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CS 229, Autumn 2016
Problem Set #0: Linear Algebra and Multivariable
Calculus

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/autumn2016/cs229. (3)
If you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
This specific homework is not graded, but we encourage you to solve each of the problems to
brush up on your linear algebra. Some of them may even be useful for subsequent problem sets.
It also serves as your introduction to using Gradescope for submissions.

If you are scanning your document by cellphone, please check the Piazza forum for recommended
cellphone scanning apps and best practices.

1. [0 points] Gradients and Hessians

Recall that a matrix A ∈ R
n×n is symmetric if AT = A, that is, Aij = Aji for all i, j. Also

recall the gradient ∇f(x) of a function f : Rn → R, which is the n-vector of partial derivatives

∇f(x) =







∂
∂x1

f(x)
...

∂
∂xn

f(x)






where x =







x1

...
xn






.

The hessian ∇2f(x) of a function f : Rn → R is the n× n symmetric matrix of twice partial
derivatives,

∇2f(x) =















∂2

∂x2

1

f(x) ∂2

∂x1∂x2

f(x) · · · ∂2

∂x1∂xn

f(x)
∂2

∂x2∂x1

f(x) ∂2

∂x2

2

f(x) · · · ∂2

∂x2∂xn

f(x)

...
...

. . .
...

∂2

∂xn∂x1

f(x) ∂2

∂xn∂x2

f(x) · · · ∂2

∂x2
n

f(x)















.

(a) Let f(x) = 1
2x

TAx+ bTx, where A is a symmetric matrix and b ∈ R
n is a vector. What

is ∇f(x)?

(b) Let f(x) = g(h(x)), where g : R → R is differentiable and h : Rn → R is differentiable.
What is ∇f(x)?

(c) Let f(x) = 1
2x

TAx+bTx, where A is symmetric and b ∈ R
n is a vector. What is ∇2f(x)?

(d) Let f(x) = g(aTx), where g : R → R is continuously differentiable and a ∈ R
n is a vector.

What are ∇f(x) and ∇2f(x)? (Hint: your expression for ∇2f(x) may have as few as 11
symbols, including ′ and parentheses.)

2. [0 points] Positive definite matrices

A matrix A ∈ R
n×n is positive semi-definite (PSD), denoted A � 0, if A = AT and xTAx ≥ 0

for all x ∈ R
n. A matrix A is positive definite, denoted A ≻ 0, if A = AT and xTAx > 0 for
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all x 6= 0, that is, all non-zero vectors x. The simplest example of a positive definite matrix is
the identity I (the diagonal matrix with 1s on the diagonal and 0s elsewhere), which satisfies

xT Ix = ‖x‖
2
2 =

∑n
i=1 x

2
i .

(a) Let z ∈ R
n be an n-vector. Show that A = zzT is positive semidefinite.

(b) Let z ∈ R
n be a non-zero n-vector. Let A = zzT . What is the null-space of A? What is

the rank of A?

(c) Let A ∈ R
n×n be positive semidefinite and B ∈ R

m×n be arbitrary, where m,n ∈ N. Is
BABT PSD? If so, prove it. If not, give a counterexample with explicit A,B.

3. [0 points] Eigenvectors, eigenvalues, and the spectral theorem

The eigenvalues of an n× n matrix A ∈ R
n×n are the roots of the characteristic polynomial

pA(λ) = det(λI − A), which may (in general) be complex. They are also defined as the the
values λ ∈ C for which there exists a vector x ∈ C

n such that Ax = λx. We call such a pair
(x, λ) an eigenvector, eigenvalue pair. In this question, we use the notation diag(λ1, . . . , λn)
to denote the diagonal matrix with diagonal entries λ1, . . . , λn, that is,

diag(λ1, . . . , λn) =















λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn















.

(a) Suppose that the matrix A ∈ R
n×n is diagonalizable, that is, A = TΛT−1 for an invertible

matrix T ∈ R
n×n, where Λ = diag(λ1, . . . , λn) is diagonal. Use the notation t(i) for the

columns of T , so that T = [t(1) · · · t(n)], where t(i) ∈ R
n. Show that At(i) = λit

(i), so
that the eigenvalues/eigenvector pairs of A are (t(i), λi).

A matrix U ∈ R
n×n is orthogonal if UTU = I. The spectral theorem, perhaps one of the most

important theorems in linear algebra, states that if A ∈ R
n×n is symetric, that is, A = AT ,

then A is diagonalizable by a real orthogonal matrix. That is, there are a diagonal matrix
Λ ∈ R

n×n and orthogonal matrix U ∈ R
n×n such that UTAU = Λ, or, equivalently,

A = UΛUT .

Let λi = λi(A) denote the ith eigenvalue of A.

(b) Let A be symmetric. Show that if U = [u(1) · · · u(n)] is orthogonal, where u(i) ∈
R

n and A = UΛUT , then u(i) is an eigenvector of A and Au(i) = λiu
(i), where Λ =

diag(λ1, . . . , λn).

(c) Show that if A is PSD, then λi(A) ≥ 0 for each i.
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CS 229, Autumn 2016
Problem Set #0 Solutions: Linear Algebra and
Multivariable Calculus

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/autumn2016/cs229. (3)
If you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
This specific homework is not graded, but we encourage you to solve each of the problems to
brush up on your linear algebra. Some of them may even be useful for subsequent problem sets.
It also serves as your introduction to using Gradescope for submissions.

If you are scanning your document by cellphone, please check the Piazza forum for recommended
cellphone scanning apps and best practices.

1. [0 points] Gradients and Hessians

Recall that a matrix A ∈ R
n×n is symmetric if AT = A, that is, Aij = Aji for all i, j. Also

recall the gradient ∇f(x) of a function f : Rn → R, which is the n-vector of partial derivatives

∇f(x) =






∂
∂x1

f(x)
...

∂
∂xn

f(x)




 where x =






x1

...
xn




 .

The hessian ∇2f(x) of a function f : Rn → R is the n× n symmetric matrix of twice partial
derivatives,

∇2f(x) =










∂2

∂x2

1

f(x) ∂2

∂x1∂x2

f(x) · · · ∂2

∂x1∂xn

f(x)
∂2

∂x2∂x1

f(x) ∂2

∂x2

2

f(x) · · · ∂2

∂x2∂xn

f(x)

...
...

. . .
...

∂2

∂xn∂x1

f(x) ∂2

∂xn∂x2

f(x) · · · ∂2

∂x2
n

f(x)










.

(a) Let f(x) = 1
2x

TAx+ bTx, where A is a symmetric matrix and b ∈ R
n is a vector. What

is ∇f(x)?

Answer: In short, we know that ∇( 12x
TAx) = Ax for a symmetric matrix A, while

∇(bTx) = b. Then ∇f(x) = Ax+ b when A is symmetric. In more detail, we have

1

2
xTAx =

1

2

n∑

i=1

n∑

j=1

Aijxixj ,
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so for each k = 1, . . . , n, we have

∂

∂xk

1

2

n∑

i=1

n∑

j=1

Aijxixj
(i)
=

∂

∂xk

1

2

n∑

i=1,i 6=k

Aikxixk +
∂

∂xk

1

2

n∑

j=1,j 6=k

Akjxkxj +
∂

∂xk

1

2
Akkx

2
k

(ii)
=

1

2

n∑

i=1,i 6=k

Aikxi +
1

2

n∑

j=1,j 6=k

Akjxj +Akkxk

=

n∑

i=1

Akixi

where step (i) follows because ∂
∂xk

Aijxixj = 0 if i 6= k and j 6= k, step (ii) by the definition
of a partial derivative, and the final equality because Aij = Aji for all pairs i, j. Thus
∇( 12x

TAx) = Ax. To see that ∇bTx = b, note that

∂

∂xk

bTx =
∂

∂xk

n∑

i=1

bixi =
∂

∂xk

bkxk = bk.

(b) Let f(x) = g(h(x)), where g : R → R is differentiable and h : Rn → R is differentiable.
What is ∇f(x)?

Answer: In short, if g′ is the derivative of g, then the chain rule gives

∇f(x) = g′(h(x))∇h(x).

Expanding this by components, we have for each i = 1, . . . , n that

∂

∂xi

f(x) =
∂

∂xi

g(h(x)) = g′(h(x))
∂

∂xi

h(x)

by the chain rule. Stacking each of these in a column vector, we obtain

∇f(x) =






g′(h(x)) ∂
∂x1

h(x)
...

g′(h(x)) ∂
∂xn

h(x)




 = g′(h(x))∇h(x).

