
dentiality. Essentially superseded by ESP.

Encapsulated Security Payload (ESP):. ESP (speciőed in RFC 3948) en-
crypts all critical information by encapsulating the entire inner TCP/UDP data
packet into an ESP header. An IP protocol like TCP and UDP (OSI Network
Layer 3), but without port information like TCP/UDP (OSI Transport Layer 4).
Unlike Authentication Header (AH), ESP in transport mode does not provide
authenticity for the entire IP packet. In Tunnel Mode, where the entire original
IP packet is encapsulated and a new packet header added, ESP protects the
whole inner IP packet (including the inner header) while the outer header
remains unprotected. It provides:
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• conődentiality (by encryption),
• authenticity (detection of tampering by hashing and every party is who it
claims to be by certiőcates), and

• protection against replay attacks (by nonces).

Encapsulated Security Payload (ESP): encrypts all critical informa-
tion by encapsulating the entire inner TCP/UDP data packet. An
IP protocol like TCP and UDP (OSI Network Layer 3), but without
port information like TCP/UDP (OSI Transport Layer 4).

Other VPNs. IPsec, thanks to its long development history:

• is secure (was proved and improved time and again: (However, leaked
documents by Edward Snowden, a former U.S. National Security Agency
(NSA) employee suggest that the protocol has been deliberately weakened
by the NSA. Therefore, commercial implementations as black boxes of
IPsec are no longer considered trustworthy.)

• is standardized:

ś VPN gateways have special IPsec processors for high performance
ś IPsec is implemented in devices and operating systems of many
manufacturers The IPSec protocol is as an extension to the IP stack
implemented in the operating system (kernel); therefore, unlike Open-
VPN, no additional software must be installed.

However:

• it is comparatively difficult to conőgure. Still, since the introduction of
IKEv2, IPSec has caught up.

• its authentication protocol IKEv2 is easier to block than other protocols
such as OpenVPN due to its reliance on őxed protocols and ports. Ikev2
protocol only works on standard ports, which are commonly blocked on
many corporate, school, and public networks.

Other options are:
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SSL-VPN. An alternative to IPsec is SSL-VPN that builds on SSL/TLS.
Whereas IPSec provides network security as a whole, SSL VPN’s only to certain
applications and for remote client access.

• The most important advantage of SSL-VPN is a quasi client-less operation:
IPSec software has to be set up on all client machines before being able to
remotely connect, Whereas with SSL, the remote user only requires a web
browser (and possibly installing a browser plug-in). SSL VPN is accessed
via a web portal front end after a secure HTTPS connection has been
established between the client and server. From here the user (usually
an employee) can access the authorized (usually enterprise) applications.
(However, if other applications are to use this connection, then a browser
plug-in, such as Java or ActiveX, is needed, which could contain security
holes.)

• The IPSec protocol is often blocked in public networks, where SSL is
usually always open.

OpenVPN. OpenVPN is a popular unstandardized open-source VPN pro-
tocol over the UDP or TCP protocol that uses TLS for key exchange (and
OpenSSL for encryption). It supports dynamically assigned IP addresses be-
hind NAT gateways. Using TLS, it is incompatible with IPSec. It is implemented
as software which is

• is stable and secure, thanks to the use of OpenSSL,
• runs on all common operating systems, like Windows, Linux, macOS,
Solaris, OpenBSD and Android, and

• can scale up to thousands of clients.

In comparison to IPsec:

• OpenVPN software is implemented as software applications whereas
IPsec in the operating system kernel and commonly on special hardware.
Therefore, OpenVPN is more portable, but often needs additional software
installation and is slower.

• as an open source solution the sofware VPN OpenVPN is a cost-effective
alternative to commrcial IPsec implementations.

• OpenVPN needs one (UDP or TCP) port whereas IPsec up to four (50,
500 and 4500 for the IP protocols ISAKMP, ESP, AH, NAT_T). Firewalls
let OpenVPN’s (UDP or TCP) packets through, but often block those
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of IPSec: Whereas OpenVPN traffic resembles that from an HTTPS
connection, for IPSec the őrewall either needs to be aware of (or ignore)
packets of the IP protocols ISAKMP, ESP, AH, NAT-T).

• For key exchange, OpenVPN uses the universal TLS protocol whereas
IPsec the custom IKE protocol.

WireGuard.

WireGuard: a minimalist and modern open-source VPN software
built into Linux kernel 5.5 (and above).

Wireguard is a minimalist and modern open-source VPN protocol over the
UDP protocol implemented in software. WireGuard

• is simple, user-friendly and easy to set up,

• is secure thanks to latest cryptographic algorithms and best practices; for
example, the key exchange uses perfect forward secrecy (that is, every
connection session uses a different key pair).

• has short source code (initially around 4000 lines in comparison to hun-
dreds of thousands in, say, OpenVPN).

• is relatively young, and thus lacks all the years of security audits established
VPNs such as IPsec and OpenVPN have gone through.

• only allows UDP on IPv4 or IPv6; TCP support is missing. In contrast,
OpenVPN, also offers TCP and thus works in an environment where only
TCP/80 and TCP/443 are open, such as public Wi-Fi networks. (Third
party or anyway additional code is required to use TCP as the tunneling
protocol); (DSVPN is a Dead Simple VPN in the minimalist spirit of
WireGuard that was made to address this common use case of a client on
an untrusted and restricted network connecting to a VPN server.)

• does not verify the identity of the server by certiőcates. For authentication,
Wireguard uses a public/private key pair (whereas, for example, OpenVPN
(by default) a username with password). For example, to generate the
key-pair, the command:

wg genkey | tee privatekey | wg pubkey > publickey
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creates the two őles publickey and privatekey (which should be gener-
ated on the device that requires the private key and then the public key
distributed, rather than the other way round.)

• cannot manage IP addresses dynamically; the client’s addresses are per-
manently assigned and visible on the VPN server: The client needs to
be permanently assigned an IP address that is uniquely linked to its key
on each VPN server. A user’s IP address could be found out by an at-
tacker (say by WebRTC) and then matched with records from a VPN
provider (obtained, say, by theft or legal enforcement). For this reason,
many providers refrain from using WireGuard for fear of their customers’
privacy (despite zero-log policies).

VPN Software. To securely use a shared VPN, one must trust its operator
and users: though most users are well-behaved citizens, a single one possibly
not, so that, say under law enforcement, all network traffic eventually could be
scrutinized. To set up one’s own VPN, there are several software options:

SoftEther. SoftEther (łSoftware Ethernetž) VPN is free and open-source,

• runs on Windows, Linux, Mac, FreeBSD and Solaris, and
• Easy to establish both host-to-gateway and host-to-host VPN.
• can use many popular VPN protocols such as SSL-VPN (HTTPS), Open-
VPN and IPsec, and

• supports NAT traversal via SSL-VPN Tunneling to run VPN servers behind
őrewalls by using HTTPS, so that even deep packet inspection (that looks
at the metadata as well as data) is unable to detect SoftEther’s VPN
transport packets.

openvpn-install. OpenVPN is complex; see for example the overview Arch-
wiki (2020). The shell script openvpn-install at Nyr (2019) simpliőes the setup
of a VPN server on a UNIX operating system for the inexperienced user. It
starts from entering the following one-liner in her terminal:

wget https://git.io/vpn -O openvpn-install.sh && bash openvpn-install.sh
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Algo. Algo is a set of Ansible scripts (a tool to automatize the set up of
computers on a network) that simpliőes the setup of an (IPSEC) VPN. It uses
only the software necessary and the most secure protocols available, works
with common hosting services, and does not require client software on most
devices.

Self-Check Questions.

1. On which layer of the DoD model is the IPsec protocol? 1., 2., 3., or 4.
layer.

2. Which transport protocol underlie the IPsec protocol? TCP, UDP, TLS,
HTTPS

3. Which one of these two protocols the is faster, but less reliable, one? TCP
or UDP?

4. How many ports uses IP sec to establish a secure connection? 1., 2., 3., or
4?

13.3 Transport Layer Security

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer
(SSL), are cryptographic transport protocols that provide authentication, con-
ődentiality and authenticity for data sent over a reliable transport protocol,
typically TCP. It encrypts data in both directions and (almost always) guaran-
tees the identity of the server and (optionally) the client. Originally developed
by the Netscape Corporation, it is now supported by all the major browsers
and the most common security protocol used on the World Wide Web.

TLS/SSL: cryptographic transport protocols that provide authenti-
cation, conődentiality, and authenticity for data transmitted over a
reliable transport, typically TCP

For an application programmer, TLS (and SSL) provide a protocol that can
be accessed almost like plain TCP. For a user, they establish a safe channel
over the Internet to allow the user’s private information, such as credit card or
banking account numbers, to be safely transmitted via certiőcates, public and
symmetric keys (indicated by a small padlock on the web browser’s address
bar).
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TLS sits on top of the transport layer (in the OSI reference-model, layer 4) as it
requires reliable data transfer. Therefore, it sits at least at layer 4 (and thus, in
the IP reference-model, at layer 4).

It deems sensible to situate it at:

• Layer 4, because TSL itself is a transport protocol that provides, in
addition to reliability, also security, such as conődentiality and authenticity
to prevent eavesdropping, tampering, and message forgery.

• Likewise, one layer above, at Layer 5, the session layer, because its prin-
cipal duty is to establish a secure key exchange to encipher all ensuing
communication by the so-called TSL handshake that establishes authen-
ticity and session-management, such as start-up and tear-down.

• Layer 6, the presentation layer that converts data, such as by encoding,
compression or encryption. (However, this conversion usually concerns
application data, not transportation data.)

• Or on the top (application) layer of the Internet Protocol Suites OSI (and
DoD).

X.509 Certiőcates. Authentication and encryption is established by X.509

certificate. Principally, a őle that contains the name, address and public key
of the web site and is signed by a certiőcate authority. These are organized
hierarchically and pass trust from the upper to the lower level; those at the top,
which are trusted unconditionally, are called root authorities. In practice, this
unconditional trust is achieved by the deployment of their self-signed certiőcates,
for example, as part of an Internet browser installation.

X.509 certificate: a őle, signed by a certiőcate authority, that con-
tains the name, address and public key of the Web site.

The signature of a X.509 certiőcate is the encryption by the private key of the
hash of the concatenation

(V,SN,AI,CA,TA,A,KA)

where

• V = version X.509,
• SN = serial number of the certiőcate,
• AI = algorithm identiőer number,
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• CA = name of the certifying authority,
• TA = validity interval time of the certiőcate,
• A = name of subject, and
• KA = subject’s public key.

The scheme of hierarchical authorities was created to establish trust through
machines and has the comfort that the key exchange can be automated. However,
trust is a human matter, and has as its Achilles’ heel the (absolute) trust in
(root) authority. The user must:

• trust that the key public belongs to the authority;

• trust that the private key to authority is not compromised;

• trust that authority does not abuse its power thus granted; for example,
by charging high prices. To compare,

ś the recent (intermediate) authority Let's Encrypt provides free
certiőcates and has a budget of 3 Million $,

ś whereas the company GlobalSign charges $224 a yer per certiőcate.

• trust that the authority will do its duty, for example, in the veriőcation
of the identity of the third party by the authority. To this end, each root
certiőer is subject to periodic audits (which leads us to ask whether the
same goes for the auditors, the auditors’ auditors, . . . ?!).

The level of security is reŕected by the shape of the padlock in the browser’s
address bar Whereas Let’s Encrypt’s certiőcates only verify via e-mail the
ownership of the domain, companies offer (GlobalSign at $469.50) an Extended
Validation (EV) certiőcate that veriőes the identity of the owner:

• When issuing a common certificate, like a free one from Let's Encrypt,
the veriőcation is completely automated without any personal off-line
veriőcation. To obtain the certiőcate, access to the domain suffices. For
example, this can be proved to the authority by uploading a őle received
by it.

• When issuing an Extended Validation (EV) certificate the veriőca-
tion of the site owner is done in person.
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To prevent DNS Hijacking, for example, to make sure the site belongs to the
intended owner (for example, to avoid confusion between deutschebank.de

and deutschbank.de), it is important to verify in the address bar the padlock
indicates an extended certificate. for example, the browsers Firefox and
Chrome indicated it by the green color of the entity name before 2020, but
more recent versions (> 70 respectively 77 ) abandoned it V. (2019) because it
reportedly took up valuable screen estate, especially on mobile devices, and
distracted the user.

By the common certiőcate, the user is only ensured to communicate with the
owner of the domain, but not that it belongs to the company or organization
that the site appears to represent. Thus, the common certiőcate,

• does prove that the owner of the private key is the owner of the server
at this address; thus, it avoids, for example, a man-in-the-middle at-
tack by DNS Cache poisoning, where the name address (for example,
deutschebank.de) is resolved to the numeric IP address of another server.

• however, it does not prove that the server at this address belongs to the
alleged (legal) person. thus, it allows a MITM attack by a user’s confusion
between the address and the (legal) person.

Handshake. The heart of the TSL/SSL protocol is the handshake that sets
up the session encryption, whose steps are given. The deőnitive reference is
RFC:5426; a splendid step-by-step illustration

• that traces every single exchanged byte is shown at Driscoll (2019).
• of the entire batch of protocols carried out on loading a web page is
https://subtls.pages.dev/.

The following steps are the őrst steps between a client and the server, for
example, an e-commerce site, to establish an encrypted connection (for example,
to receive credit card data from the client).

1. The łHellož between client and server, where the client proposes, and the
server chooses, a cryptographic package; that is, the set of cryptographic
algorithms,
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• to authenticate himself:

ś a cryptographic checksum (MD5, SHA, . . . ), and
ś an asymmetric cryptographic algorithm (RSA, . . . ),

• to exchange a symmetric key: an asymmetric cryptographic algorithm
(RSA, ECC, . . . ),

• to encrypt the communication: a symmetric algorithm (AES,
Camellia, RS4, . . . ). Often, the server does not choose the most
secure symmetric algorithm, but the most economical one.

For example, the cryptographic package TLS_RSA_WITH_3DES_EDE_CBC_SHA
(identiőcation code 0x00 0x0a) uses

• RSA to authenticate and exchange the keys,
• 3DES in CBC mode to encrypt the connection, and
• SHA as a cryptographic hash.

Besides this, both, the user and the server create a nonce, that is, a number
used once, for a single use, which contains

• 4 bytes to set the time, and
• 20 random bytes,

to avoid a replay attack; that is, the re-use of authentications for other
sessions.

2. The server identiőes and authenticates itself by its X.509 certiőcate, which
contains (principally):

• the server address and its public key (that uses the asymmetric
algorithm initially agreed on to exchange the symmetric key),

• to authenticate, the name of a certiőcate authority (such as a root
certiőcate authority, for example, VeriSign), and its digital signature
(that uses the cryptographic hash and asymmetric algorithm initially
agreed on); that is, the encipherment, by the authority’s private key,
of the cryptographic hash

ś of the server address, and
ś of the server’s public key.

For example, in the picture, the server is www.iubh.de
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Figure 60: certiőcate X.509
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• whose certiőcate is signed by the Comodo RSA Domain Validation

Secure Server CA intermediate authority
• whose certiőcate is signed by the root authority Comodo RSA

Certification Authority,
• whose certiőcate is self-signed (that is, signed by herself).

The client looks for the (root) certiőcate authority’s public key indicated
on the certiőcate (and which is usually included in the browser), and uses
it to decipher this digital signature. If the result is the expected hash (that
is, that of the server address and its public key), then

• the digital signature actually comes from the designated certiőcate
authority, and

• the certiőcate authority trusts this server.

Since the client (or, more accurately, its browser) trusts the root authorities
unconditionally, at this point it is certain the public key truly belongs to
the target server. (Optionally, at this point also the client authenticates
itself by a certiőcate).

3. The client

• creates a pre-secret, a random (pseudo-)number of 48 bytes,
• enciphers it using the public key (using the asymmetric algorithm
initially agreed on), and

• sends it to the server.

The server

• deciphers the pre-secret using its private key.

4. The client and server calculate the secret (master secret), a number of
48 bytes, by a function PRF,

master_secret = PRF(pre_master_secret, ClientHello.random + ServerHello.random)

which uses as input

• the pre-secret, and

• the łnoncesž, that were communicated during the łHellož,

ś from the client, and
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ś from the server.

The client and the server derive four symmetric keys (for the algorithm
initially agreed on, for example, if it is AES, each one 16 bytes long) from
the secret. (That each side has a different key is due to the best practice
of using a different key for each different use.) Namely:

• client_write_MAC_secret,
• server_write_MAC_secret,
• client_write_key, and
• server_write_key.

Among these,

• the őrst two serve to check data authenticity, and
• the last two serve to encrypt the data.

Observation: Optionally,

• In addition to the mandatory authentication of the server (by a certiőcate),
the client authenticates itself in the same way (by a certiőcate);

• the server and the client exchange an ephemeral asymmetric key to send
the symmetric key:

ś while the permanent asymmetric server key almost always uses the
RSA algorithm (and is used to sign the ephemeral encryption keys),

ś the ephemeral asymmetric key almost always uses an algorithm
that is based on Diffie-Hellman key exchange (for example, ECC or
ElGamal).

This ensures that a compromised private key of the signing key stored on
the server does not compromise the exchanged session data.

Self-Check Questions.

1. Above which layers of the OSI model does TSL sit? 1., 2., 3., and 4. layer.
2. Above which layers of the IP (or DoD) model does TSL sit? 1., 2., 3., and
4. layer.

3. Which cryptographic algorithms are agreed on during the TLS handshake
and for which purposes?
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• an asymmetric algorithm (such as RSA) to authenticate and exchange
the keys,

• a symmetric algorithm such as AES to encrypt the connection, and
• a cryptographic hash algorithm such as SHA256.

13.4 Secure E-Mail

Most Internet protocols, among them the ones for e-mailing, such as POP3, IMAP
and SMTP, initially ignored security concerns and exchanged all data in plain
text. Since then, various approaches have surged to encrypt the data

• either only during transport (for example, TLS), more convenient, that is,
easier to set up and use;

• from end-to-end (for example, S/MIME or OpenPGP), more secure: In end-to-
end encryption, the data is encrypted and decrypted at the end points, the
recipient’s and sender’s computers. Thus, an e-mail sent with end-to-end
encryption is unreadable to the mail servers (hosted by, say, Hotmail or
Gmail). Thus, for example, no third party (such as a sensitive organization
that hosts its own e-mail server) can scan e-mail for malware; instead, it
has to be done by the user(’s computer) after decryption.

However, end-to-end protocols require additional effort and still only provide
partial protection:

• require the user to set up pairs of public and private keys and publish the
public keys,

• protect only the content of the e-mail, but no metadata, so that a third
party can still observe who sent e-mail to whom, and

TLS. The most common e-mail protocol for encryption during transport is
STARTTLS. It is a TLS (formerly SSL) layer over the plaintext protocol (such
as IMAP4 and POP3 deőned in RFC2595) that allows e-mail servers to encrypt
all exchanged data between the servers as well as between servers and clients.
However, certiőcate veriőcation is optional, because a failure of veriőcation
is considered less harm than failure of e-mail delivery. That is, most e-mail is
delivered over TLS provides only opportunistic encryption.
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STARTTLS: a TLS layer over the plaintext protocol that allows e-
mail servers to encrypt all exchanged data between all relay servers.

Use of STARTTLS is independent of whether the e-mail’s contents are encrypted
or not. An eavesdropper cannot see the encrypted e-mail contents, but it
is decrypted and thus visible at each intermediate e-mail relay. This is, the
encryption takes place between the servers, but not between the sender and
the recipient. This is convenient

• for the sender and recipient as encryption is automatic on sending e-mail.
• for the relays, as they can check the contents, for example, run virus
scanners and őlter spam, before delivering the e-mail to the recipient.

However, because every relay can easily read or modify the e-mail, this is also
insecure. If the receiving organization is considered a threat, then end-to-end
encryption is necessary.

Transport layer encryption using STARTTLS must be set up by the receiving
organization. This is typically straightforward; a valid certiőcate must be ob-
tained and STARTTLS must be enabled on the receiving organization’s e-mail
server. To prevent downgrade attacks organizations can send their domain to
the ‘STARTTLS Policy List’

S/MIME. The Secure Multipurpose Internet Mail Extension (S/MIME)
is a protocol that standardizes public key encryption and signing of e-mail
encapsulated in MIME using certiőcates emitted by an authority. S/MIME’s
IETF speciőcation in Ramsdell (2009) enhances the Privacy Enhanced Mail
(PEM) speciőcations of the 90s. Initially RSA public-key encryption was used,
but since RFC:5753 (from 2010) ECC as well.

S/MIME: An e-mail encryption protocol that uses certiőcate au-
thorities to establish trust for key distribution.

Most e-mail clients, such as Microsoft Outlook or Mozilla Thunderbird,
support S/MIME secure e-mail. Before use, one must install an individual key
certiőcate, that is, before installing it:

1. create a (set of) key pair(s), and
2. send it to the certiőcation authority (CA) (be it in-house or public) for

them to sign it.
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After successful veriőcation, the certiőcation authority creates a certiőcate of
the key by signing it with its private signature key.

1. The certiőcate consists of the public key itself (including the algorithm
used and other speciőcations), personal data (like the owner’s e-mail
address and name) and the signature (including the algorithm used and
other speciőcations).