(c) Let f(x) = 1
2x

TAx+bTx, where A is symmetric and b ∈ R
n is a vector. What is ∇2f(x)?

Answer: We have ∇2f(x) = A. To see this more formally, note that ∇2(bTx) = 0,
because the second derivatives of bixi are all zero. Let A = [a(1) · · · a(n)], where ai ∈ R

n is
an n-vector (because A is symmetric, we also have A = [a(1) a(2) · · · a(n)]T ). Then we use
part (1a) to obtain

∂

∂xk

(
1

2
xTAx) = a(k)

T
x =

n∑

i=1

Aikxi,

and thus
∂2

∂xkxi

(
1

2
xTAx) =

∂

∂xi

a(k)
T
x = Aik.

(d) Let f(x) = g(aTx), where g : R → R is continuously differentiable and a ∈ R
n is a vector.

What are ∇f(x) and ∇2f(x)? (Hint: your expression for ∇2f(x) may have as few as 11
symbols, including ′ and parentheses.)
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Answer: We use the chain rule (part (1b)) to see that ∇f(x) = g′(aTx)a, because
∇(aTx) = a. Taking second derivatives, we have

∂

∂xi

∂

∂xj

=
∂

∂xi

g′(aTx)aj = g′′(aTx)aiaj .

Expanding this in matrix form, we have

∇2f(x) = g′′(aTx)








a21 a1a2 · · · a1an
a2a1 a22 · · · a2an
...

...
. . .

...
ana1 ana2 · · · a2n







= g′′(aTx)aaT .

2. [0 points] Positive definite matrices

A matrix A ∈ R
n×n is positive semi-definite (PSD), denoted A � 0, if A = AT and xTAx ≥ 0

for all x ∈ R
n. A matrix A is positive definite, denoted A ≻ 0, if A = AT and xTAx > 0 for

all x 6= 0, that is, all non-zero vectors x. The simplest example of a positive definite matrix is
the identity I (the diagonal matrix with 1s on the diagonal and 0s elsewhere), which satisfies

xT Ix = ‖x‖
2
2 =

∑n
i=1 x

2
i .

(a) Let z ∈ R
n be an n-vector. Show that A = zzT is positive semidefinite.

Answer: Take any x ∈ R
n. Then xTAx = xT zzTx = (xT z)2 ≥ 0.

(b) Let z ∈ R
n be a non-zero n-vector. Let A = zzT . What is the null-space of A? What is

the rank of A?

Answer: If n = 1, the null space of A is empty. The rank of A is always 1, as the
null-space of A is the set of vectors orthogonal to z. That is, if zTx = 0, then x ∈ Null(A),
because Ax = zzTx = 0. Thus, the null-space of A has dimension n− 1 and the rank of A
is 1.

(c) Let A ∈ R
n×n be positive semidefinite and B ∈ R

m×n be arbitrary, where m,n ∈ N. Is
BABT PSD? If so, prove it. If not, give a counterexample with explicit A,B.

Answer: Yes, BABT is positive semidefinite. For any x ∈ R
m, we may define v = BTx ∈

R
n. Then

xTBABTx = (BTx)TA(BTx) = vTAv ≥ 0,

where the inequality follows because vTAv ≥ 0 for any vector v.

3. [0 points] Eigenvectors, eigenvalues, and the spectral theorem

The eigenvalues of an n× n matrix A ∈ R
n×n are the roots of the characteristic polynomial

pA(λ) = det(λI − A), which may (in general) be complex. They are also defined as the the
values λ ∈ C for which there exists a vector x ∈ C

n such that Ax = λx. We call such a pair
(x, λ) an eigenvector, eigenvalue pair. In this question, we use the notation diag(λ1, . . . , λn)
to denote the diagonal matrix with diagonal entries λ1, . . . , λn, that is,

diag(λ1, . . . , λn) =










λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn










.
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(a) Suppose that the matrix A ∈ R
n×n is diagonalizable, that is, A = TΛT−1 for an invertible

matrix T ∈ R
n×n, where Λ = diag(λ1, . . . , λn) is diagonal. Use the notation t(i) for the

columns of T , so that T = [t(1) · · · t(n)], where t(i) ∈ R
n. Show that At(i) = λit

(i), so
that the eigenvalues/eigenvector pairs of A are (t(i), λi).

Answer: The matrix T is invertible, so if we let t(i) be the ith column of T , we have

In×n = T−1T = T−1
[

t(1) t(2) · · · t(n)
]

=
[

T−1t(1) T−1t(2) · · · T−1t(n)
]

so that
T−1t(i) =

[
0 · · · 0
︸ ︷︷ ︸

i−1 times

1 0 · · · 0
︸ ︷︷ ︸

n−i times

]T
∈ {0, 1}n,

the ith standard basis vector, which we denote by e(i) (that is, the vector of all-zeros except
for a 1 in its ith position. Thus

ΛT−1t(i) = Λe(i) = λie
(i), and TΛT−1t(i) = λiTe

(i) = λit
(i).

A matrix U ∈ R
n×n is orthogonal if UTU = I. The spectral theorem, perhaps one of the most

important theorems in linear algebra, states that if A ∈ R
n×n is symetric, that is, A = AT ,

then A is diagonalizable by a real orthogonal matrix. That is, there are a diagonal matrix
Λ ∈ R

n×n and orthogonal matrix U ∈ R
n×n such that UTAU = Λ, or, equivalently,

A = UΛUT .

Let λi = λi(A) denote the ith eigenvalue of A.

(b) Let A be symmetric. Show that if U = [u(1) · · · u(n)] is orthogonal, where u(i) ∈
R

n and A = UΛUT , then u(i) is an eigenvector of A and Au(i) = λiu
(i), where Λ =

diag(λ1, . . . , λn).

Answer: Once we see that U−1 = UT because UTU = I, this is simply a repeated
application of part (3a).

(c) Show that if A is PSD, then λi(A) ≥ 0 for each i.

Answer: Let x ∈ R
n be any vector. We know that A = AT , so that A = UΛUT for an

orthogonal matrix U ∈ R
n×n by the spectral theorem. Take the ith eigenvector u(i). Then

we have
UTu(i) = e(i),

the ith standard basis vector. Using this, we have

0 ≤ u(i)TAu(i) = (UTu(i))TΛUTu(i) = e(i)
T
Λe(i) = λi(A).
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CS 229, Autumn 2016
Problem Set #1: Supervised Learning

Due Wednesday, October 19 at 11:00 am on Gradescope.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at http://piazza.com/stanford/autumn2016/cs229. (3)
If you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
For problems that require programming, please include in your submission a copy of your code
(with comments) and any figures that you are asked to plot. If typing your solutions, include
your code as text in your PDF. Do not submit extra files. (5) To account for late days, the due
date listed on Gradescope is October 22 at 11 am. If you submit after October 19, you will begin
consuming your late days. If you wish to submit on time, submit before October 19 at 11 am.

All students must submit an electronic PDF version. We highly recommend typesetting your
solutions via latex. If you are scanning your document by cell phone, please check the Piazza
forum for recommended scanning apps and best practices.

1. [25 points] Logistic regression

(a) [10 points] Consider the average empirical loss (the risk) for logistic regression:

J(θ) =
1

m

m∑

i=1

log(1 + e−y(i)θT x(i)

) = − 1

m

m∑

i=1

log(hθ(y
(i)x(i)))

where hθ(x) = g(θTx) and g(z) = 1/(1 + e−z). Find the Hessian H of this function, and
show that for any vector z, it holds true that

zTHz ≥ 0.

Hint: You might want to start by showing the fact that
∑

i

∑
j zixixjzj = (xT z)2 ≥ 0.

Remark: This is one of the standard ways of showing that the matrix H is positive semi-
definite, written “H � 0.” This implies that J is convex, and has no local minima other
than the global one.1 If you have some other way of showing H � 0, you’re also welcome
to use your method instead of the one above.