2. For the private signature key used for signing, there is a public veriőcation
key with which the signature can be veriőed.

3. There is also a certiőcate for this veriőcation key of the certiőcation
authority, the CA certiőcate, which in turn is signed by a certiőcation
authority. In this way, a chain of CA certiőcates is created. The last link
in this chain is called the root CA certiőcate. The root CA certiőcate was
signed by the root CA itself and thus has to be unconditionally trusted.

Types of Certiőcate. Depending on the security class 1, 2 or 3, the certiőca-
tion authority checks more or less strictly whether the public key truly belongs
to the applicant:

1. The certiőcation authority (CA) authenticates the applicant’s e-mail ad-
dress. That is, the personal certiőcate veriőes the owner’s łidentityž only
insofar as it declares that the sender is the owner of the łFrom:ž email
address, in the sense that the sender can receive email sent to that address.

2. The CA veriőes the personal data, such as the applicant’s name, via copies
of ID cards, extracts from the commercial register, . . .

3. The applicant must identify himself personally at the CA.

Free Certiőcates. (Class 1) S/MIME certiőcates, which are mostly
intended for private use, are available for free: For example, from CAcert, a
non-commercial, community-operated CA. However, a common e-mail client or
web browser does not recognize it as a trusted certiőcate authority. Thus, by
default, bare of a manual installation of its certiőcate, a user who receives an
e-mail with an S/MIME certiőcate signed by CAcert is warned that the origin of
the certiőcate is unveriőed. Companies, which, in contrast to CAcert, are also
recognized as trustworthy by common software:

• GlobalSign as a Free Trial PersonalSign 1 Certiőcate (valid for one
month),
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• Secorio S/MIME [3] (valid for one month; uses certiőcates from Comodo),
or

• WISeKey as free secure email eID (valid for one year). (Attention: the
łprivate-keyž is generated on the server and is therefore known to the
provider!)

Web of Trust. The web of trust is based on propagation of personal trust. It
has the principal advantage that is a peer-to-peer system, that is, it is indepen-
dent of any particular third party such as an authority. However, as its major
inconvenience, it needs personal maintenance. It also

• reveals information such as

ś the social connections of each participant,
ś the time and place of interaction between the conődants.

• does not scale well; that is, the amount of storage for the web of trust
of the whole world would be immense. For the level of authentication it
provides, it makes no sense at these scales.

• The web is as safe as its least safe node; that is, a (easily) compromised
node puts all its connecting nodes at risk.

For example, so-called łkey-sign partiesž commonly gather strangers who
sign their keys to each other. This is the opposite of what trust means: It
should only be passed on when we know the owner of the key we sign!

A compromised key can be used to sign any other key on the web of trust.
For example, imagine that Alice wants to encrypt a message to Bob. Let
Charles’s key be compromised by a man-in-the-middle.

ś The man-in-the-middle

1. creates a key in Bob’s name;
2. signs this key using Charles’s key;
3. send this key to Alice;

ś Alice, by the web of trust,

1. if she trusts Charles,
2. then,she trusts Bob (that is, the key of the man-in-the-middle!).
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Even if this fraud is discovered by others (the idea of the web of trust is
that it is impossible to fool everyone), some damage has already been
done.

In practice, instead of the web of trust, it is more feasible to establish trust
through another impersonal channel (by exchanging the őngerprints of public
keys), for example, by post, by phone, by a messenger like WhatsApp, . . .

OpenPGP.

OpenPGP: An e-mail encryption protocol that uses the web of trust
for key distribution.

Since trust is a personal matter, the automatic unconditional trust of the user
placed into root certiőcate authorities (principally companies) is unsatisfactory.
The alternative OpenPGP protocol relies on the web of trust to communicate
by e-mail. Still, few people use it: Most regard the (concrete personal) effort
needed for maintaining the keys (which inherently requires the user’s estimate
of her trust in the keys) disproportionately large for the (abstract) beneőt (of
greater privacy and security) received. Unfortunately, conceivably because so
few people use OpenPGP, the usability of dedicated programs has improved little
in recent years:

• OpenPGP key management should be easier:

ś A public key directory server (for example, pgp.mit.edu) accepts
any key without even conőrming (by an activation e-mail) that the
sender has access to the account of this e-mail address;

ś Several software solutions (presented below) have emerged that
automate the key exchange in the OpenPGP protocol. Even if the user
loses (in part) control over trust, gaining comfort helps to spread
this protocol to laymen. The security they offer is Opportunistic
Security as explained in Dukhovni (2014): as long as nobody’s
interested, it is safe; Otherwise, it is vulnerable to a man-in-the-
middle attack.

• The OpenPGP protocol has its conceptual shortcomings:
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ś the lack of Perfect Forward Secrecy (PFS); even if the typical user
wants to save the written and read emails and encipher them on
her computer by one and the same key, it is safer to encrypt the
e-mail for transport (through the sender and recipient server) by an
ephemeral key.

ś the vulnerability of the web of trust (as outlined above); Instead, it
is nowadays possible to establish trust through other channels.

ś a signature not only proves the origin of the message to its recipient,
but also to third parties (who can use this proof against the sender);

ś because the e-mail protocol by default does not use encryption, it is
easily omitted by misuse of the e-mail client (as long as it does not
exclusively send encrypted e-mails; in the distant future).

Off-the-Record. The Off-the-Record e-mail protocol speciőed in Borisov,
Goldberg, and Brewer (2004) was designed to address the shortcomings of
OpenPGP. It offers:

• Perfect Forward Secrecy: the exposure of private keys does not expose
previously encrypted conversations (because an ephemeral key is created
for the sending of each message and deleted upon receipt).

• Authenticity: guarantee of the identity of the correspondent (because
every message is signed by the sender).

• Repudiability: inability to prove the origin of signatures after correspon-
dence (by a so-called group signature, which shares the secret key for signing
among all correspondents; due to this feature the need to use one key for
each correspondent arises!)

Off-the-Record: e-mail protocol that provides Repudiability and
Perfect Forward Secrecy.

The recent program opmsg at Krahmer (2019) (as an alternative to GPG presented
below) implements this protocol (partially). It

• recommends (creating and) using one key (= persona in opmsg terminol-
ogy) for each correspondent,

• insists on checking the public key őngerprint by another channel (and
does not implement the web of trust),

• does not encrypt private keys with a password.
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Examples of OpenPGP Programs. We present some programs that use the
OpenPGP protocol, such as

• the command line program GPG to create keys and (de)encrypt and
sign/authenticate for them,

• the extension Enigmail for the e-mail client Thunderbird, and
• the extension Mailvelope for the Internet browsers Firefox and Chrome
to encrypt e-mails on web interfaces like gmail.com and Hotmail.com.

GnuPG. Gnu Privacy Guard, for short GnuPG or GPG, was written to offer
open and free cryptographic methods to the public. It is a command-line program
for

• encrypting and decrypting data (for example, e-mails), and
• creating and verifying digital signatures (to ensure authenticity of data).

It underlies the cryptographic functionality of many cryptographic applications
with a graphical user interface (GUI applications). It is installed on most Linux
distributions, and is under macOS and Microsoft Windows. The development
of GPG by the German Werner Koch started in 1997 (and hasn’t stopped to this
day) to have a free alternative to the commercial e-mail encryption program
Pretty Good Privacy (= PGP) by Phil Zimmermann.

• Version 1.0.0 was announced in 1999, in 2000 the German Federal Ministry
of Economics and Technology sponsored a port to Microsoft Windows,
and

• 2006 Version 2.0 was released, which brought signiőcant changes in the
architecture of the program.

• Up to this day, he is the leading developer and relied mainly on donations
as its only source of income. For example, by early 2015, he was running
out of resources and asked for őnancial help, which he received amply
Angwin (2015).

Among the many functions, GPG creates a pair of keys for you, one public and
the other private, where it lets you choose

• the algorithm (for example, RSA),
• the size (for example, 2048 bits),
• the validity (for example, one year),
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Figure 61: Creation of a key pair in GPG on the command line; Koch et al. (2020)

• a password for the private key, and
• the identity: the name and e-mail address of the owner.

The public key is intended for disclosure, to encrypt and check signatures. The
private key is stored and protected by a password, to decrypt and sign.

Enigmail. The Enigmail program is an extension to the graphic e-mail
program Thunderbird that adds to it the functions to

• encrypt and decrypt,
• sign and check e-mail signatures.
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Figure 62: Enigmail; Brunschwig (2018)

The user can access these functions by buttons in Thunderbird itself; to im-
plement these, it uses GnuPG underneath. According to Snipes (2019), the
Thunderbird 78 release, planned for summer 2020, has the functionality for
e-mail encryption and digital signatures using the OpenPGP standard built-in
and replaces the Enigmail add-on, and therefore the dependency on GnuPG,
whose installation was a hassle for beginners.

Mailvelope. Mailvelope is an extension for the browsers Firefox and
Chrome, developed by the Mailvelope GmbH, which adds encryption and de-
cryption functions to the web interface of common e-mail providers such as
Gmail, Hotmail.com, and Yahoo!

For example, enciphering and deciphering messages (using the OpenPGP

standard), őles on your hard drive, and send encrypted e-mail attachments.
Mailvelope is open source and based on OpenPGP.js, an OpenPGP library for
JavaScript. It is comfortable, but comfort comes at the expense of security
(and thus it is safer to use an e-mail client, such as Thunderbird); for example,
it is potentially vulnerable to Cross-Site Scripting (XSS) attacks, where one site
accesses local data stored for another

• with the user’s consensus, the e-mail provider has access to the user’s
secret keys to synchronize them between devices (which is comfortable,
but also risky).

• the Javascript language in which the extension is written is not the most
appropriate for secure encryption; among others, is susceptible to the
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Figure 63: A public key created by Mailvelope; GmbH (2020)

following ŕaws:

ś other scripts in the browser can read the secret key;
ś it is impossible to delete the secret key from memory;
ś in particular, private keys are saved in the browser storage, which is
potentially vulnerable to Cross-Site Scripting (XSS) attacks, where
one site accesses local data stored for another;

Automatic Key Exchange. Programs such as

• The extensions AutoCrypt for Thunderbird and prettyeasyprivacy for
Outlook,

• the messenger Delta-Chat for Android,

offer as described in Dukhovni (2014) only Opportunistic Security: Protection
against passive, but not active, eavesdroppers; that is, the encryption only
protects the user as long as nobody is interested in her! Such a program,
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precisely because of the lack of veriőcation of the owner of the private key
that corresponds to the public key, is vulnerable to the man-in-the-middle (MITM)
attack in which the attacker interposes himself between the two communicating
parties. For example, it is perfectly possible to use someone else’s name on
an e-mail or WhatsApp account. Therefore, encryption of the communication
only prevents it from being read by a third party, but does not guarantee
the other correspondent’s identity. To avoid this attack, one must personally
(or via another channel, for example, via telephone) check the őngerprint (a
cryptographic check sum) of the other correspondent’s public key. Tedious, but
unavoidable.

Autocrypt. The program Autocrypt automates the exchange of public keys
and is supported by many e-mail clients, such as the graphical e-mail client
Thunderbird, the command-line client Mutt or K-9 Mail for Android. It was
initiated by the European Union in response to the revelations by Edward
Snowden (Krekel, McKelvey, and Lefherz (2018)).

Autocrypt automatically adds a line to the e-mail header (normally invisible
to the user) that contains the sender’s certiőcate (name, e-mail address and
reference to her public key). This information is then automatically used by the
recipient to encrypt her response. (Additionally, it is encrypted by her own key
for secure local storage.) Therefore, all but the őrst e-mail exchanged between
two Autocrypt users are encrypted.

Instead of the automatic usage of the Alice’s public key by the recipient Bob,
more secure would be if Bob’s e-mail insisted on checking Alice’s őngerprint
through another channel (for example, by telephone).

prettyeasyprivacy. Another program to automatically send encrypted e-
mails as Autocrypt that supports commercial programs such as the e-mail client
Microsoft Outlook is prettyeasyprivacy. Founded by a private initiative, it is
a graphical interface for GPG(4Win) that it installs and uses underneath for its
cryptographic functions,. A convenient feature for us humans is to use so-called
safe words instead of hexadecimal encoding to verify the őngerprint of a public
key, that is,

• instead of transmitting 40 hex characters like 72F0 5CA5 0D2B BA4D 8F86

E14C 38AA E0EB,
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Figure 64: Functionality of Autocrypt; Autocrypt Team (2019)

• correspondents can verify it by őve words of their mother tongue, for
example, by ocean contamination goose arenas survey.

Delta-Chat. The application Delta-Chat (available under Linux, Windows,
macOS, Android and iOS) https://delta.chat/ uses the user’s e-mail account to
send automatically encrypted instant messages. It uses the same open protocol
as e-mail (IMAP, which is old with many deőciencies, but is the established
time-tested standard with a large ecosystem). Therefore:

• it does not depend on relaying all data through the vendor’s servers
(compared to many other applications that send automatically encrypted
instant messages, such as WhatsApp),

• it is compatible with recipients who do not use Delta Chat as they still
receive the messages sent in Delta-Chat by e-mail.

This interoperability, for example, that a hotmail.com user can communicate
with another gmail.com user, is called federation. The dependency on a single
company brings the following problems:
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Figure 65: Delta-Chat; Merlinux GmbH (2018)

• the user has to place all her trust in this company, about which she usually
knows little on a personal level, where trust is established, for example:

ś the company could exploit the compiled users’ (meta-)data stored
on their servers for its own proőt;

ś even if not, then it could change its mind about its business model.

• the company is as a single point of failure, for example:

ś the company’s servers could be compromised,
ś the government could suspend or block these servers (which for
WhatsApp has occasionally happened, for example, in Brazil http:
//www.dw.com/pt-br/whatsapp-volta-a-ser-suspenso-no-brasil/a-
19413134 and continues to happen in China).

That being said, the meta-data between the e-mail servers is still unencrypted.
However, the user can consciously choose a mail server which does not exploit
the users’ meta-data; for example, she sets up her own server or pays a monthly
fee to a trusted provider.

Conversations. The messenger Conversations proposes a modern XMPP

protocol that uses less meta-data than the IMAP e-mail protocol. (Apparently
the messenger Signal uses less meta-data than Conversations, but almost all
servers are maintained by the vendor Open Whisper Systems itself, in contrast
to Conversations. After all, the only secure solution is to run one’s own server!).
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It is a secure messenger, but unfortunately little established; for example, there
are many IMAP mail servers, but few use XMPP.

Self-Check Questions.

1. How does secure e-mail via TLS compare to S/MIME and OpenPGP?
TLS encrypts only during transport (but on no relay) while S/MIME and
OpenPGP from end to end.

2. How does authentication to establish trust compare between S/MIME and
OpenPGP? S/MIME trusts in certiőcate authorities while OpenPGP only
in personally authorized keys.

3. What kind of attack is automatic key exchange via the OpenPGP protocol
susceptible to? A man-in-the-middle attack.

4. What kind of security does automatic key exchange via the OpenPGP
protocol offer? Opportunistic Security, Some Protection Most of the Time,
as deőned in Dukhovni (2014).

13.5 Secure DNS

The Domain Name System (DNS) is a distributed database analogous to a
phone book of the Internet.

DNS: database of all Internet domain names distributed on hierar-
chically organized servers over the Internet.

DNS. DNS translates human-friendly alphabetic Internet domain address,
such as https://www.ongel.de, to a computer-friendly numeric IP address, such
as 194.6.193.105 (as can be found out by the Unix command-line program
nslookup). This Internet-domain address takes the form of

• the domain name of a machine,
• followed by a top-level domain (TLD),
• separated by dots (periods).

For example, ongel.de has the domain name ongel and the TLD de. Do-
main and TLD names were initially registered and governed by Inter Network
Information Center (InterNIC), a cooperation between the US government

324



and the company Network Solutions Inc, which managed the registration and
maintenance of .com, .net, and .org top-level domain names. In 1998 the
US government liberalized the process of registration and set up the ICANN
that administers Registrar companies for registering domains; for example,
the company VeriSign registers domains ending in the TLDs .com and .net.
Generic Top-Level-Domains (gTLD) such as .com are more strictly controlled
by the ICANN than country-code Top-Level-Domains (ccTLD) such as de as a
concession to state sovereignty. (An alternative Network Information Center
is OpenNIC, which adds its own top-level domains such as .pirate, .geek or
.libre to those from ICANN and operates free DNS servers.)

Fully Qualiőed Domain Name. A Fully Qualiőed Domain Name (FQDN)
(such as www.ongel.de) is a unique (worldwide) name (to address an IP address)
on the Internet and which can be freely chosen under the rules determined by
the Internet Corporation for Assigned Names and Numbers (ICANN):

• Every FQDN ends in a top-level domain (such .de),
• a subdomain (such as www) can be added to a FQDN (such as ongel.de)
by prepending it with a dot (to result in, say, www.ongel.de). Common
subdomain labels are, for example, www. for Web servers and mail.,
smtp., pop3. and imap. for (outgoing and incoming) mail servers.

• Each domain (or label, such as ongel) may contain at most 63 characters
and the entire FQDN (such as www.ongel.de) at most 255 characters.

The FQDNs are put in correspondence with the IP address by the entries of
name servers.

Fully Qualiőed Domain Name (FQDN): a unique (worldwide) name
(to address an IP address) on the Internet

The labels of a FQDNs are represented as nodes of a tree. A FQDN is then a
path of the tree:

1. The highest node is the null or root label that represents an empty name.
2. Below the highest node are those that represent a top-level domain (such

as de).
3. Below the nodes on the őrst level are those that represent a domain (such

as ongel)
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4. Below the nodes on the second level are those that represent a subdomain
of the domain (such as www) . . .

Figure 66: FQDNs represented as paths of a tree

DNS Hierarchy. DNS is deőned in Mockapetris (1987) and uses the UDP
or TCP protocol on Port 53. DNS servers use a set of databases distributed on
servers over the Internet that are organized hierarchically.

DNS zone: the subset of the DNS hierarchy which is described by a
zone file, a list of entries that map a FQDN name to its IP address.

A DNS zone is the subset, often a single domain (say ongel.de), of the DNS
hierarchy which is described by a zone (text) file; a list of entries called resource
records (RRs) that map a FQDN name to its IP address. The zone őle format,
as originally speciőed for the Berkeley Internet Name Domain (BIND) software,
is used by most DNS server software. It contains

• usually the ORIGIN keyword, that speciőes the starting point for the zone
in the DNS hierarchy; (If omitted, then the starting point is inferred
by the server software from the reference to the zone őle in its server
conőguration.)

• exactly one Start-of-Authority RR (SOA-RR), usually at the beginning of
the őle, that contains

ś the e-mail address of an administrator of the zone őle (say
admin@ns.ongel.de),
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ś the primary authoritative name server for the zone (say
ns.ongel.de), and

ś the frequency with which the RR are updated from the master name
server (say once a day);

• at least one name-server RR, usually following the SOA-RR, for the
authoritative name servers for this zone (among which őgures at least the
primary authoritative name server);

• possibly one or more NS-RR that delegates the DNS resolution of a
subdomain to another name server (say resolution of all subdomains
below www.ongel.de is delegated to ns.www.ongel.de).

root server: is the name server that resolves all FQDNs of a top-level
domain (TLD)

A root name server, or root server for short, is the name server that resolves
all FQDNs of a top-level domain (TLD) such as .com.

History. The concept of a domain name server came around in the 80s: As
the size of computer networks grew, it became increasingly difficult for humans
to keep track of which machine corresponded to which number. Before DNS,
names were resolved into IP addresses by a list (such as /etc/hosts on Unix
operating systems) that had to be available on every computer on the Internet.
Changes were őrst made manually on a master server and then downloaded by
the clients. As the number of IP subscribers increased, this procedure became
increasingly unwieldy. In 1983 Paul Mockapetris speciőed the Domain Name
System (DNS), the őrst DNS software JEEVES was developed and the őrst
three DNS root servers went into operation.

In the early 80s, the DNS software BIND for UNIX (Berkeley Internet Name
Domain) was developed at the University of Berkeley, whose version 4 became
the worldwide standard. Further development of the software was taken over,
for a short time, by the company DEC and then by Vixie Enterprises led by
Paul Vixie. Starting with version 4.9.3, BIND became the responsibility of the
non-proőt organization ISC (Internet Systems/Software Consortium). Version 8
was completed in 1997. In 1999 ISC commissioned Nominum Inc. to develop
version 9, which has been the standard since 2007 and forms the backbone of
the worldwide Domain Name System.
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DNSsec.

DNSsec: DNSsec protocol to authenticate the resolutions of a do-
main name to an IP address.

The DNSsec protocol allows the client to authenticate its requested resolution of
a domain name to an IP address. For this, the resolution is signed on registration
by the DNS server responsible for the zone őle. This provides authenticity of
the resolution, but neither conődentiality (that is, the request and its resolution
are unencrypted) nor authentication of the DNS server. To this end, further
secure DNS protocols, such as DNScrypt, DNS-over-TLS and DNS-over-HTTPS

have been devised and will be discussed below.

The DNSSEC protocol as extension to the DNS protocol was standardized in
RFC 25352 in March 1999. However, this version proved in practice unsuitable
due to elaborate key management. The roll-out of DNSSEC was delayed till
the completely rewritten version RFC 40331, RFC 40343, and RFC 40354 was
published in 2005, which obsoleted RFC 25352. In May 2010 DNSSEC was
introduced on all 13 root servers; in July the root zone key was published. In the
meantime, 90% of the top-level domains are signed with DNSSEC and marked
as signed in the root zone. A few are still testing DNSSEC without an entry in
the root zone. The distribution of DNSSEC at domain level for some TLDs is
now 50% or more. On average, about 10 % of domains validate.

Chain of Trust. The chain of trust along the hierarchy of the DNS architecture
ensures that the public key in the resolver’s DNSKEY record in the zone őle
is correct by automatic successive signature veriőcation up to the trust anchor.
The trust anchor is the őrst key in the chain of trust, the key upon which the
chain resides, the public key associated with the root name server (which is
entered manually). To establish trust along the chain, every server below must
know this key. See Sandia Corporation (2014) for a tool that visually analyses
the DNSSEC authentication chain for a domain name and its resolution path
in the DNS namespace.

Currently, the private DNSSEC key for the root zone is managed at two US
locations. Critics accuse ICANN, after it had chosen the American company
Verisign as its exclusive signing partner, of putting the independence of the
Internet at risk through exclusive DNSSEC key management in the USA.

trust anchor the key upon which a trust chain resides.
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DNSSEC deőnes four levels of trust in a record:

• Secure: A full chain of trust, all signatures up to a trust anchor can be
veriőed.

• Insecure: A valid partial chain of trust, that is, one that terminates before
a trust anchor by the lack of a signed key.

• Bogus: An invalid chain of trust, for example, by signatures using unsup-
ported algorithms, by missing data or attempted tampering.

• Indeterminate: The chain of trust has no trust anchor; the default opera-
tion mode.

Protocol. DNSSEC is a protocol that extends DNS. It therefore includes all
entries (Resource Records; RRs) of a DNSSEC packet. RFC 4034 speciőes the
addition of the four RRs: DNSKEY , RRSIG , NSEC and DS.

• DNSKEY The DNSKEY record is passes a public key between the resolver
and the name server. This public key is the one associated with the private
key with which the authority server will sign hashes of RRSET records.
The resolver will use the public key in the DNSKEY record to authenticate
the message of the authority server by verifying its signature.

• RRSIG record contains the signer’s name and the signature of the record
sent by the authority server; the signature that the resolver will later verify.
There is one RRSIG record for each zone record in the signed zone őle.

• The NSEC record is used for proof of non-existence. It contains the name
of the next authority domain or point of delegation for the request and
the records that exist for that name.

• Next Domain Name őeld: Contains the name of the next authority domain
for the request according to the RRsets order relationship. For the name
following the last RRset, the name of the parent őeld is returned.

Signatures. DNSSEC authenticates each resource record (RR) by a digital
signature, as follows: Owner of a RR is the primary authoritative name server
as deőned in the Start-of-Authority RR (SOA-RR) entry of the zone őle.

1. For each zone a ZSK (a pair of a public and private key) is generated:
2. The public key is added to the zone őle in the DNSKEY-RR.
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3. Each RR of the zone őle is then (hashed and) signed by the private zone
signing key.

4. The resolver obtains the authoritative name server’s public key by the
DNSKEY record.

5. The resolver can then verify authenticity of the passed RR by verifying
whether the decrypted (hash of the) RR using the public key (correspond-
ing to the primary name server’s private key) matches (the hash of) the
RR.

If no server matches the request, then DNSSEC proves that no such RR exists
uses a new type of record that sends the name of the őrst (in alphabetic order)
existing domain.

Key Management.

Zone Signing Key (ZSK) respectively Key Signing Key (KSK): the
key to sign the (hashed) RRs respectively to sign the ZSK.

The more encrypted data, the more information to infer the keys used to encrypt
the data: Because of the large amount of data encrypted by the key to sign
the (hashed) RRs (the so-called Zone Signing Key; ZSK), this łworkingž key
must be renewed regularly. To avoid network administrators having to renew
the ZSKs too often, the Key Signing Key (KSK) has been introduced, which is
longer and has to be renewed less regularly. While the public keys are stored
in DNSKEY-RRs, the KSK and ZSK private keys are stored offline. In more
detail:

• The Zone Signing Key (ZSK) is the łworkingž key, the (private) key to
sign a zone, that is, all the RRs requested by other servers which know the
corresponding public key to authenticate the replies. The ZSK is usually
valid for one month.

• The Key Signing Key is (the private) key to sign a zone key (ZSK), that
is, to sign a DNSKEY record. The KSK is part of the chain of trust. It is
longer than the ZSK and usually valid for 13 months.

Virtual Hosting. Virtual hosting makes it possible to host multiple DNS
names on a single (web) server, in particular, on the same IP address. This
reduces server maintenance and the number of IP addresses (which are scarce
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in IPv4; every IP address assignments must be justiőed to the regional Internet
registry).

Virtual hosting: allows multiple DNS names to be hosted on a
single server (usually a web server) on the same IP address.

For example, a server receives requests for the domains, www.ongel.de,
www.ongel.org and www.ongel.net, which resolve all to the same IP address.
But for www.ongel.de, the server sends the html őle /var/www/user/de/site/index.html,
while he responds accordingly for the top level domains .org and .net. Like-
wise, two subdomains of the same domain can be hosted together: for example,
mail.ongel.de and ftp.ongel.de.

The distinction which domain on the server was requested is made at the appli-
cation level: For example, the requested domain is sent, always unencrypted,

• in the SMTP protocol, during the SMTP handshake.
• in the HTTP protocol, by the HTTP header őeld Host sent by the client
as is obligatory since HTTP/1.1 (which is commonplace today, but whose
inclusion cannot be enforced by the server).

• in the HTTPS protocol, for a suitable assignment of certiőcates to domains,
both, client and server, must support Server Name Indication (SNI):

Server Name Indication (SNI). The biggest gripe with name-based virtual
hosting is that of multiple secure websites running TLS/SSL. In HTTPS, the TLS

handshake happens before the server has received the HTTP headers, and it can
therefore not send the certiőcate for the requested domain name. Therefore,
the HTTPS server can only serve one domain on a given IP address.

The TLS protocol extension Server Name Indication (SNI) deőned in RFC
6066, addresses this problem by sending the domain name during the TLS

handshake. This allows the server to choose the virtual domain earlier and thus
send the certiőcate corresponding to the DNS name asked for. Therefore, with
SNI-aware clients, a single IP address can be used to serve a group of domains
without a common certiőcate.

SNI: extension of TLS that sends the domain name during the TLS

handshake.
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By 2013, most browsers and TLS libraries implemented SNI, but about 20% of
users still had software that was incompatible with SNI 5. However, by 2019,
this number had fallen below 3%.

Observation. The host name is not sent encrypted in SNI. (ESNI, Encrypted
Server Name Indication, as drafted in Rescorla et al. (2018), is supposed to
solve this security hole.) SSL/TLS with SNI reveals more information than
SSL/TLS without SNI, since the server certiőcate then transmitted also contains
the domain(s) for which it was issued in plain text. If instead the certiőcate
were valid for multiple domains, then the full requested host name would not
be transmitted.

Reverse DNS. A reverse DNS lookup (or resolution), rDNS, queries the
Domain Name System (DNS) to determine the domain name associated with
an IP address. That is, it is the reverse of the usual DNS lookup of an IP
address from a domain name. It uses (so-called PTR, pointer) records through
the reverse DNS database of the Internet rooted in the .arpa top-level domain.
Although the informational RFC 1912 (Section 2.1) recommends that łfor every
IP address, there should be a matching (PTR) recordž, not all IP addresses have
a reverse entry, for example, when a web server hosts many virtual domains.

Secure DNS. In DNSsec authenticates DNS replies by a signature from
the authoritative DNS server on which the domain name was registered; not
necessarily the DNS server that answered the DNS request. DNSsec thus offers
authenticity of the DNS entries but:

• neither conődentiality as all data exchanged is unencrypted, (However,
usually the DNS server of Internet provider is used for DNS resolution,
who can see which IP addresses the user visits to anyway.)

• nor authentication as the correct DNS server does not need to authenticate.
(However, this problem is solved by TLS/SSL certiőcates; in particular,
over HTTPS.)

Secure DNS protocols

• to prevent the former, encrypt all exchanged data, and
• to prevent the latter, authenticate the DNS server to the DNS client.
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The three principal contenders for encrypted and authenticated DNS queries
and replies are:

• DNSCrypt protocol (supported by Cisco OpenDNS, among others),
• DNS-over-TLS (or DoT), DNS resolution over TLS (supported by Cloud-
ŕare, Google, and OpenDNS), and

• DNS-over-HTTPS (or DoH), DNS resolution over HTTPS (supported by
Cloudŕare and Google).

The DNS server SecureDNS.eu, operated by Dutchman Rick Lahaye, supports
all three of these: DNSCrypt, DNS-over-TLS and DNS-over-HTTPS.

Neither Windows, macOS nor Linux support encrypted DNS queries by default
at the time of writing. However, Android 9, supports DoT. Firefox supports
encrypted DNS queries by DoH and Google, at the time of writing, is testing
DoH over Chrome. DNSCrypt has less backing from the big companies.

Privacy Consideration. Because all the other sent metadata in particular
usually include the requested DNS, encrypting DNS queries mainly shifts it
from one party (the DNS server without encryption) to another (the DNS server
with encryption). Since most requests on the Internet leak the domain name
(for example, reverse DNS lookup or by protocol headers, see below), the merit
of secure DNS queries lies less in the protection against eavesdropping, but
more in the authentication of the DNS server. However, authentication (of
the requested domain) is usually already provided by TLS. On the downside,
centralization of all DNS queries (away from the ISPs) to the DNS provider
permits their bundled processing: While the data between the client and the
server is encrypted during transport, it is decrypted at each end.

Reverse DNS Lookup. The domain name can be inferred from the IP address
by reverse DNS lookup: The Internet service provider (ISP), who connects
the client to her destination by its IP address, can still (to a good measure)
őgure out the client’s DNS destination by Reverse DNS lookups: (Though this
is not completely reliable, for example, the web hosting service can lodge many
domains at the same IP address by virtual hosts or move a domain from one
IP address to another.) Thus, not only the DNS server can track the visited
websites, but the ISP as well. Therefore, for privacy it is preferable to use the
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ISP’s DNS server, because the ISP already implicitly has the information passed
to the DNS server.

Headers. The domain name is sent as plaintext:

• in the HTTP protocol, by the HTTP header őeld Host sent by the client
as is obligatory since HTTP/1.1 (which is commonplace today, but whose
inclusion cannot be enforced by the server).

• in the HTTPS protocol, for a suitable assignment of certiőcates to domains,
both, client and server, must support Server Name Indication (SNI) that
sends the DNS name of the domain as part of the TLS handshake (so that
the server can send the certiőcate corresponding to the requested DNS
name on an IP with various domains.)

• Likewise for e-mail servers over STARTTLS.

DNSCrypt. In DNSCrypt the client, instead of relying on X.509 certiőcates
emitted by trusted certiőcate authorities as found in web browsers, has to
explicitly trust a public signing key used to verify a set of certiőcates (retrieved
using conventional DNS queries). These certiőcates contain short-term public
keys used for key exchange, as well as an identiőer of the used cipher suite.
Clients should generate a new key for every query; servers should rotate short-
term key pairs every 24 hours.

DNSCrypt: unstandardized secure DNS protocol without trusted
certiőcate authorities.

According to DNSCrypt Team (2019a), the DNSCrypt protocol sits over the
TCP (mandatory) and UDP (optionally) transport protocols. The protocol has
been around since 2013, but is not standardized (say, in an RFC).

Protocol Steps.

1. The client sends a (non-authenticated) DNS query to a DNSCrypt resolver,
which encodes the certiőcate versions supported by the client, as well as
a public identiőer of the provider requested by the client.
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2. The resolver responds with a set of signed certiőcates, that must be veriőed
by the client using a previously distributed public key, the provider public
key. Each certiőcate includes a validity period, a serial number, a version
that deőnes a key exchange mechanism, an authenticated encryption
algorithm and its parameters, as well as a short-term public key, known
as the resolver public key. (A resolver can offer multiple algorithms and
resolver public keys.)

3. The client picks a certiőcate (that with the highest serial number among
the valid ones that match a supported protocol version) and encrypts
by the resolver public key to send an encrypted query, which includes a
(magic) number (to identify the chosen certiőcate) and the client’s public
key.

4. The resolver

1. decrypts the query using the private key that corresponds to the
resolver public key of the certiőcate,

2. veriőes the query, using the client public key, and
3. encrypts the response using the client public key.

Features. Advantages:

• DNSCrypt’s is among all secure DNS protocol the one closest to normal
DNS.

• By using the UDP port 443, address are resolved relatively fast and little
likely to be blocked by a őrewall.

Disadvantages: - DNSCrypt does not rely on trusted certiőcate authorities, but the
client has to trust a chosen public signing key. That signing key is used to verify
certiőcates that are retrieved via conventional (unencrypted) DNS requests and
used for key exchange - While many DNS services use DNSCrypt (such as Clean-
Browsing, which blocks adult content domains, and Cisco OpenDNS, which
blocks malicious domains), recent DNS services (including Google, Cloudŕare,
and Quad9) opted instead for DNS over TLS and DNS over HTTPS.
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DNS-over-HTTPS (DoH). DNS-over-HTTPS was speciőed in RFC8484
and uses HTTPS to be indistinguishable from any other HTTPS traffic and is
thus practically never blocked. Firefox has added support for DoH through the
DNS servers of Cloudŕare. (Google plans on testing DOH with Chrome.)

DNS-over-HTTPS: DNS-lookup protocol that uses HTTPS.

DNS-over-TLS (DoT). DNS-over-TLS, thanks to the IETF standardization
in RFC7858, is the most widely supported in software; For example, Android
9 supports DoT. DoT clients authenticate the service they connect to using
Simple Public Key Infrastructure (SPKI) which is a joint effort via the IETF to
simplify traditional X.509 PKI and a supported standard of establishing trust.

DNS-over-TLS: DNS-lookup protocol that uses TLS.

DoT is plain DNS traffic within a TLS connection using a dedicated port 853
(and occasionally on port 443). That is, up to the encryption by TLS, it is
the same as DNS over TCP/IP instead of UDP. Since TLS is the encryption
protocol used to secure almost all other Internet services, the technology is well
understood and constantly improved.

Comparison. See DNSCrypt Team (2019b) for a comparison (to
DNSCrypt).

DNSCrypt versus DNS over HTTPS:.

• Advantages:

ś DNScrypt has been well-tested, and many servers support the proto-
col.

ś DNSCrypt is faster (as it runs over UDP)

• Disadvantages:

ś Has a complete speciőcation since 2013, but the speciőcation hasn’t
been submitted to the IETF yet.
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DNS over TLS versus DNS over HTTPS:.

• Advantages:

ś DNS over TLS is considerably faster.

• Disadvantages:

ś With DNS over HTTPS an eavesdropper will not be able to tell
whether DNS queries are being made or web content is being re-
trieved, unlike with DNS over TLS.

DNS over TLS versus DNSCrypt:.

• Advantages:

ś DoT is a proposed IETF standard.
ś Straightforward: encrypts standard DNS requests over TCP by the
established TLS protocol.

• Disadvantages:

ś DoT uses the dedicated port 853, which is usually closed by őrewalls
and can thus be blocked easily

ś TLS encryption slows the DNS query down (by a factor two or
three).

ś If a provider retires a certiőcate and starts using a new one, there is
no clean way to update the SPKI data on clients other than cutting
and pasting it into the conőguration őle.

Self-Check Questions.

1. Which port uses the DNS protocol? DNS is defined in Mockapetris (1987) and
uses the UDP or TCP protocol on Port.

2. Which data reveals the server visited by the user other than her DNS
request?

• IP address,
• in the HTTPS protocol, the Server Name Indication (SNI), and
• in the HTTP protocol, the header field Host.
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3. List three protocols to securely look up domain names:

• DNSCrypt protocol ,
• DNS-over-TLS (or DoT), DNS resolution over TLS , and
• DNS-over-HTTPS (or DoH), DNS resolution over HTTPS

Summary

Internet Protocol Suite. The protocols that standardize communication on
the Internet can be stacked in to layers: the Open Systems Interconnection

(OSI) reference-model with seven layers (more of a theoretical abstraction), and
the Internet Protocol Suite with four layers (the practical standard). The layers
are ordered according to how much structure the processed data has, the higher
the layer, the closer to the user’s applications. The two most important Internet
protocols (and those that were deőned őrst) are the Transmission Control
Protocol (TCP), and the Internet Protocol (IP), that specify how data should
be formatted, addressed, transmitted, routed and received at the destination.

IPsec. A virtual private network (VPN) is a private network made up of two
or more closed (spatially separate) networks connected via an open network
(such as the Internet). The IPsec VPN uses one of two Modes: The transport
mode establishes point-to-point communication between two end points, while
the tunnel mode connects two networks via two gateways. In IPSEC tunnel
mode, IP packets are encapsulated (tunneled) in other IP packets.

Transport Layer Security (TLS). Transport Layer Security (TLS) Protocol
and its predecessor, Secure Sockets Layer (SSL), are cryptographic transport
protocols that provide authentication, conődentiality, and authenticity for data
transmitted over a reliable transport, typically TCP. Authentication and en-
cryption is established by X.509 certiőcate. Principally, a őle that contains the
name, address and public key of the web site and is signed by a certiőcate
authority. These are organized hierarchically and pass trust from the upper to
the lower level; those at the top, which are trusted unconditionally, are called
root authorities.
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Secure E-Mail. E-mail is encrypted: either only during transport (for example,
TLS), more convenient, that is, easier to set up and use; from end-to-end (for
example, S/MIME or OpenPGP), more secure: In end-to-end encryption, the data
is encrypted and decrypted at the end points, the recipient’s and sender’s
computers. Thus, e-mail sent with end-to-end encryption is unreadable to the
mail servers.

SecureDNS. The Domain Name System (DNS) is a distributed database on
the Internet that resolves human-readable domain names into machine-readable
IP addresses. DNS offers neither privacy as all data exchanged is unencrypted,
nor trust, as the DNS server does not need to authenticate. DNSsec offers
authenticity by signing all DNS records, whereas more recent secure DNS
protocols encrypt all exchanged data and authenticate the DNS server to a
client.

Questions

1. How many layers does the OSI model have?

□ 4

□ 5

□ 7

□ 10

2. How many layers does the TCP/IP reference model have?

□ 3

□ 4

□ 5

□ 7

3. Which protocol is not part of the IPsec protocol family?

□ Internet Key Exchange (IKE),
□ Authentication Header (AH),
□ Encapsulated Security Payload (ESP), and
□ Session Traversal Utilities for NAT (STUN)
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4. Which kind of (cryptographic) algorithm is not agreed on during the TLS
handshake?

□ an asymmetric algorithm such as RSA,
□ a symmetric algorithm such as AES,
□ a cryptographic hash algorithm such as SHA256,
□ an error-correction check sum such as CBC.

5. Which security feature is neither part of the S/MIME nor OpenPGP protocol?

□ asymmetric encryption and decryption
□ digital signature
⊠ perfect forward secrecy
□ integrity veriőcation

Required Reading

Read the carefully crafted illustrated guides on IPsec Friedl (2005) respectively
TLS Driscoll (2019).

Further Reading

Read Dukhovni (2014) on opportunistic security.
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14 Practical aspects of cryptology

Study Goals

On completion of this chapter, you will have learned . . .

• where, why and how random numbers in cryptography are generated; in
particular, the distinction between physical and pseudo-random number
generation.

• how to ensure long-term security (in 10 to 20 years of time, for example,
of health data) by

ś knowing the future strength of key lengths,
ś using means such as perfect forward security to ensure that exchanged
data cannot be decrypted afterwards,

ś knowing about the possible future threats by quantum computing
and how to counter them.

• best practices for using cryptography in application development, by

ś risk analysis, and
ś using proven common libraries rather than home-brewed solutions.

• to conform to legal regulatory requirements by using encryption for data
protection, of utmost importance, for example, in health care,

• to be aware of government trap doors and security holes potentially kept
secret by intelligence agencies
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Introduction

Even though the presented algorithms are secure in theory, in practice a lot
may go wrong when implementing cryptography; thus, as a software developer,
caution must be taken and best practices adopted:

Most importantly, use what is vetted by the test of time; for example, as a software
developer, to use (open-source) software libraries that implement cryptographic
functions such as encryption, decryption, signing and veriőcation. Besides the
cryptographic algorithms, critical is the implementation of the random number
generator, which is notorious for exploits: As we saw, in ECC, elliptic curve
cryptography, if the same ephemeral key , usually randomly generated, for
signing is used twice to sign different documents by the same private signature
key, then the ephemeral becomes known and reveals the secret signing key.

Even when well-known time-proven cryptographic open-source libraries, for
example, OpenSSL can have security holes, such as the Heartbleed bug con-
tributed by a PhD-student at the Fachhochschule Münster, that made common
web servers reveal on request currently processed secret data, such as pass-
words or server keys. Even though quickly őxed, the question remains if in the
meanwhile intelligence agencies exploit these, on top of back doors built into
cryptographic software (usually on the behest of government agencies).