(b) [10 points] We have provided two data files:

• http://cs229.stanford.edu/ps/ps1/logistic_x.txt

• http://cs229.stanford.edu/ps/ps1/logistic_y.txt

These files contain the inputs (x(i) ∈ R
2) and outputs (y(i) ∈ {−1, 1}), respectively for a

binary classification problem, with one training example per row. Implement2 Newton’s
method for optimizing J(θ), and apply it to fit a logistic regression model to the data.
Initialize Newton’s method with θ = ~0 (the vector of all zeros). What are the coefficients θ
resulting from your fit? (Remember to include the intercept term.)

1If you haven’t seen this result before, please feel encouraged to ask us about it during office hours.
2Write your own version, and do not call a built-in library function.
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(c) [5 points] Plot the training data (your axes should be x1 and x2, corresponding to the two
coordinates of the inputs, and you should use a different symbol for each point plotted to
indicate whether that example had label 1 or -1). Also plot on the same figure the decision
boundary fit by logistic regression. (This should be a straight line showing the boundary
separating the region where hθ(x) > 0.5 from where hθ(x) ≤ 0.5.)

2. [15 points] Poisson regression and the exponential family

(a) [5 points] Consider the Poisson distribution parameterized by λ:

p(y;λ) =
e−λλy

y!
.

Show that the Poisson distribution is in the exponential family, and clearly state what are
b(y), η, T (y), and a(η).

(b) [3 points] Consider performing regression using a GLM model with a Poisson response
variable. What is the canonical response function for the family? (You may use the fact
that a Poisson random variable with parameter λ has mean λ.)

(c) [7 points] For a training set {(x(i), y(i)); i = 1, . . . ,m}, let the log-likelihood of an example
be log p(y(i)|x(i); θ). By taking the derivative of the log-likelihood with respect to θj , derive
the stochastic gradient ascent rule for learning using a GLM model with Poisson responses
y and the canonical response function.

(d) [3 extra credit points] Consider using GLM with a response variable from any member
of the exponential family in which T (y) = y, and the canonical response function h(x) for
the family. Show that stochastic gradient ascent on the log-likelihood log p(~y|X; θ) results
in the update rule θi := θi − α(h(x)− y)xi.

3. [15 points] Gaussian discriminant analysis

Suppose we are given a dataset {(x(i), y(i)); i = 1, . . . ,m} consisting of m independent exam-
ples, where x(i) ∈ R

n are n-dimensional vectors, and y(i) ∈ {−1, 1}. We will model the joint
distribution of (x, y) according to:

p(y) =

{
φ if y = 1

1− φ if y = −1

p(x|y = −1) =
1

(2π)n/2|Σ|1/2 exp

(
−1

2
(x− µ−1)

TΣ−1(x− µ−1)

)

p(x|y = 1) =
1

(2π)n/2|Σ|1/2 exp

(
−1

2
(x− µ1)

TΣ−1(x− µ1)

)

Here, the parameters of our model are φ, Σ, µ−1 and µ1. (Note that while there’re two different
mean vectors µ−1 and µ1, there’s only one covariance matrix Σ.)

(a) [5 points] Suppose we have already fit φ, Σ, µ−1 and µ1, and now want to make a prediction
at some new query point x. Show that the posterior distribution of the label at x takes the
form of a logistic function, and can be written

p(y | x;φ,Σ, µ−1, µ1) =
1

1 + exp(−y(θTx+ θ0))
,
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where θ ∈ R
n and the bias term θ0 ∈ R are some appropriate functions of φ,Σ, µ−1, µ1.

(Note: the term θ0 corresponds to introducing an extra coordinate x
(i)
0 = 1, as we did in

class.)

(b) [10 points] For this part of the problem only, you may assume n (the dimension of x) is 1, so
that Σ = [σ2] is just a real number, and likewise the determinant of Σ is given by |Σ| = σ2.
Given the dataset, we claim that the maximum likelihood estimates of the parameters are
given by

φ =
1

m

m∑

i=1

1{y(i) = 1}

µ−1 =

∑m
i=1 1{y(i) = −1}x(i)

∑m
i=1 1{y(i) = −1}

µ1 =

∑m
i=1 1{y(i) = 1}x(i)

∑m
i=1 1{y(i) = 1}

Σ =
1

m

m∑

i=1

(x(i) − µy(i))(x(i) − µy(i))T

The log-likelihood of the data is

ℓ(φ, µ−1, µ1,Σ) = log
m∏

i=1

p(x(i), y(i);φ, µ−1, µ1,Σ)

= log

m∏

i=1

p(x(i)|y(i);µ−1, µ1,Σ)p(y
(i);φ).

By maximizing ℓ with respect to the four parameters, prove that the maximum likelihood
estimates of φ, µ−1, µ1, and Σ are indeed as given in the formulas above. (You may assume
that there is at least one positive and one negative example, so that the denominators in
the definitions of µ−1 and µ1 above are non-zero.)

(c) [3 extra credit points] Without assuming that n = 1, show that the maximum likelihood
estimates of φ, µ−1, µ1, and Σ are as given in the formulas in part (b). [Note: If you’re
fairly sure that you have the answer to this part right, you don’t have to do part (b), since
that’s just a special case.]

4. [10 points] Linear invariance of optimization algorithms

Consider using an iterative optimization algorithm (such as Newton’s method, or gradient de-
scent) to minimize some continuously differentiable function f(x). Suppose we initialize the
algorithm at x(0) = ~0. When the algorithm is run, it will produce a value of x ∈ R

n for each
iteration: x(1), x(2), . . ..

Now, let some non-singular square matrix A ∈ R
n×n be given, and define a new function

g(z) = f(Az). Consider using the same iterative optimization algorithm to optimize g (with
initialization z(0) = ~0). If the values z(1), z(2), . . . produced by this method necessarily satisfy
z(i) = A−1x(i) for all i, we say this optimization algorithm is invariant to linear reparame-
terizations.

(a) [7 points] Show that Newton’s method (applied to find the minimum of a function) is
invariant to linear reparameterizations. Note that since z(0) = ~0 = A−1x(0), it is sufficient
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to show that if Newton’s method applied to f(x) updates x(i) to x(i+1), then Newton’s
method applied to g(z) will update z(i) = A−1x(i) to z(i+1) = A−1x(i+1).3

(b) [3 points] Is gradient descent invariant to linear reparameterizations? Justify your answer.

5. [35 points] Regression for denoising quasar spectra4

Introduction. In this problem, we will apply a supervised learning technique to estimate the
light spectrum of quasars. Quasars are luminous distant galactic nuclei that are so bright, their
light overwhelms that of stars in their galaxies. Understanding properties of the spectrum of
light emitted by a quasar is useful for a number of tasks: first, a number of quasar properties
can be estimated from the spectra, and second, properties of the regions of the universe through
which the light passes can also be evaluated (for example, we can estimate the density of neutral
and ionized particles in the universe, which helps cosmologists understand the evolution and
fundamental laws governing its structure). The light spectrum is a curve that relates the light’s
intensity (formally, lumens per square meter), or luminous flux, to its wavelength. Figure 1
shows an example of a quasar light spectrum, where the wavelengths are measured in Angstroms
(Å), where 1Å= 10−10 meters.

1195 1200 1205 1210 1215 1220 1225 1230 1235
lambda

0

1

2

3
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F
lu

x

Lyman-alpha

Intrinsic spectrum

Observed spectrum

Figure 1: Light spectrum of a quasar. The blue line shows the intrinsic (i.e. original) flux spectrum
emitted by the quasar. The red line denotes the observed spectrum here on Earth. To the left of the
Lyman-α line, the observed flux is damped and the intrinsic (unabsorbed) flux continuum is not clearly
recognizable (red line). To the right of the Lyman-α line, the observed flux approximates the intrinsic
spectrum.

The Lyman-α wavelength is a wavelength beyond which intervening particles at most negligibly
interfere with light emitted from the quasar. (Interference generally occurs when a photon is

3Note that for this problem, you must explicitly prove any matrix calculus identities that you wish to use that
are not given in the lecture notes.

4Ciollaro, Mattia, et al. “Functional regression for quasar spectra.” arXiv:1404.3168 (2014).
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absorbed by a neutral hydrogen atom, which only occurs for certain wavelengths of light.) For
wavelengths greater than this Lyman-α wavelength, the observed light spectrum fobs can be
modeled as a smooth spectrum f plus noise:

fobs(λ) = f(λ) + noise(λ)

For wavelengths below the Lyman-α wavelength, a region of the spectrum known as the Lyman-
α forest, intervening matter causes attenuation of the observed signal. As light emitted by the
quasar travels through regions of the universe richer in neutral hydrogen, some of it is absorbed,
which we model as

fobs(λ) = absorption(λ) · f(λ) + noise(λ)

Astrophysicists and cosmologists wish to understand the absorption function, which gives infor-
mation about the Lyman-α forest, and hence the distribution of neutral hydrogen in otherwise
unreachable regions of the universe. This gives clues toward the formation and evolution of the
universe. Thus, it is our goal to estimate the spectrum f of an observed quasar.