Even best cryptographic practice does not stop Moore’s law that predicts a
doubling of the computing power every 18 months that progressively weakens
keys. Besides continual progress, there may be technological leaps, such as the
quantum computer, which would break many common asymmetric ciphers such
as Diffie-Hellman, RSA and Elliptic Curve Cryptography and more involved
alternatives have been found.

14.1 Random number generation

Cryptography requires random numbers to generate

• Keys for (symmetric and asymmetric algorithms), and
• Nonces (Numbers only used ONCE), Salts and IVs (Initialization Vectors),
numbers that are (usually) randomly generated, disclosed, used once in a
cryptographic process to improve its security by making it unique. For
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example, a session between a client and a server or a hash function used
to store a password.

True randomness is critical for the generation of keys but less so and can be
dispensable nonces (where sometimes a key is used as a nonce, see below), for
which uniqueness is can be sufficient. For example,

• The GnuPG strong random number generator (for cryptographic keys)
builds a pool of 600 entropy (physical disorder) bytes and hashes these
by SHA-1.

• The GnuPG nonce generator adds 20 bytes containing the process ID
number (PID) and the time in seconds and 8 bytes taken at random from
a strong random number generator, and hashes these with SHA-1.

Secrets. A secret (that is, a secret sequence of bits, or, equivalently, a secret
number) often must be generated by the computer; for example,

• if the secret needs to be generated automatically: for example, to extend
the Diffie-Hellman key exchange to a public-key algorithm, the El Gamal
algorithm generates for every plaintext to be encrypted or signed an
ephemeral secret key. The popular signature algorithms DSA (Digital
Signature Algorithm) and its analogue over elliptic curves, ECDSA, which
the El Gamal signature algorithm underlies, generate an ephemeral key
pair for every plaintext to be signed.

• if the secret needs to satisfy a speciőc format: for example, in RSA with
modulus N = pq for prime numbers p and q , one key E is a number
without any (prime) factor in common with ϕ(N) = (p − 1) (q − 1).

• if the secret needs to be guaranteed to be random: To ease memorization,
humans choose passwords with patterns.

• if the (bit) length of the secret needs to be signiőcantly larger than what
a retainable password can provide. For example, for decryption of a
ciphertext encrypted using RSA to take as long as an exhaustive search
of a 112 bit long secret key, the secret RSA key must be 2048 bits long,
around 340 ASCII (Armor) letters.

For secrecy, it is necessary that the output of the generation is unpredictable;
since the generation algorithm is usually known, its input must be unpredictable.
This excludes, for example, using as input computer times or a number of a
known sequence.
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Uniqueness. For example, if the secret ephemeral key used by the signature
algorithms DSA (Digital Signature Algorithm) and its analogue over elliptic
curves, ECDSA is known, then the signee’s permanent secret key can be inferred;
that is, an attacker can forge the signee’s signatures!

In particular, if two of the same signee’s ephemeral public keys used for different
documents coincide, then the secret ephemeral key used by either of these
signature algorithms can be inferred. (For example, the standard ( Java) library
for the generation of a random number on Android generated repetitive random
numbers, thus allowing to forge signatures of users of an Android Bitcoin app,
see Ducklin (2013)) Therefore, in this case, the generated number must be
unique.

Random Number Generators (RNGs). While true randomness of numbers
are critical for security-sensitive applications and can be generated using hard-
ware random number generators, pseudorandom numbers are often sufficient for
less conődential ones, for example, for (probabilistic) experimental simulations
such as the Monte Carlo method.

Pseudorandom Number-Generator (PRNG). A Pseudorandom Number-
Generator produces sequences of numbers which appear independent of each
other, that is, which satisfy statistical tests for randomness (which require careful
mathematical analysis such as the BigCrush Test Suite L’Ecuyer and Simard
(2007)), but are produced by a deőnite mathematical procedure, However,
this apparent randomness is sufficient for most purposes The random number
generators provided by most software libraries are pseudorandom. See łList of
Random Number Generators Ð Wikipedia, the Free Encyclopediaž (2020) for
a list of such pseudo-generators. An ancient inŕuential and simple such is the
Linear congruential generator, which for a multiplier a, offset c and modulus m
produces the sequence X0,X1, ... inductively given by

Xn+1 ≡ aXn + c mod m

Its successor that use linear feedback shift registers replace arithmetic in ℤ/mℤ
by that in the binary polynomial ring 𝔽2 [X] . An efficient one that passes the
BigCrush Test Suite is, among others, Xorshift+ 128 , an adaption (to pass
the test suite) of Xorshift that iteratively multiplies a nonzero initial n -bit
string by an invertible matrix of order 2n − 1. Other generator that pass the test
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suite are the hash function SHA-1 and the symmetric algorithm AES (with initial
values).

Hardware Random-Number Generator (HRNG). A hardware random num-
ber generator is a computer device that generates random numbers from a
physical process which is theoretically completely unpredictable, for example,
thermal noise, voltage ŕuctuations in a diode circuit or, quantum optics (which
can provide instant randomness). In Unix operating system, randomness is
gathered from the devices /dev/random and /dev/urandom. GnuPG, in absence
of these, uses process statistics, but also supports the hardware RNGs inside
the Padlock engine of VIA (Centaur) CPUs and x86 CPUs with the RDRAND

instruction.

Self-Check Questions.

1. List at least three uses of random numbers to generate keys:

1. purely random key
2. long key
3. specially formatted key
4. automatically generated key

14.2 Long-term security

How to ensure that data encrypted today will still be secure in the decades to
come? This is in particular relevant for certain long-lived applications, for exam-
ple, health data. In practice, the security of a cipher, and thus the recommended
key sizes, relies foremost

• on its resistance to the most efficient (known!) methods of cryptanalysis
(using a back door), and

• the computational effort needed to check all keys (taking the front door)
by checking the decrypted output for probable patterns of a plaintext.

One has to take into account

• increasing computing power to apply the strongest known cryptanalysis
algorithms, and
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• new algorithms (less predictable) and devices (more predictable) on the
horizon; in particular quantum computing.

Moreover, preventive measures can be taken by diversifying the keys used for
encryption so that a single compromised key compromises as little ciphertext
as possible: Perfect Forward Security generates a new key (pair) for every new
session (that is, exchange of ciphertexts).

Key Lengths. World’s fastest supercomputer, IBM’s Summit (taking up 520
square meters in the Oak Ridge National Laboratory, Tennessee, USA) has
around 150 petaŕops, that is, 1.5 · 1017 ŕoating point operations per second.
The number of ŕops needed to check a key depends for example, on whether
the plaintext is known or not, but can be very optimistically assumed to be
1000. Therefore, Summit can check approximately 1.5 · 1013 keys per second;
thus, a year having 365 · 24 · 60 · 60 = 31536000 ≈ 3 · 108 seconds, approximately
4.5 · 1021 keys a year.

To counter the increasing computing power, one prudently applies Moore’s Law
that stipulates that computing power doubles every other year. Therefore, every
twenty years computing power increases by a factor 210 = 1024 ≈ 103. Therefore,
to ensure that in, say, sixty years, a key not surely be found during a yearlong
search by world’s fastest supercomputer at least 4.5 · 1030 key combinations
have to be used.

For a key of bit length n, the number of all possible keys is 2n . If n = 80, then
there are are 280 ≈ 1.2 · 1024 possible key combinations. While this number is
sufficient for now, the probability for the key to be found during a yearlong
search by world’s fastest supercomputer being around 1/250, the projected
fastest super computer in twenty years will likely őnd it in half a year. Instead,
to be safe against worlds fastest yearlong supercomputing efforts in 40 years, a
minimal key length of 112 is recommended.

AES. For the symmetric algorithm AES , the fastest known algorithm currently
is exhaustive key-search, to try out all possible keys, whose complexity (= the
number of operations) is 2n . The minimal AES key length is 128 bits; that is,
there are are 28 ≈ 3.4 ·108 possible key combinations. Therefore the chance that
world’s fastest supercomputer in say, sixty years, őnds the secret key is around
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10−8 , a millionth percent. We conclude that the minimal AES key length is safe
against brute-force attacks for the years to come.

Asymmetric Algorithms. In contrast to single-key cryptography whose crypt-
analysis exploits statistical patterns, by its reliance on computationally difficult
mathematical problems (that is, whose runtime grows exponentially in the
bit-length of the input), the cryptanalysis of two-key cryptography is that of
computational mathematics: to őnd an algorithm that quickly computes the
solutions of the difficult mathematical problem. According to Arjen K. Lenstra
(2006), for the classic asymmetric algorithms,

• the prime factor decomposition used in RSA, or
• the discrete logarithm in the Diffie-Hellman key exchange,

the fastest algorithm is the General Number Field Sieve whose number of oper-
ations, roughly, for a large number of input bits M, putting N = log(2)M, is
L(N,1/3, (64/9)1/3) where

L(N; r ,c ) := exp(cNr (logN)1−r ).

To compare this to the number of operations 2m required for exhaustive key-
search of a key of bit length m, we put n = log(2)m, equate both numbers of
operations, and obtain

N log(N)2 ≈ (9n/64) ≈ n3/7

which must be solved numerically for N; for example, for m = 80, that is, n ≈ 55

we őndM = 1024, that is,N ≈ 709, to satisfy log(N)2 = 43; thereforeN log(N)2 ≈
30500 and 553/7 ≈ 24000. That is, at least as much computational effort is
needed for őnding a private 1024 bit long key for RSA and Diffie-Hellman by
the General Number Field Sieve as for őnding a secret 80 bit long key (say, for
AES ) by exhaustive key-search.

For the logarithm over a őnite elliptic curve, the fastest algorithm today is
the generic baby step, giant step algorithm (or, slightly faster, Pollard’s ρ -
algorithm) that complexity is roughly 2

√
n . Therefore, for the computational

effort for őnding a private key of bit length N for Elliptic Curve Cryptography
to be comparable to that for őnding a secret key of bit length n (say, for AES )
by exhaustive key-search, the key length must double, that is N ≈ 2n.

By these formulas, we can calculate that
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• the key length of a (private) RSA or Diffie-Hellman key must be at least
3072 bits to be as secure as that of an AES key of 128 bits, and

• the key length of an ECC key must be at least 256 bits to be as secure as
that of an AES key of 128 bits.

These key sizes are therefore sufficient for the decades to come, assuming that
no faster algorithm than those known is discovered to solve the underlying
mathematical problem.

Quantum Computing. Quantum researchers hope to build computers that
harnessing a phenomenon known as superposition where a quantum system
is in many possible states before a measurement łcollapsesž the system into a
single state:

Quantum Computer. A classical computer stores information in bits; each
bit is either on or off. A quantum computer uses qubits, which can be łentan-
gledž, in-between on and off so that it can carry out multiple calculations at
the same time and whose őnal output depends on the interferences generated
by them. However, actually building a useful quantum computer has proved
difficult:

• a quantum computer must keep its qubits entangled long enough to com-
plete a computation;

• errors caused by inevitable interactions with the environment need to be
őltered out and corrected; and

• since measuring a quantum system disturbs its state, reliable methods of
extracting information must be developed.

Quantum States. The properties measured on one of one particle depend
on the operations carried out on all the others: If a particle can take two states
(denoted 0 and 1), a system of two particles can take for example states 00 or 11,
or even a superposition of these states: For example, each of the two particles,
considered in isolation, is measured randomly as a 0 or a 1, but the particles are
łtwinsž, that is the measurement of a state of one of the two particles forces the
other particle one into the same state. The violation of a statistical inequality
(predicted by John Bell in 1964 and veriőed experimentally, among others, by
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Alain Aspect in 1982) proves that this is a characteristic of the particles and
not due to a (hidden) link.

A physical quantity in quantum mechanics is called observable and is usually in
a superimposed state; only in special (so-called eigen)states it has a uniquely
determined (so-called eigen)value. In general, the eigenstate is the result of
applying an observable to a (superimposed) state and choosing an eigenvalue.

Formally, a (superimposed) state is a complex unit vector, that is, a vector of
length one with complex entries and an observable A is a (self-adjoint) operator
on the vector space of all states. Because A is self-adjoint, there is a basis bi
such that Abi = aibi for real ai ; each bi is an eigenstate and ai its eigenvalue.

An eigenstate bi is an eigenvector of A and interpreted as the possible outcome
of a measurement for a given observable; A general state |ψ⟩ = ∑

cibi is a
linear combination of eigenstates. The complex coefficient ci of bi is called the
probability amplitude of bi and its absolute value |ci | in

0,1

is the probability of the measurement of bi .

Quantum Bits. Whereas a digital computer processes bits, that can be in
one of two states, 0 or 1, a quantum computer processes quantum bits (qubits)
whose states superpose:

• whereas the state space, the set of all possible states, of a computer with
n bits is given by the set of all strings

Qn := {0,1}n = {(0, ...,0), ..., (1, ...,1)}

of n bits, of which there are 2n ;
• the state space of of a quantum computer with n qubits is given by all
probability amplitudes (or Schrödinger wave functions) on Qn , that is,
all strings of 2n entries of complex numbers of unit length: a probability
amplitude is a vector of unit length with complex entries indexed by Qn ,
that is, a string λ : Qn → ℂ of 2n complex numbers

λ = (λ(0,...,0) , ...,λ(1,...,1))

such that
∑
q∈Qn

|λ(q ) |2 = 1.
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The basis states are those probability amplitudes that have a single nonzero
entry of value 1, of which there are 2n . The state whose entry of value 1 is at σ
in Qn is denoted by |σ⟩.

Example. A single qubit superimposed between 0 and 1 is denoted by a · |0⟩ +
b · |1⟩ such that a2 + b2 = 1, the probability amplitude of two qubits together
superimposed between 00, 01, 10 and 11 is denoted by

α · |00⟩ + β · |01⟩ + γ · |10⟩ + δ · |11⟩ ,

with |α |2 + |β |2 + |γ |2 + |δ |2 = 1.

Each elementary operation on the state space is then described by a (unitary)
matrix of 2n columns (orthogonal to each other): each column is the probability
amplitude obtained by applying the operation to the corresponding basis state.

Post-Quantum Cryptography. A quantum computer can solve many classi-
cal problems faster than a classical computer. For example,

• to őnd an item among an unordered list of N items on a classical computer,
on average N/2 operations are needed, and one cannot do better than
that. However, a quantum algorithm exists that achieves this in only about√
N operations!

• Simon’s problem: given a function f that transforms n -bit strings into n
-bit strings, őnd the nonzero bit-string s such that f (x ⊕ s ) = f (x) for all
n -bit strings x . To solve Simon’s problem on a classical computer, one
searches for a collision that needs around

√
2n evaluations of f . However,

a quantum algorithm exists that achieves this in only about n operations!

• Shor’s Algorithm Peter Shor of AT&T in 1994 in his article łPolynomial-
Time Algorithms for Prime Factorization and Discrete Logarithms on a
Quantum Computerž gave a quantum algorithm that factors a number N
(for n = logN ) in O(n3) operations and O(n) memory units. Instead, on
a classical computer, solving the factoring, discrete logarithm (DLP), and
elliptic curve discrete logarithm (ECDLP) problems takes subexponential
time, around O(N1/3) operations. Therefore, given a sufficiently large
quantum computer, current public key encryption schemes are easily
broken.
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Shor’s algorithm requires a quantum computer of around 8000 entangled
qubits to factorize a 4096-bit RSA key, and is therefore not imminent.

Therefore, given a sufficiently large quantum computer, current public key
encryption schemes are easily broken. (In compensation, quantum mechani-
cal effects offer a new method of secure communication known as quantum
encryption.) RSA, for example, uses a public key N which is the product of two
large prime numbers. One way to crack RSA encryption is by factoring N, but
with classical algorithms, factoring becomes increasingly time-consuming as N
grows large; no classical algorithm that factors in O((n)k ) operations for some
k is known.

However, while a quantum computer can solve many classical problems faster
than a classical computer, not all of them; the problems solved are all subexponen-
tial, that is, exponential in a root of the bit length n of the input (for example,
in the cube root n1/3 for prime factorization and discrete logarithm), whereas
genuinely exponential problems, in particular problems that are NP-hard (such
as őnding the closest vector to a lattice) are conjectured to remain hard even
on a quantum computer.

Lattice Ciphers: the GoldreichśGoldwasserśHalevi (GGH) Cipher. This
cipher was published in 1997 by Oded Goldreich, Shaő Goldwasser, and Shai
Halevi, and uses a trapdoor one-way function that relies on the closest vector
problem which is NP-hard. Though this speciőc algorithm was later cryptan-
alyzed by Phong, it illustrates the principles on which modern withstanding
lattice based ciphers stand, such as NTRU: Given any basis of a lattice, it is
easy to generate a vector close to a lattice point by adding a small error vector
to the latter. However, to return from this shifted vector to the original lattice
point, a particular type of basis is needed.

The private key consists of

• a lattice basis b , that is, an invertible matrix with integer entries which
consists of nearly orthogonal vectors; for example, a diagonal matrix that
scales every basis vector by an integer multiple;

• a unimodular matrix u, that is, an invertible matrix with integer entries
whose inverse has integer entries; that is, it transforms vectors with integer
entries into vectors with integer entries. (Equivalently, an integer matrix
whose determinant is ±1; in particular, it preserves volumes.)
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The public key is the basis B = ub of the lattice L.

If a message m (a vector (m1, ...,mn) of integers) and a public key B are given,
then to encrypt the plaintext m :

1. compute the lattice point vector v = m · B,
2. choose a small error vector e , for example, one with entries in 0,±1, and
3. compute the ciphertext c = v + e (= m · B + e ).

If a ciphertext c and the private key consisting of a lattice basis b and unimodular
matrix u are given, then to decrypt the ciphertext c :

1. Compute

c · b−1 = (m · B + e )b−1 = m · u · b · b−1 + e · B−1 = m · u + e · B−1;

While m · u is a vector of integers, the error term e · B−1 is fractional.
2. Therefore the integral summand m · u can be distinguished from the

fractional summand e · B−1; remove the fractional error term e · B−1 to
obtain the integer vector m · u .

3. Compute the plaintext m = (m · u) · u−1

Code-Based Cryptography: McEliece’s Cipher. Code-based post-quantum
ciphers are asymmetric ciphers that are based on error correcting codes to
transmit bits over a noisy channel: To avoid that Alice sends, say 01, but Bob
receives 11, a simple solution would be that Alice repeats each bit thrice, 000111,
and Bobs takes for each group of three the bit that appears most often: For
example, 100110 would be decoded to 01. However, this encoding scheme is
limited to one erroneous bit in each group of three bits. Instead, a linear code
multiplies the bit vector v with a matrix M, that is, computes w = vM. For any
number of erroneous bits n, the matrix M can be chosen such that at most n
erroneous bits in w are correctable (to v ).

The őrst encryption scheme based on linear error-correcting codes was devel-
oped by McEliece in 1978 and is still unbroken; due to the (secure) public key
size of around 500 kilobytes, it was shrugged off before the advent of quantum
computing. More exactly, the algorithm uses the error-correcting code Goppa
codes. Goppa codes are easy to decode, but distinguishing them from a general
linear code is known to be NP-hard. The Post Quantum Cryptography Study
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Group installed by the European Commission has recommended this type of
cryptography against quantum computers.

The private key are three matrices, an error correction matrix c , and invertible
matrices S and P; and the public key is C = ScP that can correct n error bits.

To encrypt: compute w = vC + e for an error term e containing n errors.

To decrypt:

1. knowing P−1 and c allows one to remove Se ;
2. then apply S−1.

Hash-Based Cryptography. Hash-based cryptography is based on the secu-
rity of cryptographic hash functions rather than on the hardness of mathematical
problems. Lamport showed how to derive a one-time signature scheme from any
one-way function, such as a cryptographic hash function, and Merkle improved
on it by the Winternitz one-time signature (WOTS) in Merkle (1990); łone-timež,
because a private key can only be used securely once:

Let k be the private key; őx an integer L. The public key is K = HashL(k ), the
L -fold nested application of the hash function to k .

HashL(k ) = Hash(Hash(...(Hash(k )))).

The signature S of a message, given by an integer M < L, with the private key k
is theM -fold nested application of the hash function to k , that is, S = HashM(k ).
The signature S is checked by the equality

HashL−M(S) = HashL(k ) = K.

This simple scheme is insecure. For example, signatures can be forged: From
the signature S of M, one derives the signature of M + 1 by

Hash(Hash(K))M+1 = Hash(S).

Therefore, one must sign not only M by k , but also L −M by a different key.
Still, this scheme
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• is computationally too expensive: For example, for a message of 100 bits,
the computation of the public key needs 20 − 1 computations. There-
fore, messages need to be split into shorter ones whose encryption is
computationally feasible.

• can only be used to securely sign one message per key. If a private key
signs more than one message, then a signature can be forged: If messages
m and M are signed with key k ′ and L −m and L −M with key k ′′, then
further iterated application of H to the signature s ′ or S′ corresponding
to the smaller value between m and M for k ′ (and likewise for k ′′ ) forge
signatures for messages in-between m and M.