Getting the data. We will be using data generated from the Hubble Space Telescope Faint
Object Spectrograph (HST-FOS), Spectra of Active Galactic Nuclei and Quasars.5 We have
provided two comma-separated data files located at:

• Training set: http://cs229.stanford.edu/ps/ps1/quasar_train.csv

• Test set: http://cs229.stanford.edu/ps/ps1/quasar_test.csv

Each file contains a single header row containing 450 numbers corresponding integral wavelengths
in the interval [1150, 1600] Å. The remaining lines contain relative flux measurements for each
wavelength. Specifically, quasar train.csv contains 200 examples and quasar test.csv con-
tains 50 examples. You may use the helper file load quasar data.m to load the data in Matlab:
http://cs229.stanford.edu/ps/ps1/load_quasar_data.m

(a) [10 points] Locally weighted linear regression

Consider a linear regression problem in which we want to “weight” different training exam-
ples differently. Specifically, suppose we want to minimize

J(θ) =
1

2

m∑

i=1

w(i)
(
θTx(i) − y(i)

)2

In class, we worked out what happens for the case where all the weights (the w(i)’s) are the
same. In this problem, we will generalize some of those ideas to the weighted setting.

i. [2 points] Show that J(θ) can also be written

J(θ) = (Xθ − ~y)TW (Xθ − ~y)

for an appropriate diagonal matrix W , and where X and ~y are as defined in class. State
clearly what W is.

ii. [4 points] If all the w(i)’s equal 1, then we saw in class that the normal equation is

XTXθ = XT~y,

5https://hea-www.harvard.edu/FOSAGN/
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and that the value of θ that minimizes J(θ) is given by (XTX)−1XT~y. By finding
the derivative ∇θJ(θ) and setting that to zero, generalize the normal equation to this
weighted setting, and give the new value of θ that minimizes J(θ) in closed form as a
function of X, W and ~y.

iii. [4 points] Suppose we have a training set {(x(i), y(i)); i = 1 . . . ,m} of m independent
examples, but in which the y(i)’s were observed with differing variances. Specifically,
suppose that

p(y(i)|x(i); θ) =
1√

2πσ(i)
exp

(
− (y(i) − θTx(i))2

2(σ(i))2

)

I.e., y(i) has mean θTx(i) and variance (σ(i))2 (where the σ(i)’s are fixed, known, con-
stants). Show that finding the maximum likelihood estimate of θ reduces to solving a
weighted linear regression problem. State clearly what the w(i)’s are in terms of the
σ(i)’s.

(b) [6 points] Visualizing the data

i. [2 points] Use the normal equations to implement (unweighted) linear regression (y =
θTx) on the first training example (i.e. first non-header row). On one figure, plot both
the raw data and the straight line resulting from your fit. State the optimal θ resulting
from the linear regression.

ii. [2 points] Implement locally weighted linear regression on the first training example.
Use the normal equations you derived in part (a)(ii). On a different figure, plot both
the raw data and the smooth curve resulting from your fit. When evaluating h(·) at a
query point x, use weights

w(i) = exp

(
− (x− x(i))2

2τ2

)
,

with bandwidth parameter τ = 5.

iii. [2 points] Repeat (b)(ii) four more times with τ = 1, 10, 100 and 1000. Plot the resulting
curves. You can submit one plot with all four τ values or submit four separate plots. If
you submit one plot, make sure all curves are visible. Additionally, in 2-3 sentences,
comment on what happens to the locally weighted linear regression line as τ varies.

(c) [19 points] Predicting quasar spectra with functional regression

We now go a step beyond what we have covered explicitly in class, and we wish to predict
an entire part of a spectrum—a curve—from noisy observed data. We begin by supposing
that we observe a random sample of m absorption-free spectra, which is possible for quasars
very close (in a sense relative to the size of the universe!) to Earth. For a given spectrum f ,
define fright to be the spectrum to the right of the Lyman-α line. Let fleft be the spectrum
within the Lyman-α forest region, that is, for lower wavelengths. To make the results
cleaner, we define:

f(λ) =

{
fleft(λ) if λ < 1200

fright(λ) if λ ≥ 1300

We will learn a function r (for regression) that maps an observed fright to an unobserved
target fleft. This is useful in practice because we observe fright with only random noise:
there is no systematic absorption, which we cannot observe directly, because hydrogen does
not absorb photons with higher wavelengths. By predicting fleft from a noisy version of
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fright, we can estimate the unobservable spectrum of a quasar as well as the absorption
function. Imaging systems collect data of the form

fobs(λ) = absorption(λ) · f(λ) + noise(λ)

for λ ∈ {λ1, . . . , λn}, a finite number of points λ, because they must quantize the informa-
tion. That is, even in the quasars-close-to-Earth training data, our observations of fleft and
fright consist of noisy evaluations of the true spectrum f at multiple wavelengths. In our
case, we have n = 450 and λ1 = 1150, . . . , λn = 1599.

We formulate the functional regression task as the goal of learning the function r mapping
fleft to fright:

r(fright)(λ) = E(fleft | fright)(λ)
for λ in the Lyman-α forest.

i. [1 points] First, we must smooth the data in the training dataset to make it more useful
for prediction. For each i = 1, . . . ,m, define f (i)(λ) to be the weighted linear regression
estimate the ith spectrum. Use your code from part (b)(ii) above to smooth all spectra
in the training set using τ = 5. Do the same for the test set. We will now operate on
these smoothed spectra.

ii. [14 points] Using your estimated regression functions f (i) for i = 1, . . . ,m, we now
wish to estimate the unobserved spectrum fleft of a quasar from its (noisy) observed
spectrum fright. To do so, we perform a weighted regression of the locally weighted

regressions. In particular, given a new noisy spectrum observation:

fobs(λ) = f(λ) + noise(λ) for λ ∈ {1300, . . . , 1599}.

We define a metric d which takes as input, two spectra f1 and f2, and outputs a scalar:

d(f1, f2) =
∑

i

(
f1(λi)− f2(λi)

)2

.

The metric d computes squared distance between the new datapoint and previous
datapoints. If f1 and f2 are right spectra, then we take the preceding sum only over
λ ∈ {1300, . . . , 1599}, rather than the entire spectrum.
Based on this distance function, we may define the nonparametric functional regression
estimator, which is a locally weighted sum of functions fleft from the training data (this
is like locally weighted linear regression, except that instead of predicting y ∈ R we
predict a function fleft). Specifically, let fright denote the right side of a spectrum, which
we have smoothed using locally weighted linear regression (as you were told to do in
the previous part of the problem). We wish to estimate the associated left spectrum
fleft. Define the function ker(t) = max{1 − t, 0} and let neighbk(fright) denote the k
indices i ∈ {1, 2, . . . ,m} that are closest to fright, that is

d(f
(i)
right, fright) < d(f

(j)
right, fright) for all i ∈ neighbk(fright), j 6∈ neighbk(fright)

and neighbk(fright) contains exactly k indices. In addition, let

h := max
i∈{1,...,m}

d(f
(i)
right, fright).
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Then define the estimated function f̂left : R → R by

f̂left(λ) =

∑
i∈neighb

k
(fright)

ker(d(f
(i)
right, fright)/h)f

(i)
left(λ)

∑
i∈neighb

k
(fright)

ker(d(f
(i)
right, fright)/h)

. (1)

Recall that f
(i)
right is the smoothed (weighted linear regression) estimate of the ith train-

ing spectrum.
Construct the functional regression estimate (1) for each spectrum in the entire training

set using k = 3 nearest neighbors: for each j = 1, . . . ,m, construct the estimator f̂left
from (1) using fright = f

(j)
right. Then compute the error d(f

(j)
left, f̂left) between the true

spectrum f
(j)
left and your estimated spectrum f̂left for each j, and return the average

over the training data. What is your average training error?

iii. [4 points] Perform functional regression on the test set using the same procedure as in
the previous subquestion. What is your average test error? For test examples 1 and 6,

include a plot with both the entire smooth spectrum and the fitted curve f̂left curve on
the same graph. You should submit two plots: one for test example 1 and one for test
example 6.

Reminder: Please include in your submission a printout of your code and figures for the
programming questions.
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CS 229, Autumn 2016
Problem Set #1 Solutions: Supervised Learning

Due Wednesday, October 19 at 11:00 am on Gradescope.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at http://piazza.com/stanford/autumn2016/cs229. (3)
If you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
For problems that require programming, please include in your submission a copy of your code
(with comments) and any figures that you are asked to plot. If typing your solutions, include
your code as text in your PDF. Do not submit extra files. (5) To account for late days, the due
date listed on Gradescope is October 22 at 11 am. If you submit after October 19, you will begin
consuming your late days. If you wish to submit on time, submit before October 19 at 11 am.

All students must submit an electronic PDF version. We highly recommend typesetting your
solutions via latex. If you are scanning your document by cell phone, please check the Piazza
forum for recommended scanning apps and best practices.

1. [25 points] Logistic regression

(a) [10 points] Consider the average empirical loss (the risk) for logistic regression:

J(θ) =
1

m

m∑

i=1

log(1 + e−y(i)θT x(i)

) = − 1

m

m∑

i=1

log(hθ(y
(i)x(i)))

where hθ(x) = g(θTx) and g(z) = 1/(1 + e−z). Find the Hessian H of this function, and
show that for any vector z, it holds true that

zTHz ≥ 0.

Hint: You might want to start by showing the fact that
∑

i

∑
j zixixjzj = (xT z)2 ≥ 0.

Remark: This is one of the standard ways of showing that the matrix H is positive semi-
definite, written “H � 0.” This implies that J is convex, and has no local minima other
than the global one.1 If you have some other way of showing H � 0, you’re also welcome
to use your method instead of the one above.

Answer: (Note we do things in a slightly shorter way here; this solution does not use the hint.)
Note that if g(z) = 1/(1 + e−z), then g′(z) = g(z)(1− g(z)). and thus for h(x) = g(θTx), we

have ∂h(x)
∂θk

= h(x)(1−h(x))xk. This latter fact is very useful to make the following derivations.

Remember we have shown in class:

∂

∂θk
log(1 + e−yxT θ) = − 1

1 + eyxT θ
yx = −hθ(−yx)yx.

Thus we have

∂

∂θk
J(θ) =

1

m

m∑

i=1

− 1

1 + ey(i)θT x(i)
y(i)x

(i)
k = − 1

m

m∑

i=1

hθ(−y(i)x(i))y(i)x
(i)
k .

1If you haven’t seen this result before, please feel encouraged to ask us about it during office hours.
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Consequently, we have the Hessian

Hkl =
∂2

∂θk∂θl
J(θ)

= − 1

m

m∑

i=1

∂

∂θl
hθ(−y(i)x(i))y(i)x

(i)
k

=
1

m

m∑

i=1

hθ(x
(i))(1− hθ(x

(i)))x
(i)
l x

(i)
k .

So we have for the Hessian matrix H (using that for X = xxT if and only ifXij = xixj):

H =
1

m

m∑

i=1

h(x(i))(1− h(x(i)))x(i)x(i)T .

To prove H is positive semidefinite, we show zTHz ≥ 0 for all z:

zTHz =
1

m
zT

(
m∑

i=1

h(x(i))(1− h(x(i)))x(i)x(i)T

)
z

=
1

m

m∑

i=1

h(x(i))(1− h(x(i)))zTx(i)x(i)T z

=
1

m

m∑

i=1

h(x(i))(1− h(x(i)))(zTx(i))2 ≥ 0.

The last inequality holds, because 0 ≤ h(x(i)) ≤ 1, which implies h(x(i))(1− h(x(i))) ≥ 0, and
(zTx(i))2) ≥ 0.

(b) [10 points] We have provided two data files:

• http://cs229.stanford.edu/ps/ps1/logistic_x.txt

• http://cs229.stanford.edu/ps/ps1/logistic_y.txt

These files contain the inputs (x(i) ∈ R
2) and outputs (y(i) ∈ {−1, 1}), respectively for a

binary classification problem, with one training example per row. Implement2 Newton’s
method for optimizing J(θ), and apply it to fit a logistic regression model to the data.
Initialize Newton’s method with θ = ~0 (the vector of all zeros). What are the coefficients θ
resulting from your fit? (Remember to include the intercept term.)

Answer: θ = (−2.6205, 0.7604, 1.1719) with the first entry corresponding to the intercept
term.

%%%%%%% plot_log_regression.m %%%%%%%

X = load(’logistic_x.txt’);

Y = load(’logistic_y.txt’);

X = [ones(size(X, 1), 1) X];

[theta, ll] = log_regression(X ,Y, 20);

2Write your own version, and do not call a built-in library function.
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m=size(X,1);

figure; hold on;

plot(X(Y < 0, 2), X(Y < 0, 3), ’rx’, ’linewidth’, 2);

plot(X(Y > 0, 2), X(Y > 0, 3), ’go’, ’linewidth’, 2);

x1 = min(X(:,2)):.01:max(X(:,2));

x2 = -(theta(1) / theta(3)) - (theta(2) / theta(3)) * x1;

plot(x1,x2, ’linewidth’, 2);

xlabel(’x1’);

ylabel(’x2’);

%%%%%%% log_regression.m %%%%%%%

function [theta,ll] = log_regression(X,Y, max_iters)

% rows of X are training samples

% rows of Y are corresponding -1/1 values

% newton raphson: theta = theta - inv(H)* grad;

% with H = hessian, grad = gradient

mm = size(X,1);

nn = size(X,2);

theta = zeros(nn,1);

ll = zeros(max_iters, 1);

for ii = 1:max_iters

margins = Y .* (X * theta);

ll(ii) = (1/mm) * sum(log(1 + exp(-margins)));

probs = 1 ./ (1 + exp(margins));

grad = -(1/mm) * (X’ * (probs .* Y));

H = (1/mm) * (X’ * diag(probs .* (1 - probs)) * X);

theta = theta - H \ grad;

end

(c) [5 points] Plot the training data (your axes should be x1 and x2, corresponding to the two
coordinates of the inputs, and you should use a different symbol for each point plotted to
indicate whether that example had label 1 or -1). Also plot on the same figure the decision
boundary fit by logistic regression. (This should be a straight line showing the boundary
separating the region where hθ(x) > 0.5 from where hθ(x) ≤ 0.5.)

Answer:

2. [15 points] Poisson regression and the exponential family
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Figure 1: Separating hyperplane for logistic regression (question 1c).

(a) [5 points] Consider the Poisson distribution parameterized by λ:

p(y;λ) =
e−λλy

y!
.

Show that the Poisson distribution is in the exponential family, and clearly state what are
b(y), η, T (y), and a(η).

Answer: Rewrite the distribution function as:

p(y;λ) =
e−λey log λ

y!

=
1

y!
exp(y log λ− λ)

Comparing with the standard form for the exponential family:

b(y) =
1

y!

η = log λ

T (y) = y

a(η) = eη

(b) [3 points] Consider performing regression using a GLM model with a Poisson response
variable. What is the canonical response function for the family? (You may use the fact
that a Poisson random variable with parameter λ has mean λ.)
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Answer: The canonical response function for the GLM model will be:

g(η) = E[y; η]

= λ

= eη

(c) [7 points] For a training set {(x(i), y(i)); i = 1, . . . ,m}, let the log-likelihood of an example
be log p(y(i)|x(i); θ). By taking the derivative of the log-likelihood with respect to θj , derive
the stochastic gradient ascent rule for learning using a GLM model with Poisson responses
y and the canonical response function.

Answer: The log-likelihood of an example (x(i), y(i)) is defined as ℓ(θ) = log p(y(i)|x(i); θ).
To derive the stochastic gradient ascent rule, use the results in part (a) and the standard GLM
assumption that η = θTx.

∂ℓ(θ)

∂θj
=

∂ log p(y(i)|x(i); θ)

∂θj

=
∂ log

(
1

y(i)!
exp(ηT y(i) − eη)

)

∂θj

=
∂ log

(
exp((θTx(i))T y(i) − eθ

T x(i)

)
)

∂θj
+

∂ log
(

1
y(i)!