Modern hash-based signatures are more sophisticated than WOTS; however, they
can still either only securely sign one message for each key, or, such as SPHINCS,
sign a limited number of messages but produce large signatures.

Perfect Forward Security. Perfect Forward Secrecy means that after
the correspondents exchanged their (permanent) public keys and established
mutual trust,

1. before correspondence the correspondents create an (ephemeral) session key
and sign it with their (permanent) private keys (to avoid a man-in-the-
middle attack),

2. after correspondence each correspondent deletes the (ephemeral) private key.

This way, even if the correspondence was eavesdropped and recorded, it cannot
be deciphered later on; in particular, it cannot be deciphered by obtaining a
correspondent’s private key. For example, the TLS protocol, which encrypts much
communication over the Internet, supports since version 1.2 Perfect Forward
Secrecy: More speciőcally, in the handshake between client and server,

1. after the client has received (and trusted) the server certiőcate,
2. the server and the client exchange an ephemeral public key which serves

to encrypt the communication of this correspondence. This ephemeral
key is signed by the (permanent) public key of the server. (The creation
of this asymmetric key in Perfect Forward Secrecy makes the creation of
a symmetric preliminary key by the client in the penultimate step in the
handshake in the TLS protocol superŕuous.)
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The mutual secret key can be established, for example, by the DHE (Diffie-
Hellman Ephemeral) or ECDHE (Elliptic Curve Diffie-Hellman Ephemeral) pro-
tocol This key is then used as input to generate a secret symmetric key, for
example, for the AES encryption algorithm.

Self-Check Questions.

1. List three types of algorithms considered secure in the advent of quantum
computers:

1. symmetric cryptographic algorithm
2. lattice-based cryptographic algorithm
3. cryptographic algorithm based on error correcting codes
4. cryptographic algorithm based on hash functions

14.3 Incorporating cryptography into Application Development

Risk Analysis. Risk analysis measures the likelihood that an organization’s
security will be breached (for example, an intruder exploiting network vul-
nerabilities) and calculates the inŕicted damages from such a breach, be they
material (such as data privacy violation) or immaterial (such as a reputation
loss). The risk is often measured as a őnancial risk and countered similar to
insuring against threats such as theft. Risk analysis

• assesses the threats (by an intruder or company’s insider) to the company’s
computer network. According to the CSI/FBI Survey, the biggest ones are,
in this order

ś viruses,
ś abuses of the network by employees,
ś Denial of Service (DoS), and
ś stolen intellectual property.

• assesses the values of the company’s assets, consisting of:

ś material values, such as the company’s computer network, and
ś immaterial values, such as the company’s reputation.
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• the company’s vulnerability, that is, where, how and how a security breach
could happen.

• prescribes preventive measures, for example,

ś random generation and regular revision of passwords,
ś anti-virus software, and
ś intrusion detection systems, such as őrewalls.

• builds plans to quickly recover from an exploit.

Don’t roll your own crypto!. The First Rule of Cryptography: Don’t imple-
ment cryptography yourself in production code. Instead, leave it to the experts
and use a proven library that withstood the test of time under the scrutiny of
cryptanalysts rather than a home-made one:

1. In practice, a cryptographic algorithm is secure if it has proved resilience
by defying all attacks. Therefore, an established cryptographic algorithm
should be used and proven ciphers such as AES and RSA are recommended.
If instead a new one is used, no safety can be assured. In particular, it is
a bad idea to design a proper new cryptographic algorithm.

2. Similarly, a software (library) is secure if it has proved resilience by defying
all attacks. Therefore, an established software (library) should be used
and common software libraries such as Libsodium (or the widely-used
OpenSSL), are recommended.

Authenticated Encryption. Programmers often confuse the encryption and
authentication. While encryption ensures conődentiality, authentication ensures
integrity. When they have to be done separately: Encrypt then authenticate (that
is, compute a MAC, Message Authentication Code). Verify the MAC before

decryption. A priori, there are three options for authenticated encryption:

• Authenticate and Encrypt Together: The sender computes a MAC of
the plaintext, encrypts the plaintext, and then appends the MAC to the
ciphertext. This is what SSH does.

In this order, the MAC (over plaintext) leaks information about the
plaintext; for example, whether two messages have the same plaintext (by
their identical MACs).
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• First Authenticate then Encrypt: The sender computes a MAC of the
plaintext, then encrypts both the plaintext and the MAC. This is what
SSL does.

• First Encrypt then Authenticate: The sender encrypts the plaintext, then
appends a MAC of the ciphertext. This is what IPsec does.

This way, one can verify the MAC and discard texts without decryption;
thus

ś diminishing denial of service attacks by discarding forged packets
faster;

ś second, it reduces your łattack surfacež. One of the most important
rules of computer security is that every line of code is a potential
security ŕaw; if you can make sure that an attacker who doesn’t have
access to your MAC key can’t ever feed evil input to a block of code,
however, you dramatically reduce the chance that he will be able to
exploit any bugs.

Comparison. Only Encrypt-then-Authenticate is provably secure in theory,
that is, secure against IND-CCA (indistinguishability of ciphertext for chosen
ciphertexts), that is, an attacker can ask for any pair of ciphertexts to be de-
ciphered (excluding the ciphertext in question), and still cannot distinguish
which one among two plaintexts corresponds to the ciphertext:

1. The oracle creates a secret key.

2. The attacker asks for the decryption of any ciphertext (except the one in
question), and creates two plaintexts M0 and M1 of equal size.

3. The oracle

• randomly picks a bit b in 0,1

• encrypts Mb , and
• passes the ciphertext to the attacker.

4. The attacker asks for the decryption of any ciphertext (except the one in
question), and

5. chooses a bit b′ in {0,1} .
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Example. Bleichenbacher’s attack on PKCS#1 from 1998 is not secure against
IND-CCA.

A cipher is secure against IND-CPA (indistinguishability of the ciphertext for chosen
plaintexts), if no attacker can distinguish which one of two plaintexts, that
he selected before, corresponds to the ciphertext that he receives afterwards.
Bellare and Namprempre showed in 2000 for a symmetric cipher that if

• the cipher resists against IND-CPA, and
• the unidirectional function resists (is not forgeable) against an attack of
chosen messages,

then the cipher with łEncrypt-then-MACž resists an łIND-CCAž attack.

That neither Encrypt-and-Authenticate nor Autenticate-then-Encrypt aren’t
secure in theory, but Encrypt-then-Authenticate is, neither means in practice
that the former two are insecure, nor that the latter is secure. However, there
have been a number of vulnerabilities for the former two, while none for the
latter: For example,

• Vaudenay’s Attack, and
• Bleichenbacher’s Attack

Recommendation. Therefore, it is best to use a library that takes care of
authenticated encryption as a whole, instead of only offering these functions
separately, where one has to be composed correctly oneself; sticking to the
golden rule that as much as possible is reused instead of reimplemented:

The AEAD modes (Authenticated Encryption with Associated Data, where
Associated Data is whatever must be authenticated but not encrypted) is a
modern mode to encrypt and authenticate a message in the same operation,
Reliable implementations of AEAD are, for example,

• AES-GCM, the Advanced Encryption Standard (a.k.a. Rijndael cipher) in
Galois/Counter Mode, available OpenSSL, and

• ChaCha20-Poly1305 that combines the ChaCha20 stream cipher with the
Poly1305 Message Authentication Code, available in Libsodium.
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Password Storage. To store a password, as soon as it is received,

1. hash it using a key derivation hash function such as scrypt (that uses,
besides the password, a nonce and iteration count to counter rainbow
attacks) or PBKDF2 (but NOT using a fast hash function, such as MD5,
more vulnerable to rainbow table attacks), and

2. erase the plaintext password from memory.

Utmost care must be taken even for less sensitive applications because some
users might reuse these passwords for more sensitive ones.

Finally, we recall that Encoding, for example base64 encoding, and Compres-
sion, such as Zip compression, aren’t encryption, as they hardly obfuscate
information: Encoding and compression algorithms are both reversible, keyless
transformations of data:

• Encodings transform data for better processing, while
• Compression reduces data as much as possible.

Self-Check Questions.

1. To authenticate and encrypt a message, one should:

• Authenticate and Encrypt Together,
• First Authenticate then Encrypt, or
• First Encrypt then Authenticate?

2. Cryptographic functions should be

• reimplemented, or
• reused j ?

3. Which cryptographic hash function should not be used for storing pass-
words:

• bcrypt,
• scrypt,
• PBKDF2, or
• MD5?
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14.4 Legal and Regulatory Aspects

The General Data Protection Regulation (EU) 2016/679 (GDPR) governs the
exposure of personal data, processed and stored by hand or by computers, and
applies since 25 May 2018 to all companies in the European Union. Besides
the GDPR, other national data protection law may apply, for example, in
Germany,

• the federal data protection act Bundesdatenschutzgesetz (BDSG), and
• the data protection acts of the German federal states.

GDPR wages the interests of companies and consumers in the digital age and
protects every citizen’s fundamental right of informational autonomy by granting
the concerned citizen transparency and ultimate authority in the processing of
her own personal data; that is,

• the processing of personal data must always have a clear purpose that has
been expressly conőrmed by the concerned person, and

• the data must be protected and deleted as soon as no longer needed
for the bespoken purpose or when it expires (for example, credit bureau
information, for example, by the SCHUFA in Germany).

Personal Data Protection. Every staff member who processes personal data
must be instructed on data secrecy. In general, forwarding personal data to third
parties is inadmissible without consent of the concerned person. If exceptionally
admission is granted, then data must be encrypted and sent separately for each
purpose, so that third parties neither an eavesdrop nor collect data.

What is personal data according to law, for example, the GDPR? General
data:

• general personal data (such as name, date and age of birth, place of birth,
address, e-mail address, telephone number, etc.)

• identiőcation numbers (such as social security number, tax identiőcation
number, health insurance number, identity card number, matriculation
number . . . )

• physical characteristics (such as sex, skin, hair and eye colour, stature,
dress size . . . )

360



• ownership characteristics (such as vehicle and real estate ownership, land
registry entries, license plates, registration data . . . )

• value judgements (such as school and work certiőcates . . . )
• bank data (such as account numbers, credit information, account balances
. . . )

• customer data (such as orders, address data, account data . . . )
• online data (such as IP address, location data . . . )

Special data that needs special protection is in general (but also listed similarly,
for example, in Paragraph 4, 9 of the GDPR):

• ethnic origin, political opinions, religious beliefs, sexual orientation, or
syndicate membership

• biometric data, such as

ś gene data,

ś health records: for example,

* examination of the body or genetic data relating to diseases
(current, previous or in risk), disabilities.

* predispositions of the data subject due to family history, the
measurement of health data in őtness studios and data collected
by őtness and health apps and Smart Watches.

Thus, for example, in health care all patient information is strictly conődential
by law. For example, in Germany, documents can must be transmitted either
encrypted or by fax. Only data necessary for treatment can be collected. The
patient data must be conődentially stored and kept conődential by the staff.
For example, in Germany the unauthorized disclosure of patient data subject
to professional secrecy can be punished, by Section 203 of the Criminal Code
(StGB), with a monetary fee or up to one year of prison.

Government Trap Doors. Leaked secret documents show that the American
National Security Agency (NSA)

• searches for vulnerabilities, such as the Heartbleed bug; see the section
below.
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• has sabotaged international encryption standards, that is, the algorithms
were purposefully weakened for later decryption:

ś in the speciőcation of the őrst U.S. Data Encryption Standard (DES)
in the 1970s, the NSA was suspected of weakening DES by shortening
the key length.

ś Juniper VPN Backdoor: use of NSA mandated an insecure random
number generator that allowed decryption of eavesdropped VPN
traffic.

ś Backdoor in Lotus Notes used by several European governments:
though the version with stronger cryptography was acquired, NSA
knew part of a key so that they could still decrypt the őles.

ś the insertion of a backdoor into the cryptographic machines from
the Swiss company Crypto AG; see the section below.

• U.S. export regulations lead to the EXPORT ciphers in SSL used outside
the USA, because the stronger ciphers could not be exported, leading to
the so-called FREAK attack.

• GCHQ mandated weak cryptography into the GSM standard to decrypt
mobile communication.

• In 2004, Greece government officially mandated an interface for wiretap-
ping into telephone talks; though disabled, it was still in the őrmware.
This was used to eavesdrop on government members.

EES. The Escrowed Encryption Standard (EES) is a chip-based symmetric
encryption system developed in the USA in April 1993. The developer of
the algorithm is the secret service NSA. It was developed as part of a U.S.
government project to provide electronic devices sold to the general public
with a security chip. The encryption key was to be provided to the government,
which would then be able to eavesdrop on communications if necessary.

The main difference to other encryption methods is that, if necessary, US
authorities can get access to the keys used by two users to exchange data. The
procedure is speciőed in such a way that two keys are required for eavesdropping,
which are deposited with different authorities and which should only be released
at the same time by court order. This official access possibility is not achieved
by a built-in back door in the technical sense, but by depositing two partial
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keys. If the legal conditions are met, the two parts of the key are issued and
joined together.

Skipjack was the algorithm used for encryption within the Clipper chip. The
chip was designed to resist external modiőcation and allowed the government
to access the data in plaintext through a mechanism called Law Enforcement
Access Field (LEAF). After the appearance of an attack in 1994 the project was
abandoned in 1996. The appearance of software such as PGP, which was not
under government control, made the Clipper chip obsolete and the Skipjack
algorithms was made public in 1998.

Bullrun Program. Bullrun (and its British equivalent called Edgehill) is
a secret American program by the NSA (respectively by the GCHQ) to break
the encryption systems used in the most widespread protocols on the Internet,
such as Secure Sockets Layer (SSL), Virtual Private Networks (VPN) or Voice
over IP (VoIP). The existence of the program was revealed in September 2013
by Edward Snowden, showing that the agencies have been working on the
main protocols or technologies used in the Internet (HTTPS/SSL, VPN) or
4G for mobile telephony to intercept and decipher in real time large Internet
data volumes; for example, those circulating on Hotmail, Yahoo, Facebook and
especially Google.

RSA BSAFE is cryptography library in C and Java by RSA Security; it used
to be common before the RSA patent expired in September 2000. From 2004
to 2013 (till revealed by Snowden) its (supposedly cryptographically secure)
default pseudorandom number generator Dual_EC_DRBG contained an alleged
kleptographic (allowing for stealing information securely and subliminally)
backdoor from the NSA who held the private key to it, as part of its secret
Bullrun program:

Cryptographers had been aware that Dual_EC_DRBG was a very poor Pseudo
Random Number Generator (PRNG) since shortly after the speciőcation was
posted in 2005, and by 2007, it seemed to be designed to contain a hidden back-
door usable only by NSA via a secret key. NSA can potentially have weakened
data protection worldwide, in case NSA’s secret key to the backdoor is stolen.
RSA Security did not explain their choice to continue using Dual_EC_DRBG even
after the defects and potential backdoor were discovered in 2006 and 2007, and
has denied knowingly inserting the backdoor.
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Operation Rubikon. The Swiss Crypto AG was an internationally active
company in the őeld of information security. Between 1960 and 1990, at the
height of the Cold War, Crypto AG was a leading company for encryption
devices and produced for countries for more than 130 countries. The CIA was
concerned about being unable to decipher foreign messages and approached
European manufacturers, including Crypto AG. The (West) German foreign
intelligence service BND and the US intelligence service CIA secretly bought
the company in 1970. They arranged for many states to be supplied with
machines with weaker encryption that could be decrypted by the BND and CIA
(Operation Rubikon).

The company enabled these two services to decipher encrypted messages
between the 1960s and 2010, While the suspicious Soviet Union and China
were never among Crypto’s clients,the CIA could however learn about some of
their exchanges thanks to third countries equipped with tampered devices. For
example, the CIA estimates that it could

• read around 85% of the Iranian coded messages sent in the late 1980s,
• spy on Egyptian communications during the Camp David negotiations in
1978,

• on Argentinian messages during the Falklands War in 1982, and
• gather decisive information during the invasion of Panama in 1989.

In February 2020, after evaluating a 280-page dossier, Swiss Radio and Tele-
vision, ZDF and The Washington Post published a joint investigation which
proved that the German BND and the US CIA were the owners of Crypto
AG and delivered manipulated ciphering devices to some 130 states as part of
Operation Rubikon to eavesdrop on communication.

A Security Hole supposedly kept secret by Intelligence Agencies. Heart-

bleed is a vulnerability in the SSL implementation OpenSSL, which is used in
the popular web servers Apache and nginx, which are running two-thirds of the
web pages at the time of the bug The Heartbeat allows server and client to keep
a TLS connection alive by sending a message of any content (payload) from
one end to the other, which is then sent back exactly the same way; to show
that the connection is alive:

The RFC 6520 Heartbeat Extension tests TLS/DTLS secure communication
links by allowing a computer at one end of a connection to send a łHeartbeat
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Requestž message, which consists of a payload, typically a string, along with
the length of that payload as a 16-bit integer. The receiver must then send the
exact same payload back to the sender.

Versions of OpenSSL subjecet to the Heartbleed bug allocate a memory buffer
for the message to be returned based on the length őeld in the request message,
regardless of the actual payload size of that message. Because of this failure
to check the appropriate limits, the returned message consists of the payload,
possibly followed by whatever else is allocated in the memory buffer.

The problem with implementing the TLS heartbeat feature in OpenSSL was
that the program does not check how long the received payload is. The attacker
can write arbitrary values in the payload_length őeld provided for this purpose
in the header of the payload packet and thus read the memory of the remote
peer.

This Hearbleed attack works in both directions; let us assume that a client is
attacking a server:

1. The attacker sends the server a heartbeat payload that has 1 byte, but
claims that it has, for example, 16 kilobytes.

2. The server writes the attacker’s byte into its memory in a buffer called pl.
Since the actual size of the payload is not compared, the server assumes
the size speciőed by the attacker (payload) when the payload is returned.

3. The server therefore reserves 16 Kilobytes of memory (and a little more
for administrative information):

buffer = OPENSSL_malloc(1 + 2 + payload + padding);

bp = buffer;

4. The server then copies the payload size given by the attacker (about 16
Kilobytes) at this place for the response:

memcpy(bp, pl, payload);

But the source pl to be copied only has a single byte from the incoming
heartbeat! The following bytes consist of any other data that the server is
currently processing; such as passwords, data of another user that was just
decrypted, or secret keys of the server. The server then sends the data packet
bp to the client, which can repeat this attack at will.
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The tapping leaves hardly any traces on an attacked computer. It is therefore
not certain to what extent the error has been exploited. However, the news
agency Bloomberg reported, citing łtwo informed personsž, that the Hearbleed
bug was used by the NSA from the beginning; this was immediately denied
by the NSA director: łThis government takes seriously its responsibility to
maintain an open, secure and trustworthy Internet. There is a national interest
in disclosing any such vulnerability as soon as it is discovered.ž

Self-Check Questions.

1. When can personal data be collected ?

With a clear purpose and express consent of the person.

2. Name at least three examples of specially protected personal data:

• ethnic origin, political opinions, religious beliefs

• biometric data, such as gene data and health records

Summary

Many things can go wrong when implementing cryptography; thus, as a software
developer, caution must be taken:

1. First, it is recommended to reuse what is already available and vetted
by the test of time; for example, as a software developer, to use (open-
source) software libraries that implement cryptographic functions such as
encryption, decryption, signing and veriőcation. In particular, it is out
of question to roll develop one’s proper cryptographic algorithm instead
of basing one’s cryptography on the established solutions such as AES

for symmetric and RSA for asymmetric cryptography. For example, the
cryptocurrency IOTA implemented its proper ternary cryptography and
hash function, which was quickly unravelled by the Digital Currency
Initiative at the MIT.

2. Thus, even though most was already implemented by cryptography pro-
fessionals, still great care has to be taken in choosing the implementation
and in implementing what is left: For example, the implementation of
random number generators is notorious for exploits and the őrst function
to audit on a system. as we saw, in ECC, elliptic curve cryptography, if the
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same ephemeral key , usually randomly generated, for signing is used
twice to sign different documents by the same private signature key, then
the ephemeral becomes known and reveals the secret signing key. For
example, the SecureRandom class of the Java Android Crypto library that
implements cryptographic functions on Android did not properly initialize
the underlying Pseudo Random Number Generator, leading to the same
ephemeral key being used more than once.

3. Even when reusing well-known time-proven cryptographic open-source
libraries, for example, OpenSSL, bugs might creep in, such as the Heart-
bleed bug contributed by a PhD-student at the Fachhochschule Münster,
that made common web servers reveal on request currently processed
secret data, such as passwords or server keys. These bugs, once known,
are quickly őxed; the question remains if in the meanwhile intelligence
agencies exploit these.

4. Finally, governments make laws that oblige the use of encryption, but gov-
ernment agencies might also work against it, for example, by demanding
back doors to be built into cryptographic software or devices.

Even when best cryptographic practices are applied, Moore’s law predicts
that continuous technological progress doubles the computing power every
18 months and thus weakens the future security of keys. Therefore, a security
margin for long-term security, usually for around twenty years, has to be added.
Finally, there may be technological leaps, such as the looming construction of a
quantum computer, which would break many common asymmetric ciphers such
as Diffie-Hellman, RSA and Elliptic Curve Cryptography and more involved
alternatives have been presented.