)

∂θj

=
∂
(
(θTx(i))T y(i) − eθ

T x(i)
)

∂θj

=
∂
(
(
∑

k θkx
(i)
k )y(i) − e

∑
k
θkx

(i)
k

)

∂θj

= x
(i)
j y(i) − e

∑
k
θkx

(i)
k x

(i)
j

= (y(i) − eθ
T x(i)

)x
(i)
j

Thus the stochastic gradient ascent update rule should be:

θj := θj + α
∂ℓ(θ)

∂θj

which reduces here to:
θj := θj + α(y(i) − eθ

T x)x
(i)
j

(d) [3 extra credit points] Consider using GLM with a response variable from any member
of the exponential family in which T (y) = y, and the canonical response function h(x) for
the family. Show that stochastic gradient ascent on the log-likelihood log p(~y|X; θ) results
in the update rule θi := θi − α(h(x)− y)xi.

Answer: As in the previous part, consider the derivative of the likelihood of a training example
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(x, y) with respect to the parameter θj :

∂ℓ(θ)

∂θj
=

∂ log p(y|x; θ)
∂θj

=
∂ log

(
b(y) exp(ηT y − a(η))

)

∂θj

=
∂
(
ηT y − a(η))

)

∂θj

= xjy −
∂a(η)

∂η
xj

=

(
y − ∂a(η)

∂η

)
xj

Thus, it only remains to show that ∂a(η)
∂η = h(x) = E[y|x; θ]. To prove this consider the fact

that p(y|x; θ) is a probability distribution and must thus sum to 1.

∫

y

p(y|x; θ)dy = 1

∫

y

b(y) exp(ηT y − a(η))dy = 1

∫

y

b(y) exp(ηT y)dy = exp(a(η))

Differentiating both sides with respect to η:

∫

y

b(y)y exp(ηT y)dy = exp(a(η))
∂a(η)

∂η

∂a(η)

∂η
=

∫

y

b(y)y exp(ηT y − a(η))dy

=

∫

y

yp(y|x; θ)dy

= E[y|x; θ]

where the last step follows from the definition of the (conditional) expectation of a random

variable. Substituting this into the expression for ∂ℓ(θ)
∂θj

gives the required gradient ascent update

rule.

3. [15 points] Gaussian discriminant analysis

Suppose we are given a dataset {(x(i), y(i)); i = 1, . . . ,m} consisting of m independent exam-
ples, where x(i) ∈ R

n are n-dimensional vectors, and y(i) ∈ {−1, 1}. We will model the joint
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distribution of (x, y) according to:

p(y) =

{
φ if y = 1

1− φ if y = −1

p(x|y = −1) =
1

(2π)n/2|Σ|1/2 exp

(
−1

2
(x− µ−1)

TΣ−1(x− µ−1)

)

p(x|y = 1) =
1

(2π)n/2|Σ|1/2 exp

(
−1

2
(x− µ1)

TΣ−1(x− µ1)

)

Here, the parameters of our model are φ, Σ, µ−1 and µ1. (Note that while there’re two different
mean vectors µ−1 and µ1, there’s only one covariance matrix Σ.)

(a) [5 points] Suppose we have already fit φ, Σ, µ−1 and µ1, and now want to make a prediction
at some new query point x. Show that the posterior distribution of the label at x takes the
form of a logistic function, and can be written

p(y | x;φ,Σ, µ−1, µ1) =
1

1 + exp(−y(θTx+ θ0))
,

where θ ∈ R
n and the bias term θ0 ∈ R are some appropriate functions of φ,Σ, µ−1, µ1.

(Note: the term θ0 corresponds to introducing an extra coordinate x
(i)
0 = 1, as we did in

class.)

Answer: For shorthand, we let H = {φ,Σ, µ−1, µ1} denote the parameters for the problem.
Since the given formulae are conditioned on y, use Bayes rule to get:

p(y = 1|x;φ,Σ, µ−1, µ1) =
p(x|y = 1;φ,Σ, µ−1, µ1)p(y = 1;φ,Σ, µ−1, µ1)

p(x;φ,Σ, µ−1, µ1)

=
p(x|y = 1;H)p(y = 1;H)

p(x|y = 1;H)p(y = 1;H) + p(x|y = −1;H)p(y = −1;H)

=
exp

(
− 1

2 (x− µ1)
TΣ−1(x− µ1)

)
φ

exp
(
− 1

2 (x− µ1)TΣ−1(x− µ1)
)
φ+ exp

(
− 1

2 (x− µ−1)TΣ−1(x− µ−1)
)
(1− φ)

=
1

1 + 1−φ
φ exp

(
− 1

2 (x− µ−1)TΣ−1(x− µ−1) +
1
2 (x− µ1)TΣ−1(x− µ1)

)

=
1

1 + exp
(
log( 1−φ

φ )− 1
2 (x− µ−1)TΣ−1(x− µ−1) +

1
2 (x− µ1)TΣ−1(x− µ1)

) .

Now, we expand and rearrange the difference of quadratic terms in the preceding expression,
finding that

(x− µ−1)
TΣ−1(x− µ−1)− (x− µ1)

TΣ−1(x− µ1)

= xTΣ−1x− µT
−1Σ

−1x− xTΣ−1µ−1 + µT
−1Σ

−1µ−1 − xTΣ−1x+ µT
1 Σ

−1x+ xTΣ−1µ1 − µT
1 Σ

−1µ1

= −2µT
−1Σ

−1x+ µT
−1Σ

−1µ−1 + 2µT
1 Σ

−1x− µT
1 Σ

−1µ1

= 2(µ1 − µ−1)
TΣ−1x+ µT

−1Σ
−1µ−1 − µT

1 Σ
−1µ1.

Thus, we have

p(y = 1 | x;H) =
1

1 + exp
(
log 1−φ

φ + 1
2µ

T
1 Σ

−1µ1 − 1
2µ

T
−1Σ

−1µ−1 + (µ−1 − µ1)TΣ−1x
) .
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and setting

θ = Σ−1(µ1 − µ−1) and θ0 =
1

2
(µT

−1Σ
−1µ−1 − µT

1 Σ
−1µ1)− log

1− φ

φ

gives that

p(y | x;φ,Σ, µ−1, µ1) =
1

1 + exp(−y(θTx+ θ0))
.

(b) [10 points] For this part of the problem only, you may assume n (the dimension of x) is 1, so
that Σ = [σ2] is just a real number, and likewise the determinant of Σ is given by |Σ| = σ2.
Given the dataset, we claim that the maximum likelihood estimates of the parameters are
given by

φ =
1

m

m∑

i=1

1{y(i) = 1}

µ−1 =

∑m
i=1 1{y(i) = −1}x(i)

∑m
i=1 1{y(i) = −1}

µ1 =

∑m
i=1 1{y(i) = 1}x(i)

∑m
i=1 1{y(i) = 1}

Σ =
1

m

m∑

i=1

(x(i) − µy(i))(x(i) − µy(i))T

The log-likelihood of the data is

ℓ(φ, µ−1, µ1,Σ) = log

m∏

i=1

p(x(i), y(i);φ, µ−1, µ1,Σ)

= log
m∏

i=1

p(x(i)|y(i);µ−1, µ1,Σ)p(y
(i);φ).

By maximizing ℓ with respect to the four parameters, prove that the maximum likelihood
estimates of φ, µ−1, µ1, and Σ are indeed as given in the formulas above. (You may assume
that there is at least one positive and one negative example, so that the denominators in
the definitions of µ−1 and µ1 above are non-zero.)

Answer: The derivation follows from the more general one for the next part.

(c) [3 extra credit points] Without assuming that n = 1, show that the maximum likelihood
estimates of φ, µ−1, µ1, and Σ are as given in the formulas in part (b). [Note: If you’re
fairly sure that you have the answer to this part right, you don’t have to do part (b), since
that’s just a special case.]

Answer: First, derive the expression for the log-likelihood of the training data:

ℓ(φ, µ−1, µ1,Σ) = log

m∏

i=1

p(x(i)|y(i);µ−1, µ1,Σ)p(y
(i);φ)

=

m∑

i=1

log p(x(i)|y(i);µ−1, µ1,Σ) +

m∑

i=1

log p(y(i);φ)

≃
m∑

i=1

[1
2
log

1

|Σ| −
1

2
(x(i) − µy(i))TΣ−1(x(i) − µy(i)) + y(i) log φ+ (1− y(i)) log(1− φ)

]
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where constant terms indepedent of the parameters have been ignored in the last expression.