Questions

1. Which part of a cipher is in practice most susceptible to be exploited?

⊠ the pseudo-random number generator,
□ the decryption algorithm,
□ the encryption algorithm, or
□ the key generation algorithm.

2. Which algorithm is secure against a quantum computer?

□ RSA
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⊠ AES
□ ECC
□ Diffie-Hellman

3. For at most how many years will projectively an AES 128 -bit key stay
secure?

□ 10
⊠ 20
□ 40
□ 60

4. To which AES key size does an RSA key of 2048 bits compare?

□ 80
□ 112
□ 128
⊠ 192

5. To which AES key size does an ECC key of 256 bits compare?

□ 80
□ 112
⊠ 128
□ 192
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15 Applications

Study Goals

On completion of this chapter, you will have learned . . .

• the European standard protocol for home banking, FinTS, in particular,
its cryptographic operations;

• how a modern voting schemes such as Scantegrity II lets the voter verify
the correct tallying of her ballot while maximally guarding its secrecy;

• how steganography embeds a secret message into a public message and
could be statistically detected;

• how the Tor project guarantees anonymity on the internet by onion routing,
where all exchanged data is encrypted so that each node of a network
only knows how to pass it to the closest neighbors.
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Introduction

Cryptography secures data exchange on the Internet; for example, it protects
the content of a őnancial transaction, be it between a customer and her bank or
users of a cryptocurrency, from eavesdropping (conődentiality) and tampering
(authenticity). Because correspondents rarely met in person before, asymmetric
cryptography (such as RSA) is the cornerstone of secure data exchange on the
Internet that makes possible

• the initial exchange of a secret (usually symmetric, say, AES) key to
encrypt all further communication, and

• authenticate the messages by digital signatures (that is, its encryption,
usually of a cryptographic hash, with the private asymmetric key). Indis-
pensable especially for őnancial transactions.

However, while cryptography hides the content of the messages, their metadata
is not, for example:

• that the data is encrypted, possibly pitting cryptanalysts against it:
Steganography is the art of imperceptibly embedding sensitive content
into public content; for example, a key to decrypt a őle into an image őle.

• who exchanged data with whom; that is, the identity is not hidden. The
Tor project achieves anonymity by transmitting the data over a network
of nodes where each one of can only transmit it to its closest neighbors.

In voting cryptography allows the voter to check whether her vote has been
correctly tallied. However, to avoid coercion, secrecy of the ballot, that is,
anonymity of the vote, must be maximally preserved while the tallying process
must stay comprehensible for the average voter. The Scantegrity II voting
scheme achieves this by pen and paper probabilistic audits.

15.1 Online banking

The Home Banking Computer Interface is an open protocol speciőcation origi-
nally conceived by the two German decentralized saving banks Sparkasse and
Volksbanken (and German higher-level associations such as the Bundesverband
Deutscher Banken) to unify the online access of the client to her bank by stan-
dardizing the homemade software clients and servers. HBCI is the counterpart
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for the European market of the IFX (Interactive Financial Exchange), OFX
(Open Financial Exchange) and SET for the north-american market. HBCI

• is independent of the operating system.
• supports accounts on multiple banking companies.
• uses DES and RSA-encryption and signatures.
• stores the key on a chip card.

The Financial Transaction Services (FinTS) speciőcation succeeds HBCI 3.0. It
is publicly available on the website of the ZKA (Zentraler Kreditausschuss) and
supported by Sparkasse, Volksbanken und Raiffeisenbanken, Commerzbank,
Deutsche Bank and more than 2000 other őnancial institutions. First published
as version 3.0 in 2002.

FinTS supports

• online banking with SWIFT (Society for Worldwide Interbank Financial
Transactions, started in 1977 and is owned by the member banks), proto-
cols and standards for international payment systems between thousands
of őnancial member institutions in 194 countries, among them the central
banks of most countries.

• issuing legally binding digital signatures of őnancial transactions.

Starting from version 4.0 from 2004

• all data is encoded into the universal XML (Extensible Markup Language)
format and

• data exchanged by the HTTP, HTTPS (the synchronous case of a perma-
nent connection between client and bank) and SMTP (the asynchronous
case of an unstable connection between client and bank) protocols to facil-
itate integration with other payment systems (and ensure communication
with clients behind a őrewall). The underlying transport protocols is cho-
sen according to the application protocol: While unencrypted protocols,
such as the PIN/TAN method, must use an encrypted HTTPS protocol,
encrypted protocols (such as RAH-7 or RAH-9) may use the unencrypted
HTTP protocol.

In 2014 version 4.1 was published that contains improvements gained by years
of practical experiences and to adopt:
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• SEPA (Single Euro Payments Area), a self-regulatory initiative by the
European banking sector represented in the European Payments Council
to set (technical) standards that uniformize the payment transactions in
the European Union (BIC, IBAN, . . . ).

• PSD2: The European Union passed in 2015 the revised legal framework
Payment Services Directive (PSD2) that all payment service providers of
the member states had to respect till 2018,

ś to make online payments more secure, and
ś in particular to protect the customers’ rights.

PSD2 was supplemented in 2017 by technical regulatory standards
(2018/389) for (by two-factor) client authentication for secure online
payments that had to be adopted till September 2019.

Business Transactions. FinTS predeőnes business transactions codes, but
also allows each bank to deőne their proper codes.

Code Name

DKPAE Change PIN online
HIISA Transmission of a public key
HKISA Public key request
HKCCS SEPA (Single European Payments Area) payment
HKAUB foreign bank transfer
HKEND End of dialogue

FinTS speciőes bank parameter data (BPD) and user parameter data (UPD). If
the user is represented by an intermediary, then the IPD are the largely identical
counterpart (for the intermediary) to the UPD.

• BPDs specify all business transactions of the bank and are used to validate
the data sent to it; they contain, for example, the supported security
procedures, compression procedures and business transactions. Customer
software often comes with bank parameter data from common banks.
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• UPD are sent by the bank and deőne the user’s access rights for certain
accounts and business transactions, and The customer software uses
the UPD to check whether the user is authorized to execute one of the
business transactions speciőed in the BPD. For example, the UPD contain
the authorizations of the business transactions for each one of the user’s
account (for example, to enter payment orders or as a signatory) and
other information, such as its currency, a limit . . .

• UPD and IPD are each a subset of the BPD, that is, they can only restrict
and detail the BPD, but not extend it.

Message Conőrmation Codes. Client and bank communicate via conőrma-
tion codes that are classiőed by the őrst digit of the code:

• Success (class 0) conőrms that all commands have been completely
processed.

• Note (Class 1) conőrms that an intermediate command has been com-
pletely processed.

• Warning (Class 3) no command has been rejected, but warnings exist.
• Error (class 9) the order part or message is partially incorrect and indi-
vidual orders may have been rejected

A message is syntactically valid if it obeys the underlying XML schema; if not,
they are answered with the conőrmation code 9110 for łUnknown structurež.

Code Text

0020 Information received without errors
1040 BPD no longer current. Current version will follow
1050 UPD no longer current. Current version will follow
3330 Keys are already available
9010 Order rejected
9210 Language is not supported

The conőrmation codes enable customer software to react automatically to
messages from the credit institution; for example, if the response is łwrong
institutionž, then the software can automatically request the correction of the
institution (as part of the IBAN). While the łconőrmation textž gives the user
plain text information, the conőrmation code facilitates customer queries.
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Roles. FinTS distinguished between the following roles:

• the Messenger signs and transmits the message and does not need to know
about its (possibly encrypted) contents.

• the Issuer signs the order part of a user message and possibly encrypts
(and can be the messenger as well).

• theWitness signs the order part of a user message in addition to the issuer
if the issuer’s signature alone is insufficiently authorative.

• the Intermediary mediates between the customer and bank as a technical
interface endowed with varying authorizations towards the bank (for
example, those of the issuer or of the messenger). Communication between
the intermediary and the credit institution is always encrypted.

Encryption and Signing. Transactions are encrypted

• either on the FinTS protocol layer using a key stored

ś either on a chip card, more exactly a banking signature cards using
the SECCOS operating system of the Deutsche Kreditwirtschaft,

ś or in a őle secured by a password

• or on the TSL protocol (underlying the HTTPS-Protocol) using PIN/TAN
with indexed (iTAN) and mobile (mTAN) transaction numbers, that is,
one-time passwords. (iTAN was abandoned in 2019 by the EU payment
regulations directive PSD2.)

Using a chip card is the most secure because

• all cryptographic operations are achieved without the secret key ever
leaving the chip card securely stored on it,

• and the PIN is entered by the card reader keyboard.

If a őle is used, then the key must be encrypted by a password chosen by the
user and only accessible after manually having entered it.

The PIN/TAN method is more convenient because it does not require a card
reader (for example, while travelling).

All asymmetric cryptography uses exclusively the RSA algorithm: The key pairs
of the user are to be generated by the customer (from the chip card), and
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those of the bank are to be generated by the bank; according to the following
procedure:

• A constant public exponent e = 216 + 1 (= 4th Fermat prime number), and
a modulus n individual for each user is used for each RSA key system
used.

• The modulus n of each RSA key system has a length of N ≤ 2047 bit and
no leading 0 bit (so that 2N−1 ≤ n < 2N).

Encryption between client and server is hybrid and uses

1. RSA for the initial key exchange.

2. A randomly generated message 32 byte key for the symmetric encryption
algorithm:

• 3DES up to version 4.0, the RDH method (RSA-DES-Hybrid);
• AES since version 4.1, the RAH method (RSA-AES Hybrid).

the current one-time key is encrypted with the public key of the recipient. The
length of the one-time key of 256 bits is extended to the modulus length of
the public encryption key (2048 bits) by the ZKA padding speciőed in the
crypto-catalogue of the German Banking Industry.

FinTS uses RSA signatures to authenticate transactions (for example, in RAH-9
and RAH-10) and, in RAH-7, to sign transactions by a certiőcate. The signing
key pairs is

• either authenticated by the bank via an initial łIni-letterž (for example,
RDH-1, RDH-5, RDH-8 and RDH-9),

• or already authenticated by the bank in the client’s chip card (for example,
RDH-3, RDH-6 and RDH-7).

An encrypted message is authenticated by signing its plaintext. All messages
must be encrypted, with the notable exceptions of those that

• are already encrypted by the transport protocol, for example, HTTPS,
• initially ask for keys or block keys,
• were received anonymously, for example, to be informed about business
transactions or submit unauthenticated orders, and

• keep the connection alive (heartbeat message).
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Self-Check Questions.

1. List the roles that a customer can assume in FinTS business transactions:
issuer, messenger, witness or intermediary

2. Which encryption algorithms uses the FinTS RAH protocol? RSA-2048
and AES-256

15.2 Voting

For a vote, like every sensitive transaction, for example, a őnancial transaction,

• the voter must be authenticated, and

• the vote must be

ś authentic (that is, unaltered between emission and reception) and
ś conődential (that is, only the sender and receiver know it).

However, the transaction, the ballot, must be anonymous as well; that is, the
receiver cannot know the sender: there is no link to between the voter and her
ballot (in particular, that there is no receipt that reveals the voter’s choice).
Secrecy of the Ballot guarantees that only the voter herself, but no one else, knows
of her choice (with the notable exception of a vote by a physically handicapped
person instructing her assistant to give her vote and possibly, though forbidden
by law, postal vote).

Anonymity versus Integrity. Integrity is about:

1. whether a vote is cast as intended (which is obvious in a paper ballot),
2. whether a vote is registered as cast (which, for paper ballots, relies on

trusting the election officials)
3. whether all the votes are tallied as registered (which, for paper ballots,

relies on blind trust into the election officials).

Integrity can only be achieved on the expense of Anonymity, and precautions
must be taken to preserve it as much as possible. In an end-to-end auditable (or
voter verifiable) voting system, each voter receives an encrypted ID, which she
can use to check on a public list whether her choice was likely cast, registered
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and tallied as intended. The more voters check and errors are committed, the
more probable that one of them is detected.

While secrecy can be strengthened by shuffling the assignment of bubbles to
candidates on each ballot, the integrity check nevertheless demands a database
that assigns each bubble of each ballot to a candidate, and which is owned by
the election authorities at some point. Therefore, while integrity can likely be
achieved, to break the secrecy of the ballot, it suffices:

• to identify the ballot by its ID and the őlled bubbles,
• to identify the voter of a ballot, for example, her őngerprint on the ballot
and access to a database of őngerprints, and

• to identify the candidate that corresponds to a bubble by access to the
assignment database.

To ensure that this assignment between the bubbles of the ballots and candidates
is left unaltered during the casting of the ballots, the election authorities commit
to it before the election by

1. cryptographically hashing

• the information of each ballot (such as its ID and the bubble num-
bers), and

• the assignment database.

2. publicizing the hashes.

Integrity versus Traceability. In many countries, the voting process that
underlies a democracy should be understandable by everybody (instead of
having to trust the computer), thus ruling out the use of cryptography. For
example,

• In its decision of 3 March 2009, the Federal Constitutional Court declared
the use of the voting computers in the election to the 16th German
Bundestag (and European Parlament) unconstitutional due to insufficient
public traceability: The system used for this was closed source, an audit
of the integrity of the source code was not allowed to the interested public.
However, łthe essential steps of the voting process and the determination
of results must be veriőable by the citizen reliably and without special
expertisež by Article 38 with Article 20 (1) and (2) of the Grundgesetz
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(Basic Law) which require łthat all essential steps of the election are
subject to public scrutinyž.

• In 2014 Namibia was the őrst country in Africa to use voting machines for
national elections to the National Assembly and Presidency. The use of
the machines without a veriőcation printout was declared unconstitutional
by Namibia’s Supreme Court in February 2020.

Instead, most countries opt for paper ballots that are hand counted. Therefore,
instead of using voting machines to cast, register and tally votes, voting proce-
dures such as Scantegrity (see below) are explored that use pen and paper to
cast, register and tally votes, but cryptographically identify the ballot with the
voter’s choice to ensure authenticity while preserving anonymity.

History of Electronic Voting Machines.

1. The őrst generation of electronic voting machines, the DRE (Direct Record-
ing Electronic voting machine), is characterized by direct electronic record-
ing without printing of the vote. In Brazil, such a microcomputer is used
for the collection and tallying of votes. In the USA, this type of voting
machine is forbidden because it does not meet the łPrinciple of Software
Independence in Election Systemsž that the election result can be audited
independently of the machine (as given in the łVoluntary Voting System
Guidelinesž by the U.S. federal agencies Election Assistance Commission
(EAC) and National Institute of Standards and Technology (NIST)).

2. The second generation accomplishes the łSoftware Independence Princi-
ple in Election Systemsž which registers the vote digitally and on paper. In
Brazil such a device was proposed in an electoral reform in 2015, however
rejected by the STF (Federal Supreme Court) in 2018 because human
intervention would increase the chances for fraud.

3. The third generation of voting machines is characterized by the scanning
of the ballot and an encrypted registration that allow the voter to check
herself (without any technical equipment) the correct cast, registration
and counting of her vote, but is incapable to prove her vote to others.
A prominent example is the Scantegrity voting scheme, which we will
present below:

Scantegrity. The Scantegrity voting scheme is an end-to-end voter veriőable
voting scheme, that is, each voter receives an ID which she can use to check
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on a public list whether her choice was likely cast, registered and tallied as
intended (and otherwise őle a dispute). It was devised by David Chaum et
al. in 2008 and supersedes the Punchscan scheme by David Chaum and since
then continually evolved into versions I, II to III after trial elections. The paper
ballot contains:

• a list of candidates which have, right next to each one of them, a bubble
that is identiőed by a letter code, and

• a detachable human-readable ballot ID and an undetachable barcode of
it (to prevent a human to easily identify the cast ballot).

The voter can use her ballot to

• vote by marking an admissible number of bubbles,
• spoil her vote, for example, by marking no bubble or more bubbles than
votes, or

• audit a ballot by asking for two ballots among which she selects one to
audit (and the other to vote).

1. To vote, the voter őlls a bubble on the ballot,
2. to register, an optical scanner recognizes the bubble position and ballot

ID, and
3. to verify her vote, the voter can keep the code of her chosen bubble and

the ballot ID by detaching it from the ballot.

A database assigns to each bubble of each ballot ID the candidate shown on
the ballot. While this assignment could be achieved in a single table P

• whose rows correspond to the ballots,
• whose columns to the candidates, and
• whose cells are the bubble codes of the ballot and bubble of the corre-
sponding row and column,

for public auditing of the registration and tally of votes, this assignment is split
into two steps and the table P kept secret and expanded into three tables:

1. a table Q in which every row corresponds to a ballot (ID) and the cells
of each row contain the bubble codes (in no particular order so as not to
reveal that on the paper ballot),
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2. a table S with a column for each candidate and as many rows as ballots
and in which each cell is ŕagged if and only if the corresponding bubble
on a bullet was őlled, and

3. a table R that contains two columns in which each row assigns to every
cell in Q , that is, bubble of each ballot, a column (and row) in S, that is,
a candidate (plus a column to ŕag the bubbles that were voted).

Figure 67: The tables Q , S and R that assign a candidate to every bubble code;
from Clark (2011)

In table Q , in each row, the cells whose bubble codes have been revealed on
the ballot are revealed. In table S, the cells that corresponds to the bubble of a
ballot that has been revealed is marked.
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The public audit reveals a random half of the assignment between each bubble on
a ballot and candidate in table R, that is, either the cell in tableQ or the column
(and row) in table S. While the chance to detect a given manipulated bubble is
50%, the odds to overlook a manipulated bubble among, say, ten manipulated
bubbles is below 1 to 1000, that is, the probability is < (1 − 0,5)10 ≈ 0,1%.

If the voter chooses to audit a ballot, then this ballot is

1. excluded from the tally by the poll worker,
2. the full assignment between every bubble and candidate of that ballot are

revealed on tables Q , S and R, and
3. all the bubble codes are revealed, and their assignments are checked.

Again, while the chance to detect a given manipulated ballot is 50%, the odds
to overlook a manipulated ballot among, say, ten manipulated ballot are below
1 to 1000, that is, the probability is < (1 − 0,5)10 ≈ 0,1%.

Scantegrity II. As countermeasures to perceived attacks during trial elec-
tions with Scantegrity I, while in Scantegrity I the codes of the bubbles are
randomly permuted among a set of letters that identify the bubbles, in Scant-
egrity II (or the basic system): The voter

1. őlls out a bubble next to her chosen candidate with a special pen that
reveals a unique code of multiple letters written in invisible ink that
encrypts the cast vote, and

2. receives for later veriőcation the ballot number and the revealed code to
be exposed online.

This way,

• the voter cannot ensure to choose a certain bubble code because every
ballot contains different bubble codes; therefore she cannot be forced to
randomize her vote by choosing a őxed letter.

• a voter can prove online and anonymously, without a receipt, that she
chose a certain bubble, because:

ś all but the marked code are hidden, and
ś each code is sufficiently unique to be improbable to be guessed.

This avoids
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ś being pressurized to omit őling an error by retribution, and
ś taking away from the voter the possibility to őle an error by taking
away her receipt.

Scantegrity III. In Scantegrity III, to prevent a human from reading off the
information contained in a cast ballot (where all codes given to the voter were
detached):

• The ballot ID is encoded, say as a bar code, and
• the bubble codes turn dark after a couple of minutes by having been
printed in a slow-reacting invisible ink.

To prevent a voted ballot being turned into an audited or a spoiled ballot, two
łauthenticated statusž codes are added to the ballot and committed to before
the election. Each code is printed on the ballot in slow-reacting invisible ink,
and individually detachable (for example, using a perforation).

If the voter:

• votes, then both status codes are given to her.
• chooses to audit, then one of the status codes (chosen by her) is revealed
and given to her. The other one is either destroyed or kept as a record by
the election authority.

• spoils the ballot, then no code is given to her and both status codes are
destroyed.

If a voter later on the website,

• has voted and őnds that

ś an incorrect conőrmation code appears online, then knowledge of
one (correct) bubble code suffices (instead of the physical receipt,
stamped or otherwise) to prove her diverging choice,

ś her cast ballot has been őled as an audited or spoiled ballot, then
knowledge of both status codes suffices to prove that the ballot was
voted.

• has audited her ballot and őnds that

ś her audited ballot has been őled as a spoiled ballot, then knowledge
of one status code suffices to prove otherwise,
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ś her audited ballot has been őled as a voted ballot, then knowledge of
all bubble codes suffices to prove that the ballot was not voted on.

• has spoiled her ballot and őnds that her ballot is misrepresented (as voted
or audited), then, in theory, two additional status codes could be added to
detect the misrepresentation; however, in practice it is sufficiently effective
to prevent it at the voting booth by destroying all ballot IDs.

Self-Check Questions.

1. List four criteria that an end-to-end voter veriőable voting system should
adhere to:

1. confidentiality
2. authenticity
3. anonymity
4. traceability

2. Which election steps in an end-to-end voter veriőable voting system should
be veriőable by the voter:

Whether the vote is:

1. cast as intended ,
2. registered as cast, and
3. tallied as registered .

15.3 Steganography

Steganography from Greek steganos, covered, is the art of concealing a message
by embedding it within another message so that nobody but the intended
recipient knows of the existence of the message. One example is given in The
Histories of Herodotus where Histaeus shaved the head of his most trusted slave
and punctured a message on his head which became hidden as soon as his hair
had grown back.