Now, the likelihood is maximized by setting the derivative (or gradient) with respect to each of
the parameters to zero.

∂ℓ

∂φ
=

m∑

i=1

[y(i)
φ

− 1− y(i)

1− φ

]

=

∑m
i=1 1{y(i) = 1}

φ
− m−∑m

i=1 1{y(i) = 1}
1− φ

Setting this equal to zero and solving for φ gives the maximum likelihood estimate.

For µ−1, take the gradient of the log-likelihood, and then use the same kinds of tricks as were
used to analytically solve the linear regression problem.

∇µ
−1ℓ = −1

2

∑

i:y(i)=−1

∇µ
−1(x

(i) − µ−1)
TΣ−1(x(i) − µ−1)

= −1

2

∑

i:y(i)=−1

∇µ
−1

[
µT
−1Σ

−1µ−1 − x(i)TΣ−1µ−1 − µT
−1Σ

−1x(i)
]

= −1

2

∑

i:y(i)=−1

∇µ
−1tr

[
µT
−1Σ

−1µ−1 − x(i)TΣ−1µ−1 − µT
−1Σ

−1x(i)
]

= −1

2

∑

i:y(i)=−1

[
2Σ−1µ−1 − 2Σ−1x(i)

]

The last step uses matrix calculus identities (specifically, those given in page 8 of the lecture
notes), and also the fact that Σ (and thus Σ−1) is symmetric.

Setting this gradient to zero gives the maximum likelihood estimate for µ−1. The derivation for
µ1 is similar to the one above.

For Σ, we find the gradient with respect to S = Σ−1 rather than Σ just to simplify the
derivation (note that |S| = 1

|Σ| ). You should convince yourself that the maximum likelihood

estimate Sm found in this way would correspond to the actual maximum likelihood estimate
Σm as S−1

m = Σm.

∇Sℓ =

m∑

i=1

∇S

[1
2
log |S| − 1

2
(x(i) − µy(i))T︸ ︷︷ ︸

bT
i

S (x(i) − µy(i))︸ ︷︷ ︸
bi

]

=

m∑

i=1

[ 1

2|S|∇S |S| −
1

2
∇Sb

T
i Sbi

]

But, we have the following identities:

∇S |S| = |S|(S−1)T

∇Sb
T
i Sbi = ∇Str

(
bTi Sbi

)
= ∇Str

(
Sbib

T
i

)
= bib

T
i
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In the above, we again used matrix calculus identities, and also the commutatitivity of the trace
operator for square matrices. Putting these into the original equation, we get:

∇Sℓ =

m∑

i=1

[1
2
S−1 − 1

2
bib

T
i

]

=
1

2

m∑

i=1

[
Σ− bib

T
i

]

Setting this to zero gives the required maximum likelihood estimate for Σ.

4. [10 points] Linear invariance of optimization algorithms

Consider using an iterative optimization algorithm (such as Newton’s method, or gradient de-
scent) to minimize some continuously differentiable function f(x). Suppose we initialize the
algorithm at x(0) = ~0. When the algorithm is run, it will produce a value of x ∈ R

n for each
iteration: x(1), x(2), . . ..

Now, let some non-singular square matrix A ∈ R
n×n be given, and define a new function

g(z) = f(Az). Consider using the same iterative optimization algorithm to optimize g (with
initialization z(0) = ~0). If the values z(1), z(2), . . . produced by this method necessarily satisfy
z(i) = A−1x(i) for all i, we say this optimization algorithm is invariant to linear reparame-
terizations.

(a) [7 points] Show that Newton’s method (applied to find the minimum of a function) is
invariant to linear reparameterizations. Note that since z(0) = ~0 = A−1x(0), it is sufficient
to show that if Newton’s method applied to f(x) updates x(i) to x(i+1), then Newton’s
method applied to g(z) will update z(i) = A−1x(i) to z(i+1) = A−1x(i+1).3

Answer: Let g(z) = f(Az). We need to find ∇zg(z) and its Hessian ∇2
zg(z).

By the chain rule:

∂g(z)

∂zi
=

n∑

k=1

∂f(Az)

∂(Az)k

∂(Az)k
∂zi

(1)

=

n∑

k=1

∂f(Az)

∂(Az)k
Aki (2)

=

n∑

k=1

∂f(Az)

∂xk
Aki (3)

Notice that the above is the same as :

∂g(z)

∂zi
= A⊤

•i∇xf(Az) (4)

where A•i is the i’th column of A. Then,

∇zg(z) = A⊤∇xf(Az) (5)

3Note that for this problem, you must explicitly prove any matrix calculus identities that you wish to use that
are not given in the lecture notes.
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where ∇xf(Az) is ∇xf(·) evaluated at Az.

Now we want to find the Hessian ∇2
zg(z).

∂2g(z)

∂zi∂zj
=

∂

∂zj

n∑

k=1

∂f(Az)

∂(Az)k
Aki (6)

=
∑

l

∑

k

∂2f(Az)

∂xl∂xk
AkiAlj (7)

If we let Hf (y) denote the Hessian of f(·) evaluated at some point y, and let Hg(y) be the
Hessian of g(·) evaluated at some point y, we have from the previous equation that:

Hg(z) = A⊤Hf (Az)A (8)

We can now put this together and find the update rule for Newton’s method on the function
f(Ax):

z(i+1) = z(i) −Hg(z
(i))−1∇zg(z

(i)) (9)

= z(i) − (A⊤Hf (Az(i))A)−1A⊤∇xf(Az(i)) (10)

= z(i) −A−1Hf (Az(i))−1(A⊤)−1A⊤∇xf(Az(i)) (11)

= z(i) −A−1Hf (Az(i))−1∇xf(Az(i)) (12)

Now we have the update rule for z(i+1), we just need to verify that z(i+1) = A−1x(i+1) or
equivalently that Az(i+1) = x(i+1). From Eqn. (12) we have

Az(i+1) = A
(
z(i) −A−1Hf (Az(i))−1∇xf(Az(i))

)
(13)

= Az(i) −Hf (Az(i))−1∇xf(Az(i)) (14)

= x(i) −Hf (x
(i))−1∇xf(x

(i)) (15)

= x(i+1), (16)

where we used in order: Eqn. (12); rewriting terms; the inductive assumption x(i) = Az(i); the
update rule x(i+1) = x(i) −Hf (x

(i))−1∇xf(x
(i)).

(b) [3 points] Is gradient descent invariant to linear reparameterizations? Justify your answer.

Answer:

No. Using the notation from above, gradient descent on g(z) results in the following update
rule:

z(i+1) = z(i) − αA⊤∇xf(Az(i)). (17)

The update rule for x(i+1) is given by

x(i+1) = x(i) − α∇xf(x
(i)). (18)
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The invariance holds if and only if x(i+1) = Az(i+1) given x(i) = Az(i). However we have

Az(i+1) = Az(i) − αAA⊤∇xf(Az(i)) (19)

= x(i) − αAA⊤∇xf(x
(i)). (20)

The two expressions in Eqn. (18) and Eqn. (20) are not necessarily equal (AAT = I requires
that A be an orthogonal matrix), and thus gradient descent is not invariant to linear reparam-
eterizations.

5. [35 points] Regression for denoising quasar spectra4

Introduction. In this problem, we will apply a supervised learning technique to estimate the
light spectrum of quasars. Quasars are luminous distant galactic nuclei that are so bright, their
light overwhelms that of stars in their galaxies. Understanding properties of the spectrum of
light emitted by a quasar is useful for a number of tasks: first, a number of quasar properties
can be estimated from the spectra, and second, properties of the regions of the universe through
which the light passes can also be evaluated (for example, we can estimate the density of neutral
and ionized particles in the universe, which helps cosmologists understand the evolution and
fundamental laws governing its structure). The light spectrum is a curve that relates the light’s
intensity (formally, lumens per square meter), or luminous flux, to its wavelength. Figure 2
shows an example of a quasar light spectrum, where the wavelengths are measured in Angstroms
(Å), where 1Å= 10−10 meters.