In contrast, in cryptography the existence of the hidden message itself is not
hidden, but only its content (for example, when sending an encrypted e-mail).
Thus it makes public, presumably important, information is deliberately being
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hidden, drawing attention to the fact and possibly pitting interested cryptanalysts
against it.

Steganography: the art of concealing a message by embedding it
within another message so that nobody but the intended recipient
knows of the existence of the message.

Implementation. In computing, the message is typically hidden in a picture,
for example, a compressed JPEG, but also an audio őle, say, in the MP3 format,
is conceivable. This can be used, for example, to hide, in the picture itself,
a copyright notice of the owner of a picture (Coded Anti-Piracy). Because a
typical picture őle has hundreds of kilobytes, a few bytes can be changed to
convey a secret message without noticeable change. The secret information is
usually stored in the marginal parts of the image: The simplest picture format
is a bitmap, that is, a picture

• is a matrix of pixels (of dimensions, for example, 1024 × 768 ),
• each pixel has a color, and
• each color is deőned by the intensities of the three primary colors Red,
Green and Blue.

Because man cannot distinguish more than 256 = 28 degrees of each primary
color, it suffices to represent each pixel by three bytes.

Least-Significant Bit Substitution: The hidden message, as a stream of bits,
can then be stored, for example, in the least signiőcant bit of the eight for each
primary color of each pixel: For each byte, as a number b between 0 and 255,
the hidden bit is 1 if and only if b is odd.

Steganalysis. To read the hidden content in a medium, it must be

1. detected, and
2. extracted.

Steganalysis is the art of detecting and extracting the hidden content in a
medium without knowledge

• where the hidden content is, and
• which algorithm was used.
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Figure 68: Primary color degree map; Commons (2020)

Hidden content can be detected statistically by looking for signiőcant deviations
to similar reference data without hidden content. For these deviations to be
statistically less signiőcant, the hidden content itself should be statistically
random, pattern free; this is for example achieved by encrypting it.

For example, Least-Significant Bit Substitution can be detected by a histogram, a
diagram of bars, one for each color in the picture whose height is proportional
to the number of pixels of that color. Because bytes that were originally
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• odd can only be decremented by 1 and
• even can only be increased by 1,

the heights of each pair of neighboring bars, that is, the frequency of pixels of
neighboring colors, will be signiőcantly closer to their mean than in the original
picture. Therefore Least-Significant Bit Substitution can be reliably detected when
the hidden information makes up less than 1% of the whole picture.

To counter this detection method, Least-Signiőcant Bit Matching, instead of
Least-Signiőcant Bit Substitution, adds or subtracts 1 to the byte randomly,
instead of exclusively adding to even and subtracting from odd bytes. That is, if
the bit of the hidden message is 1, then, a coin ŕip decides whether the byte is
incremented or decremented (instead of decrementing the byte if it is odd and
decrementing it if it is even). Then, like in Least-Signiőcant Bit Substitution, for
each byte, as a number b between 0 and 255, the hidden bit is 1 if and only if b
is odd. However, the heights of each pair of neighboring bars in the histogram
are no longer signiőcantly closer to their mean than statistically expected and
the problem of detecting .

Kerckhoff’s principle, that an attacker who knows of the steganographic algo-
rithm used to store the hidden information cannot detect it, is however more
difficult to achieve in steganography than in cryptography.

Application. The command-line tool Tomb by Denis Roio (aka Jaromil), is
a Linux shell script that encrypt folders by dm-crypt, which is part of the kernel;
the encrypted folders are consequently called Tombs (whereas dm-crypt calls
them containers). These can be created and integrated into the running system
with a few commands on the command line (which, however, partially need
administrative rights). For highest security, and tomb and its key should not be
stored on the same device. For example, if the tomb is on a PC or notebook,
the tomb could be stored on a USB stick. If however, the key must be stored
on the same device as the tomb, then Tomb offers to hide the key in a JPEG
picture using steganography. This hides the key from unauthorized eyes and
helps remember the key’s location.

Tomb can mount folders that other applications need at runtime, for example,
the mailbox of an e-mail client. To this end, it needs the package steghide.
The key can be hidden in a small JPEG picture by tomb bury and extracted by
tomb exhume:
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• to hide a key in a picture: tomb bury secret.tomb -k picture.jpg

• to retrieve a key from a picture: tomb exhume picture.jpg -k secret.key

• to open a tomb with a steganography key: tomb open secret.tomb -k

picture.jpg

Self-Check Questions.

1. How does steganography differ from cryptography?

Steganos means cover while crypto means hide in Greek. Steganography cov-
ers up a secret message by a plain message while cryptography reversibly
scrambles its content.*

15.4 Mix-Nets

Chaum introduced in 1981 Mix-Nets to communicate anonymously on the
network by passing the data through relays that can only forward to their
nearest neighbors.

Principles.

• Message Pooling: To always ensure many potential endpoints, messages
are pooled and redistributed among the endpoints, either a single message
randomly or a batch of messages at once.

• Rearrangement of Messages: The order of the outgoing messages should
not depend on that of the incoming messages.

• Deletion of Duplicates: Duplicate incoming messages become duplicate
outgoing messages and as such indicate their source; thus they better be
deleted.

Sending and Receiving Scheme. Each relay has a public key pair with
public keys p1, . . . , pn numbered in the order in which the message travels
through them, 1 for the relay after the sender, . . . , n for the relay before the
receiver.
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Sender. To send a message m anonymously and conődentially, the receiver
sends:

• the message m (encrypted so that only the receiver knows its plaintext),
and

• a list of addresses (so that each relay only knows the address of its
successor).

1. The sender selects the (IP) addresses ar of the receiver and of each relay
a1, . . . , an .

2. The sender chooses a random number for each relay (to ensure uniqueness
of each message).

3. The sender

1. encrypts the message m using the public key of the receiver if avail-
able.

2. encrypts, using the public key pn , the IP address ar , the (possibly
encrypted) message and a random number.

3. . . .
4. encrypts, using the public key p1, the IP address a2, a random number

and all the data encrypted in the last step.

and sends this encrypted data to the őrst relay.

Receiver. To receive data anonymously and conődentially, the receiver
sends to the sender s the following data (which in turn is successively sent to
each relay):

• a list of addresses (encrypted so that each relay only knows the address
of its successor), and

• a list of symmetric keys (encrypted so that each relay only knows its own
key) to encrypt the messages, one for the sender and one for each relay,
numbered in the order in which the message travels through them, 1 for
the relay after the sender, . . . , n for the relay before the receiver. (Because
the symmetric key serves as a random number for the uniqueness of each
message, a random number is no longer needed.)
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The message m sent anonymously and conődentially as described above could,
for example, be this (encrypted) list of addresses and symmetric keys to receive
data anonymously and conődentially.

1. The receiver selects the (IP) addresses as of the sender and of each relay
a1, . . . , an .

2. The receiver creates symmetric keys for the sender ks and each relay k1,
. . . , kn .

3. The receiver

1. encrypts, using the public key pn , the symmetric key kn and the
receiver’s IP address ar ,

2. . . .
3. encrypts, using the public key p1, the symmetric key k1, the IP address
a2 and all the data encrypted in the last step,

4. attaches the symmetric key ks of the sender and the IP address a1 to
all the data encrypted in the last step.

and sends this data to the sender.

4. The sender

1. decrypts the packet using its private key to obtain the symmetric key
ks and the address a1 of the őrst relay (after the sender), and

2. encrypts the packet using ks , and
3. sends it to the őrst relay.

5. The őrst relay (after the sender)

1. decrypts the packet using its private key to obtain the symmetric key
k1 and the address a2 of the following relay, and

2. encrypts the packet using k1, and
3. sends it to the following relay.

6. . . .

7. The last relay (before the receiver)

1. decrypts the packet using its private key to obtain the symmetric key
kn and the address ar of the receiver, and

2. encrypts the packet using kn , and
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3. sends it to the receiver.

Tor Project. Tor is an implementation of second-generation onion routing

to guarantee anonymity on the Internet. It was originally sponsored by the
US Naval Research Laboratory, then the Electronic Frontier Foundation (EFF)
between late 2004 and 2005.

Onion Routing: A chain in which every node only knows its im-
mediate predecessor and successor, and in which all traffic between
both endpoints is indecipherable to every node but the endpoints.

Connection to Network. To connect to the network, each client:

1. Fetches a list of Tor nodes from a server.
2. Automatically chooses a random path (that may change after a while).
3. Builds a circuit in which each node knows only its predecessor and

successor.

The őrst node in the circuit knows the requested IP address. But from the
second node on, the negotiation is done through the already built partial circuit,
so that the second node, for example, will only know the IP address of the
őrst node (and eventually of the third node). The packets to be routed are
identiőed by a code (chosen at the time the circuit is built) of the owner of
the circuit (the person who built it). Each node of the circuit receives its own
private (asymmetric) key encrypted by the public (asymmetric) key dedicated
to that node.

Packet Exchange between Client and Server. Before dispatching a TCP
packet to the server, the client encrypts it as many times as there are nodes:

1. with the public key corresponding to the last node, numbered n ;
2. with the public key of the penultimate node, numbered n − 1 ;
3. with the key of n − 2 ;
4. with that of n − 3 . . . ;

. . .

n. the last time, with that of the őrst node.
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At this point, all layers of the onion enclose the TCP packet. The onion is
peeled when the client dispatches it to the circuit she has built :

1. the őrst server in the circuit decrypts the packet with key number 1 and
sends it to the second server;

2. the second server decrypts this packet with key number 2 and sends it to
the third server;

. . .

n. the last server decrypts this packet with its own private key number n and
receives the original plaintext packet.

Proxy. A user on the Tor network can set up her web browser to use a
personal proxy server to access Tor (such as Privoxy); for example, to connect
to ongel.de:

1. Her web browser sends the HTTP request to Privoxy;

2. Privoxy removes the non-anonymous information and passes the infor-
mation via SOCKS to the Tor client.

3. The Tor client

1. builds a circuit (if it hasn’t already done so),
2. encrypts the data to be sent, and
3. passes it to the őrst node;

4. The őrst node decrypts part of the envelope and forwards the data to the
exit node;

5. This exit node sends the request to ongel.de.

For the ongel.de website to connect to the user, the steps are carried out in
inverse order.
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Implementations. The most accessible use of the Tor network without
advanced computer skills is the Tor Browser:

• The Tor Browser is a web browser, available for Linux, Microsoft Windows
and Mac that tunes Mozilla Firefox for leave as few traces as possible on
the network and the computer:

ś Browser traffic is by default redirected through the Tor instance
started at initialization,

ś lack of browsing history,
ś duckduckgo.com as the default search engine, and
ś the NoScript and HTTPS-Everywhere extensions enabled by default.

• Tails (The Amnesic Incognito Live System) is an operating system that
uses the Tor network by default and designed to leave no trace on the
computer being used. It is built to run on removable media (such as USB
drives) and is based on the Linux distribution Debian.

Self-Check Questions.

1. How many times does a client encrypt a packet before sending it to the
server through ten nodes in a Tor network?

the client encrypts it as many times as there are nodes, that is, ten times
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Summary

The online banking protocol FinTS standardizes data exchange between the
customer and her bank by the XML (Extensible Markup Language) format,
and ensures best cryptographic practices such as

• storage of the secret keys on a chip card that never leaves it, but only is
used to respond to challenges based on knowledge of the key,

• permanent encryption and authentication (by signing) of all sensitive
data,

• using proven encryption algorithms.

The blockchain replaces a third trusted party, the bank, that mediates őnancial
transactions, by a database of entries that successively point to each other. This
pointer is a hash of the whole other entry, ensuring the database’s integrity:
thus, a change of the entry entails a change of the hash, thus invalidates the
pointer, thus the whole chain. Because the hashes must have many leading
zeros, őnding valid entries, aka mining, demands much computational power
and practically turns impossible.

Veriőability of the tallying in an election by cryptography puts additional
requirements on its implementation because

• the casting of votes must be anonymous, and
• the tallying must be comprehensible to the average voter.

While some anonymity has to be put at risk to database breaches by collud-
ing election officials, the Scantegrity II pen-and-paper voting-scheme lets the
voter check the tallying of her vote probabilistically by an intermediate private
database that connects each ballot to the candidate choices.

While cryptography hides a message by reversibly scrambling it, steganography
hides it by embedding in a plaintext message, say, by embedding a secret key
inside an image. The most common approach is slightly altering each pixel
color according to a set rule; for example, to set the least signiőcant bit (out of
eight) to that of the message. If done too naively, for example, as described, than
statistical analysis gives away the existence of concealed information; however,
if done with care, then it is hardly discovered.

The Tor network achieves anonymous data transfer on the Internet by so-called
onion routing, where traffic passes through a chain of nodes in which
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• every node only knows its immediate predecessor and successor, and
• all traffic between both endpoints is indecipherable to every node but the
endpoints (by every node iteratively encrypting the content with its own
key).

Questions

1. Which home banking protocol standard precedes FinTS?

⊠ HBCI,
□ IFX,
□ OFX, or
□ SET

2. How high is, roundabout in percents, the chance that ten manipulated
ballots go undiscovered in the Scantegrity II voting scheme?

□ 10
⊠ 1
□ 0,1
□ 0,001

3. What does the Greek word Steganos translate to?

□ hide
⊠ cover
□ obfuscate
□ embed

4. What routing technique does the anonymity of data transfer in the Tor
network rest on?

⊠ onion routing
□ starshape routing
□ cross routing
□ local routing
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16 Blockchain

Study Goals

On completion of this chapter, you will have learned the anatomy of the
blockchain that stores and secures the transactions of cryptocurrencies such as
Bitcoin.
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Introduction

When using a common currency traders trust a third party, the bank, that keeps
a ledger of all transactions. When using a cryptocurrency, they put their trust
instead into a blockchain: a public ledger of all transactions, split into blocks,
packets of transactions, each containing around 2000 of them, immutably
bound together. It is maintained (and replicated) by a network of thousands of
computers to make it practically unforgeable: The whole network can read all
the blocks and it will only accept the addition of valid blocks.

Figure 69: A blockchain is useful as a database for multiple users who trust
neither each other nor anyone else.

The Bitcoin network prevents the (malevolent) alteration of the (existing)
blockchain by requiring a proof of work for appending a block to it: the compu-
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tation of an input to a cryptographic hash function that yields an output with
many leading zeros.

There are other approaches to make cryptocurrencies costly, for example:

• the BurstCoin uses a łproof of spacež instead of a proof of work, that is,
the reservation of a hard disk space, to earn coins. Like the Bitcoin, it
also has the drawback that all transactions are public (with the knowledge
of the person behind the public key [the Bitcoin address] as the only
cover-up).

• For increased privacy, the cryptocurrency

ś Monero uses group signatures (see Section 4.3) to conőrm transactions
between traders, thus obscuring the cryptocash ŕow, and

ś Zcash which uses zk-SNARKs instead of group signatures, a non-
interactive zero knowledge proof.

We will see

1. how the chain of blocks works is built,
2. what a block (of transactions) consists of,
3. how bitcoins are generated, so-called mining,
4. why this hard work, proof of work, is indispensable to ensure the integrity

of the chain, and
5. how bitcoins are transferred.

16.1 Overŕight

The blockchain, literally, is a chain of blocks. There is an initial block, the
Genesis block and blocks that point to their predecessors. This arrow pointing
to the predecessor is a hash, an identiőcation of the entire contents of the
previous block; it is an address that appears in the block header. The trunk of
the block consists of an average of 2000 transactions between Bitcoin users.
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Hashes. Since the hash of the block depends on the entire contents of the
block, the change of a single bit changes its hash, that is, invalidates the arrow
pointing to its successor! Thus, for the blocks to continue to form a chain, this
arrow must be changed. Thus, the hash of the successor block changes! Thus,
for blocks to continue to form a chain, it is necessary to change the arrow of the
successor of the successor, and so on; a chain reaction! That is, if we change
one detail, for example, a transaction in the őrst block, all the arrows (= hashes)
that follow must be recalculated!

Mining. Enters so-called łminingž, which makes this change very difficult,
because only blocks whose hashes are small, that is, start with many zeros, are
accepted by the network (that is, by its veriőer nodes). Thus, it is not enough
to change a transaction and calculate the new hashes of all successor blocks.
This change has to be such that all blocks are accepted, that is, their hashes are
small! It is highly difficult to őnd such a change: Currently, searching such a
block takes a billion years on a regular computer; but only ten minutes on the
mining network. While the bad guy started searching for admissible blocks, the
network has already created several others, thereby invalidating his work!

Transactions. All existing bitcoins were generated by mining, that is, they
were given (by the coinbase transaction) as a reward to the one who created a
block (with a small hash). All other transactions have an input and output: As
input a sufficient amount is gathered together to pay what will be spent. Better
almost the full amount be spent, because everything what is not spent will go
to the miner who will eventually make this transaction happen (by including
it in the block he mined). Therefore usually a transaction includes the sender
as a recipient as well to receive the unspent money back; the change transaction
(whereas usually only about 0,001 bitcoin is paid to the miner as a transaction
fee). The recipient is designated by his public key, and only at the time he will
spend the received coins he will need to prove that he owns the corresponding
private key, by signing the transaction.

Elliptic Curves. Bitcoin uses encryption by őnite elliptic curves to sign
transactions: Diffie-Hellman uses őnite rings of number such as {0,1, ...,m} (for
example, m = 12 for the clock, and a prime number such as p = 2255 − 19

with 100 digits in Bitcoin). The concept used by Bitcoin resembles that of
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Diffie-Hellman, only instead of numbers 0, 1, 2, . . . it uses pairs of numbers
(x ,y) that designate Cartesian coordinates of points on a (so-called elliptical)
curve. The beauty of this curve is that one can add points on them: p + q + r = 0

if these three points p, r and q lie on the same line. Instead of multiplying the
same number several times as in Diffie-Hellman, we add the same point several
times. It is easy to add points, but it is very difficult to know how many times a
point was added to itself to obtain the resulting point. Encryption corresponds
to iterated addition, decryption to the knowledge of how many iterations.

Finally, the signature scheme is a variation of ElGamal’s signature: the signature
shows that the owner of the private key was able to solve a difficult equation; so
difficult that it is practically impossible to solve it without this private key that
provides a shortcut.

Self-Check Questions.

1. How many transactions does a block of the Bitcoin blockchain contain
on average?

1. 1000
2. 2000
3. 100 000
4. 1 000 000

2. How long does the addition of a block to the Bitcoin blockchain currently
take on average on a regular computer?

1. 1 000 hours
2. 1 000 days
3. 1 000 000 years
4. 1 000 000 000 years

16.2 Chain

The blockchain is a chain of blocks that are linked, that is, each block contains
a hash of another block, which we think of as a pointer (or address) to the
previous block.
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Figure 70: Blockchain

Branches, orphaned blocks, occur; however, only the longest chain (more ex-
actly, whose construction was computationally heaviest; see proof of work in
Section 16.4) is considered valid. As it is very difficult to extend the chain by
another block, branches rarely have more than one block.

Figure 71: Bifurcation Management

The chain was lanced on January 3, 2009 at 18:15 UTC, probably by Satoshi
Nakamoto, with the őrst block, the genesis block.

Each block consists

• of its head, the meta-data, which contains

ś the pointer to the previous block, and
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Figure 72: Genesis block

ś information about his creation;

• of its content, the data, many (about one megabyte of) transactions among
Bitcoin users (grouped in a Merkle tree for fast retrieval; see Section 3.8).

The hash of the block depends on all of its content. That is, (practically) any
change causes its hash to change; for example:

• the alteration of one of its transactions,
• changing the pointer to the previous block.

For example:

1. If one of its transactions changes, then its hash changes.
2. Thus the pointer to it in the next block changes, thus the hash of the next

block changes.
3. Same for the hash of the block following the next block, and
4. . . . so on.

In other words, a chain reaction occurs: The change of a single transaction in
one block invalidates all the hashes of its later blocks.

Therefore, for the blocks to continue to form a chain, the pointers (that is, the
hashes of the later blocks) of all the blocks that follow the changed block must
be recomputed: Normally, these new blocks invalidate the blockchain because
these new hashes no longer conform to the required pattern (= a sufficient
number of leading 0s) to be accepted in the blockchain.
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Figure 73: Invalid block

16.3 Block

Each block groups transactions between users in a Merkle tree.

Structure.

Field Description Size

Magic = 0xD9B4BEF9 4 bytes
Header Contains 6 items 80 bytes
Block Size 4 bytes
Number of transactions 1 ś 9 bytes
Transactions

Each block groups transactions (which have, on average, 5000 bytes). First its
size (up to 1 Megabyte) and number of transactions (on average 20000) are
indicated.

The őrst transaction, the coinbase transaction, the reward for the work done
for its creation, is written by the creator of the block and, therefore, commonly
she and her collaborators are put as recipients.
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The other transactions are transmitted to the network by the senders, that is,
payers, and all block creators, the miners, decide which transactions they include
in the block they are creating. To encourage the inclusion of a transaction, the
sender may pay a fee to the creator of the block; hence often the miner includes
as many transactions as possible, about 1 Megabyte.

Figure 74: To quickly check transactions, they are grouped in a Merkle tree,
a (binary) tree, whose vertices are hashes and whose leaves are
transactions.

Header. The header of each block contains:

1. the version of the software used,
2. the hash of the previous block (for the blocks to form a chain),
3. the hash of the root of the Merkle tree of transactions,
4. the timestamp, the creation date (in seconds counted from 1970-01-01 at

00:00 UTC), and
5. the difficulty, roughly the number of zeros with which the block hash needs

to start in order for it to admissibly extend the chain, and
6. a nonce, a őeld without (semantic) content, which serves to change the

hash of the block without changing its (semantic) content.

The cryptographic hash function used by Bitcoin is SHA-256. In more detail:

Field Updated when. . . Size

Version the software is updated 4 bytes
Hash of the previous block a new block is created 32 bytes
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Field Updated when. . . Size

Hash of the tree root a transaction was accepted 32 bytes
Date of creation a few seconds passed 4 bytes
Difficulty every 2016-th block 4 bytes
Nonce another hash is proven 4 bytes

The łbodyž of the block, its content (in contrast to the header metadata), is
formed by the transactions. These are grouped in a łMerklež tree, a (usually
binary) tree of hashes where the hash of a node is calculated by those of its
successors; the data, here the transactions, constitute its leaves.

The nonce is used to search for a block with a sufficiently small hash without
changing its (semantic) content. For quite some time the 4 bytes of the nonce

are insufficient to őnd a sufficiently small hash. That is, after 232 increments, no
found hash is small enough. In this case, ExtraNonce, the coinbase transaction
message (which has 100 bytes) is iterated. However, then the hash of the Merkle
tree root needs to be recomputed.

Coinbase. The őrst transaction, the coinbase transaction, the reward for the
work done for its creation, is created by the creator of the block and, therefore,
commonly he and his collaborators are the recipients. Each transaction has

• an łinputž, and
• an łoutputž.

In all (except the initial transaction) the input collects outputs from transactions
(by referring to their hashes) whose sum is greater than (or equal to) the sum of
the outputs. In the initial transaction of the block, the input is arbitrary, and the
amount is the reward given to the miner, initially 50 bitcoins, 6.25 in 2021.

The őrst block of the chain, mined by Satoshi Nakamoto, the anonymous creator
of Bitcoin, contains the title of page one of the Financial Times:

The Times 03/Jan/2009

Chancellor on brink of second bailout for banks
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However, as mentioned above, the content nowadays is often not human read-
able; instead, it is a value for technical purposes, for example, to alter the block
such that its hash is small enough.

16.4 Chain Extension

To append a block to the blockchain, a proof of workmust be given, the calculation
of (a head of) a block such that its hash is small, that is, that its binary expansion
starts with a large number of zero digits (in January 2021, with 20 zeros in the
hexadecimal expansion or 80 zeros in the binary expansion). Perhaps the most
used software for this purpose is currently CGMiner; there are versions for all
operating systems, some adapted for graphics processors (GPUs) and others for
processors speciőcally programmed for mining (ASICs).

The hash of a mined block on January 13, 2021:

000000000000000000010f32aa4a0a862d4761ae7a997fbf8590ce2191dfc064

Irreversibility. While the high computational cost is useless to build a
blockchain, it is essential for its integrity because it makes it practically impos-
sible to (malevolently) alter previous blocks. That is, it ensures the irreversibility
of the blockchain: Once a transaction is in a block which has been extended
by, say, at least őve other blocks, it is practically impossible to replace the
blockchain blocks because every such effort is outpaced: while these blocks are
hard searched for, the blockchain has already been extended by other blocks.

Since each block contains in particular as an entry the hash of the previous
block, and the hash of the entire block depends in particular on this entry,
changing a block requires changing every subsequent block; since each block
needs a hash with many initial zeros to be accepted into the blockchain, it is
hard to őnd these subsequent blocks. A lot of work against time:

To change a block in the chain, the single miner needs to

• recalculate all subsequent blocks (such that its hashes begin with a suffi-
cient number of zeros),

• while all other miners append other blocks to the blockchain!
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Figure 75: Outpacing: While one is hard pressed őnding admissible alternative
blocks, others have already been added.

This irreversibility lets one dispense with a third party for the traders, that is, a
őducial authority. Instead, it is the nodes of the network agree on the validity
of the transaction.

However, if a miner has more computing power than all other miners, then he
can apply the 51 % attack:

1. Send a transaction,
2. await its conőrmation, that is, its inclusion in a blockchain block,
3. at the time it is included in a block, branch off the blockchain by extending

the previous block by another block that does not include this transaction,
4. continue to extend this branch by creating other blocks,
5. when the transaction is conőrmed, that is, 6 blocks have been appended,

send to the network the blocks in the meanwhile created. By his higher
computational power, his branch is longer than the blockchain; so the
veriőer nodes accept it as new blockchain!

Proof of Work. A proof of work shows information that is computationally
costly to obtain. Often, the work consists of repeating an operation till an
unlikely event occurs, that is, brute force.

Bitcoin uses the proof of work introduced by Hashcash to prevent spam by a
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proof of work required for the sending of each email to each recipient; so that
the proof of work makes mass sending costly.

In Bitcoin, the proof of work is required to extend the chain by a new block.

Hash. The work consists in searching for a block whose hash with 32 bytes
by the SHA-256 algorithm is less than a certain target number:

• initially, in 2009 a number that starts with 4 bytes that are 0,
• currently in 2021, a number that starts with 10 bytes that are 0.
• The number of zeros is continuously (every 2016-th block) adjusted such
that the (worldwide!) search takes on average 10 minutes.

Other common Hash algorithms (instead of SHA-256) for proof work are, for
example,

• Scrypt, and
• SHA-3.

Example. We iteratively append to the string łHello, world!ž a nonce, a
number used once, such that (the hexadecimal expansion [with the 16 digits
0 ś 9 and A ś F]) of its SHA-256 hash starts with 0000. There are 164 = 4096

combinations of four hexadecimal digits; so if the values of the hash function
are uniformly distributed, then we expect about 4096 attempts to őnd it. In
fact, after 4251 attempts, which take a millisecond on a modern computer, we
obtain:

"Hello, world!0" => 1312AF178C253F84028D480A6ADC1E25...

"Hello, world!1" => E9AFC424B79E4F6AB42D99C81156D3A1...

"Hello, world!2" => AE37343A357A8297591625E7134CBEA2...

...

"Hello, world!4248" => 6E110D98B388E77E9C6F042AC6B49...

"Hello, world!4249" => C004190B822F1669CAC8DC37E761C...

"Hello, world!4250" => 0000C3AF42FC31103F1FDC0151FA7...

However, in Bitcoin, the hashed object, the block header, is more complex, in
particular because it contains the root of the (Merkle) tree of transactions.
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Difficulty. The ‘difficulty’ őeld in the block header compares

• the computational effort that is currently on average required to őnd a
new block attachable to the chain

with

• the computational effort that was on average required to őnd the őrst
(łGenesisž) block of the chain:

Initially, for the łGenesisž block to be accepted in the chain, the binary expansion
of the hash of its header needed to start with 32 zeros (= the size, in bits, of
the nonce in the block header); that is, it took 232 ≈ 4billion) computations
of hashes to őnd a block with such a hash (taking a couple of minutes on a
notebook).

Since then, the number of zeros has been readjusted after every 2016-th block to
ensure that the computation of a new attachable block over the network takes,
on average, 10 minutes. (That is, computing 2016 new attachable blocks takes
on average 2 weeks.)

Each readjustment (after 2016 blocks) calculates the new difficulty as a ratio
between

• the target time A = 2016 · 10 minutes (about two weeks), and
• the actual time U in minutes that the creation of the last 2016 blocks took;

that is,
newdifficulty = A/U · previous difficulty

To avoid too steep a jump, the new difficulty is ≤ 4. That is, even if A/U > 4

(that is, the network took less than three and a half days to append 2016 blocks),
then the new difficulty is 4.

Mining. Computing a block header whose hash is smaller than the current
target, that is, whose binary expansion begins with enough zeros, is called
mining.

The difficulty is at each moment (with a delay of at most two weeks) proportional
to the joined computational force of the miners: The more miners, the more
difficult, the fewer miners, the easier. Currently, in 2022, the binary expansion
of the hash has to start with around ≥ 80 zeros to be accepted by the network.
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Computing Time. Since the hash used in bitcoin is cryptographic (currently
SHA-256), that is, its output doesn’t allow deducing the input, the only practical
way to őnd a header such that its hash is small enough is by brute force, that is,
trying out all possible combinations one after another. Since a hash function
is almost uniformly random, that is, the probabilities of all outputs are almost
equal, it takes on average about 2n attempts until a header whose hash has a
binary expansion starting with n zeros is found.

1. At the beginning of the blockchain, n = 32 and it took 232 (about 4 billion)
computations to őnd a block with such a hash (taking a couple of minutes
on a notebook).

2. Currently, n ≈ 80 and it takes on average around 280 ≈ 1.2 · 1024 (= one
trillion times one trillion) tries of different hashes. A fast processor of a
microcomputer, for example the Intel Core i7 2600, computes around
2.4 ·107 = 24million hashes per second. That is, it takes on average around
5 · 1016 seconds (> 109 years, that is, a billion years).

This gives an idea of the current combined computational power of the miners,
since they calculate this hash on average in ten minutes. Since the hash function
used by Bitcoin is SHA-256, as discussed in Section 3.6, it is quickly computed
by a CPU, a microprocessor for general use on a personal computer, and in
particular,

• for the average consumer, a GPU, by a graphics processor; about 100 times
faster than a CPU, and

• for someone with more resources, by an ASIC, a microprocessor suitable
for a speciőc application such as the computation of SHA-256; it is about
100,000 times faster than a CPU.

In fact, the energy expenditure for mining is equivalent to that of the whole
of Austria at any given time. For this reason, alternative concepts to the proof
of work have emerged, for example, the proof of stake where the owner of the
next block is determined by how much she owns instead of how much she can
compute. However, so far these alternative concepts have not worked so well in
practice.

Once such a block and its hash are found, given both, the veriőcation that the
hash is small enough is quickly done: simply compute the hash of the block and
compare it to the given hash.
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Figure 76: Blockchain

Time Available. The interval to create a new block is, on average, 10minutes.
While it will not always take almost exactly ten minutes or less, as a Poisson
process the probability of a block been found in this 10 minute range is about
63% (more exactly, the probability is 1 − 1/e).

• That is, almost two thirds of the blocks will be found in at most 10minutes.
• In 30 minutes, the probability increases to 95, and in one hour to 99.7.

Change the Header. To change the block header, let us recall that the
changeable header data consists of (cf. Section 16.3)

• the hash of the Merkle tree root of the transactions, and
• an nonce, a őeld without (semantic) content that serves to change the
hash of the block without changing its (semantic) content.

In particular, the main content of the block, the transactions, enters into its
hash only indirectly through the hash of the root of the Merkle tree.

Currently, since the number of initial zeros in the binary expansion of an
admissible hash n ≥ 80 and the őeld nonce only has 4 bytes (= 32 bits), rarely
(that is, with a probability of only about 232−80) there is a value of the nonce
such that the block hash is small enough. Therefore the miners change, in
addition to the nonce,
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• the timestamp, the creation date in seconds counted from 1970-01-01 at
00:00 UTC,

• the transactions, for example, their order, and
• the coinbase, the message (having 100 bytes) that accompanies the őrst
transaction of the block and transfers a reward to the miner for having
found the block with a hash accepted by the blockchain network. While
coinbase provides ample space to change the hash, it is a more expensive
option than timestamp or hash because, being part of the transactions,
its change implies the recomputation of the hashes of the Merkle tree that
stores the transactions. (Recall though that it is only the root hash of the
tree that enters the block header.)

Reward. When a new block is discovered, the miner transmits it to the
network, and the nodes check, among others:

• that its header hash actually starts with the number of 0s required by the
current difficulty, and

• that all transactions are valid.

After the blockchain has been extended by at least 100 other blocks following
this block (so that the network ensured that this blocks will persist in the
blockchain, the longest chain), its őnder:

• earns a certain amount of bitcoins as a reward for the work of discovery:
initially, in 2009, the reward was 50, currently, in 2021, it is 6.25; the value
is split in half after 210000 blocks (as a block is mined every 10 minutes,
this takes about 4 years).

• earns all transaction fees included in the block; paid as an incentive to
include the more transactions with the most generous fees őrst in the
block.

As the reward gradually fades out (until it runs out after 21000000 = (50 + 25 +
12.5 + · · · ) · 210000 blocks), these transaction fees will play a more and more
important role in encouraging the miners to hold on mining.

To distribute the unpredictable reward from mining more evenly, many miners
join their computational forces in groups, clusters, to share the rewarded
bitcoins.
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16.5 Transaction

All bitcoins are generated by mining: The miner, the creator of the block, can
freely choose the recipients of the őrst transaction of the created block, the
coinbase transaction.

Once generated, a bitcoin changes place by a chain of digital signatures: A
bitcoin is transferred by its owner

• signing (with his private key) of (hashes of) previous transfers in which
he received this bitcoin, and

• indicating the amount and (a hash of) the public key of the recipient.

The sum shown in the Bitcoin Core graphical user interface (initially developed
by Satoshi Nakamoto under the name Bitcoin-Qt and used by 90 % of the
traders) is the sum of all transactions that the owner received: For Alice to pay
a certain amount, for example, 4 bitcoins, to Bob, the program

1. joins transactions whose sum is ≥ 4, for example,

• one of 2, and
• another one of 3 bitcoins,

2. transfers

• the sum of 4 bitcoins to Bob, and
• the change of 1 bitcoin to Alice.

That is, Alice received another transaction (although of a smaller value than
the two initials).

Bitcoin address. The identity of each trader corresponds to his asymmetric
key (ECDSA), a pair of

• a public key with 32 bytes, and
• a private key.

To get his address, several hash functions are applied to the public key. Then
the őnal sequence of 25 letters is coded by the Base58 whose 58 numbers are

• all the numbers,
• all lowercase, and
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Figure 77: Exhaustion of the entries of a transaction

• all uppercase letters,
• except the number and the letter 0O and the letters Il for the risk of
mixing the letters of each pair up.

To calculate the hash of the public key:

1. Apply SHA-256 to the public key ECDSA,
2. apply RIPEMD-160 (to the last result), and
3. prepend an instruction code (0x0000 for P2PKH, 0x0005 for P2SH).

To add a checksum:

4. Apply once SHA-256,
5. apply again SHA-256,
6. use the őrst four bytes as a checksum, and
7. suffix the check sum to the result by 3.

To abbreviate the result (in a human-readable way):

413



8. Encodes it in Base58.

To see it in in action, visit https://gobittest.appspot.com/Address.

Figure 78: Public Key Conversion

To get the scriptPubkey format used in transactions:

1. Decode from Base58 to hexadecimal base,
2. remove the checksum, and
3. remove the preőx,

and őnally add a certain instruction code.
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The use of a hash instead of the public key as the address, besides shortening
it,

• makes the transition to another asymmetric encryption algorithm more
ŕexible in case the one currently employed (ECDSA) will be compromised
one day, and

• hides the public key until the amount received is spent (for which the
signature indicating the public key is required).

Types of Transactions. A transaction is a bitcoin transfer, őrst transmitted on
the network, then collected in a block by a miner and published. All transactions
are public, while (the hashes of) the public keys are anonymous, that is, they
do not reveal a priori the owners’ names.

There are two types of transactions:

• the generation of bitcoins when creating a new block, and
• the payment between two (groups of) users, the sender and the recipient.

In more detail:

• a generation transaction is determined by the miner:

ś the only information in the input is a 100 bytes coinbase őeld (in-
stead of scriptSig) whose content is arbitrary. (It is often (ab)used
as ExtraNonce, that is, additional Nonce for mining, since the size
of Nonce, 4 bytes, is currently insufficient to őnd a block whose hash
is small enough. However, unlike the Nonce őeld, ExtraNonce only
indirectly enters the transaction through the hash of the Merkle tree
root. Therefore, modifying ExtraNonce requires recomputing the
hashes of the coinbase branch into the Merkle tree of transactions).

ś the output distributes the reward (of 6.25 bitcoins, plus the earned
transaction fees, in 2021) to the recipients favored by the miner.

• a payment transaction has

ś an ‘input’, that lists transactions in which the sender received bitcoins,
and
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ś an ‘output’ that transfers to the recipients an amount equal to the
sum of the sender’s received bitcoins.

Often, the transaction includes an exchange, that is, the sender
appears as one of the recipients: If the sum is smaller, the difference
is paid to the miner of the block that included the transaction as an
incentive to swiftly consider it.

Once a block is included in the chain, and this block is extended by a
sufficient number (≥ 6) of other blocks, the transaction can be considered
irreversible; it is confirmed.

Figure 79: Transaction in Bitcoin Core application. Paying a transaction fee
helps decrease the conőrmation time.

Processing. In the bitcoin network, there are

• the full nodes, which transmit and validate the transactions, and
• the miners, who create the blocks that extend the chain.
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A miner is incentivized

• to send the block mined by him to the nodes as soon as possible Ð
otherwise the blockchain will be extended by someone else’s block,

• to receive blocks mined by others to continue mining from this block as
the end of the chain, and

• validate the transactions because every block with an invalid transaction
is rejected by the nodes.

However, the miner has no incentive to forward a block mined by someone
else to the node network. Instead, he rather hides its existence until he has
mined an own block that extends it. This instantaneous transmission is up to
the nodes.

A user is incentivized to maintain a node to ensure the integrity of the blockchain
at all times. However, maintaining an entire node is above all an altruistic need
that is essential to the functioning of blockchain: The chain is only safe using a
partial node (which only knows part of the chain) while there are sufficiently
many full nodes in the network that guarantee the validity of the blockchain.

Summary. We summarize how a transaction is processed, from its emission
to its accomplishment:

1. Send a transaction through your portfolio application.

2. The transaction is diffused by the nodes and becomes part of the pool of
unconőrmed transactions.

3. Miners

1. choose transactions from this pool (preferably those that reward
them the highest transaction fee, the difference between the joined
amounts of all incoming respectively outgoing transactions),

2. validate them (for example, whether the payer’s balance is sufficient),
and

3. add them to the block they are trying to generate; commonly, until
the maximum block size (of 1 Megabyte) is exhausted.
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4. Each miner tries to modify the block so that its hash becomes small
enough (currently starting with 10 null bytes). The probability of őnding
such a block, that is, the difficulty of the problem, is the same for all
blocks and miners. This difficulty is adjusted every 2016-th block (that is,
after about two weeks) so that the miners’ total computational power to
őnd such a block takes on average ten minutes.

When a new block is appended to the chain, all the miners have to start
again with another block since

• the indicator (to the hash of the preceding block) has changed, and
• furhter transactions were made.

5. Every miner who found a valid block transmits it to the network nodes.

6. The node validates the block, that is, checks whether

• all its transactions are valid, and
• its hash is small enough.

7. If the node conőrms the validity of the block, then it appends it to the
chain. A confirmation of a transaction is each extension of the chain
by a block after the block containing the transaction. The extension
of the chain by the block containing the transaction counts as the őrst
conőrmation, the block after this one as the second conőrmation, and
so on. The probability that the last six conőrmations (after an average
of one hour) are undone is practically zero. Therefore, a transaction is
usually seen as accomplished after its sixth conőrmation.

Validation. For the node to quickly check the validity of a transaction entry,
that is, if the cashed in transactions have not yet been spent, he steadily updates
the Unspent Transaction Ouput (UTXO) database of all transactions that have not
yet been spent. Currently, the UTXO has about 4 GB and is stored in memory to
ensure fast queries.

Let us recall that each transaction is unique, and can be spent only once and
entirely. When a transaction is transmitted,

• the previous transactions used as input are removed from UTXO, and
• the new outgoing transactions are added to UTXO.
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To prevent double spending, the node checks whether an outgoing transaction
is in the UTXO: if so, it allows the transaction, otherwise it prevents it.

Conőrmation. Let us recall that a confirmation of a transaction is each
extension of the chain by a block after the block containing the transaction.
The extension of the chain by the block containing the transaction counts as the
őrst conőrmation, the block after this one as the second conőrmation, and so
on. Because it is practically impossible that the last six conőrmations (after an
average of one hour) are undone, a transaction is usually seen as accomplished
after its sixth conőrmation.

For example, the default graphical interface for bitcoin, Bitcoin Core, shows
a transaction as conőrmed when the conőrmation count reached 6. However,
this number of conőrmations 6 is arbitrary.

In contrast, bitcoins mined can only be spent after the generated block has
achieved a conőrmation count of 100.

Summary

The blockchain replaces a third trusted party, the bank, that mediates őnancial
transactions, by a database of entries that successively point to each other. This
pointer is a hash of the whole previous entry, ensuring the database’s integrity:
thus, a change of the previous entry entails a change of the hash, thus invalidates
the pointer, thus the whole chain. Because the hashes must have many leading
zeros, őnding valid entries, mining, demands much computational power and
practically makes malevolent alterations impossible.

Questions

1. How long does the addition of a new block to the Bitcoin blockchain take
on average?

□ one second
□ one minute
⊠ ten minutes
□ one hour
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