The Lyman-α wavelength is a wavelength beyond which intervening particles at most negligibly
interfere with light emitted from the quasar. (Interference generally occurs when a photon is
absorbed by a neutral hydrogen atom, which only occurs for certain wavelengths of light.) For
wavelengths greater than this Lyman-α wavelength, the observed light spectrum fobs can be
modeled as a smooth spectrum f plus noise:

fobs(λ) = f(λ) + noise(λ)

For wavelengths below the Lyman-α wavelength, a region of the spectrum known as the Lyman-
α forest, intervening matter causes attenuation of the observed signal. As light emitted by the
quasar travels through regions of the universe richer in neutral hydrogen, some of it is absorbed,
which we model as

fobs(λ) = absorption(λ) · f(λ) + noise(λ)

Astrophysicists and cosmologists wish to understand the absorption function, which gives infor-
mation about the Lyman-α forest, and hence the distribution of neutral hydrogen in otherwise
unreachable regions of the universe. This gives clues toward the formation and evolution of the
universe. Thus, it is our goal to estimate the spectrum f of an observed quasar.

Getting the data. We will be using data generated from the Hubble Space Telescope Faint
Object Spectrograph (HST-FOS), Spectra of Active Galactic Nuclei and Quasars.5 We have
provided two comma-separated data files located at:

• Training set: http://cs229.stanford.edu/ps/ps1/quasar_train.csv

• Test set: http://cs229.stanford.edu/ps/ps1/quasar_test.csv

4Ciollaro, Mattia, et al. “Functional regression for quasar spectra.” arXiv:1404.3168 (2014).
5https://hea-www.harvard.edu/FOSAGN/
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Figure 2: Light spectrum of a quasar. The blue line shows the intrinsic (i.e. original) flux spectrum
emitted by the quasar. The red line denotes the observed spectrum here on Earth. To the left of the
Lyman-α line, the observed flux is damped and the intrinsic (unabsorbed) flux continuum is not clearly
recognizable (red line). To the right of the Lyman-α line, the observed flux approximates the intrinsic
spectrum.

Each file contains a single header row containing 450 numbers corresponding integral wavelengths
in the interval [1150, 1600] Å. The remaining lines contain relative flux measurements for each
wavelength. Specifically, quasar train.csv contains 200 examples and quasar test.csv con-
tains 50 examples. You may use the helper file load quasar data.m to load the data in Matlab:
http://cs229.stanford.edu/ps/ps1/load_quasar_data.m

(a) [10 points] Locally weighted linear regression

Consider a linear regression problem in which we want to “weight” different training exam-
ples differently. Specifically, suppose we want to minimize

J(θ) =
1

2

m∑

i=1

w(i)
(
θTx(i) − y(i)

)2

In class, we worked out what happens for the case where all the weights (the w(i)’s) are the
same. In this problem, we will generalize some of those ideas to the weighted setting.

i. [2 points] Show that J(θ) can also be written

J(θ) = (Xθ − ~y)TW (Xθ − ~y)

for an appropriate diagonal matrix W , and where X and ~y are as defined in class. State
clearly what W is.
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Answer: Let Wii =
1
2w

(i),Wij = 0 for i 6= j, let ~z = Xθ − ~y, i.e. zi = θTx(i) − y(i).
Then we have:

(Xθ − ~y)TW (Xθ − ~y) = ~zTW~z

=
1

2

m∑

i=1

w(i)z2i

=
1

2

m∑

i=1

w(i)(θTx(i) − y(i))2

= J(θ)

ii. [4 points] If all the w(i)’s equal 1, then we saw in class that the normal equation is

XTXθ = XT~y,

and that the value of θ that minimizes J(θ) is given by (XTX)−1XT~y. By finding
the derivative ∇θJ(θ) and setting that to zero, generalize the normal equation to this
weighted setting, and give the new value of θ that minimizes J(θ) in closed form as a
function of X, W and ~y.
Answer:

∇θJ(θ) = ∇θ(θ
TXTWXθ + ~yTW~y − 2~yTWXθ) = 2(XTWXθ −XTW~y),

so we have ∇θJ(θ) = 0 if and only if

XTWXθ = XTW~y

These are the normal equations, from which we can get a closed form formula for θ.

θ = (XTWX)−1XTW~y

iii. [4 points] Suppose we have a training set {(x(i), y(i)); i = 1 . . . ,m} of m independent
examples, but in which the y(i)’s were observed with differing variances. Specifically,
suppose that

p(y(i)|x(i); θ) =
1√

2πσ(i)
exp

(
− (y(i) − θTx(i))2

2(σ(i))2

)

I.e., y(i) has mean θTx(i) and variance (σ(i))2 (where the σ(i)’s are fixed, known, con-
stants). Show that finding the maximum likelihood estimate of θ reduces to solving a
weighted linear regression problem. State clearly what the w(i)’s are in terms of the
σ(i)’s.
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Answer:

argmax
θ

m∏

i=1

p(y(i)|x(i); θ) = argmax
θ

m∑

i=1

log p(y(i)|x(i); θ)

= argmax
θ

m∑

i=1

(
log

1√
2πσ(i)

− (y(i) − θTx(i))2

2(σ(i))2

)

= argmax
θ

−
m∑

i=1

(y(i) − θTx(i))2

2(σ(i))2

= argmin
θ

1

2

m∑

i=1

1

(σ(i))2
(y(i) − θTx(i))2

= argmin
θ

1

2

m∑

i=1

w(i)(y(i) − θTx(i))2

where in the last step, we substituted: w(i) = 1
(σ(i))2

to get the linear regression form.

(b) [6 points] Visualizing the data

i. [2 points] Use the normal equations to implement (unweighted) linear regression (y =
θTx) on the first training example (i.e. first non-header row). On one figure, plot both
the raw data and the straight line resulting from your fit. State the optimal θ resulting
from the linear regression.
Answer: θ∗ = (2.5134,−0.0010)
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Regression line

Figure 3: Unweighted linear regression

ii. [2 points] Implement locally weighted linear regression on the first training example.
Use the normal equations you derived in part (a)(ii). On a different figure, plot both
the raw data and the smooth curve resulting from your fit. When evaluating h(·) at a
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query point x, use weights

w(i) = exp

(
− (x− x(i))2

2τ2

)
,

with bandwidth parameter τ = 5.
Answer: See figure below for τ = 5.

iii. [2 points] Repeat (b)(ii) four more times with τ = 1, 10, 100 and 1000. Plot the resulting
curves. You can submit one plot with all four τ values or submit four separate plots. If
you submit one plot, make sure all curves are visible. Additionally, in 2-3 sentences,
comment on what happens to the locally weighted linear regression line as τ varies.
Answer: As τ becomes large, locally weighted linear regression becomes unweighted
linear regression. As τ becomes small, it begins to overfit the data.
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tau = 1

tau = 5

tau = 10

tau = 100

tau = 1000

(c) [19 points] Predicting quasar spectra with functional regression

We now go a step beyond what we have covered explicitly in class, and we wish to predict
an entire part of a spectrum—a curve—from noisy observed data. We begin by supposing
that we observe a random sample of m absorption-free spectra, which is possible for quasars
very close (in a sense relative to the size of the universe!) to Earth. For a given spectrum f ,
define fright to be the spectrum to the right of the Lyman-α line. Let fleft be the spectrum
within the Lyman-α forest region, that is, for lower wavelengths. To make the results
cleaner, we define:

f(λ) =

{
fleft(λ) if λ < 1200

fright(λ) if λ ≥ 1300

We will learn a function r (for regression) that maps an observed fright to an unobserved
target fleft. This is useful in practice because we observe fright with only random noise:
there is no systematic absorption, which we cannot observe directly, because hydrogen does
not absorb photons with higher wavelengths. By predicting fleft from a noisy version of
fright, we can estimate the unobservable spectrum of a quasar as well as the absorption
function. Imaging systems collect data of the form

fobs(λ) = absorption(λ) · f(λ) + noise(λ)
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for λ ∈ {λ1, . . . , λn}, a finite number of points λ, because they must quantize the informa-
tion. That is, even in the quasars-close-to-Earth training data, our observations of fleft and
fright consist of noisy evaluations of the true spectrum f at multiple wavelengths. In our
case, we have n = 450 and λ1 = 1150, . . . , λn = 1599.

We formulate the functional regression task as the goal of learning the function r mapping
fleft to fright:

r(fright)(λ) = E(fleft | fright)(λ)
for λ in the Lyman-α forest.

i. [1 points] First, we must smooth the data in the training dataset to make it more useful
for prediction. For each i = 1, . . . ,m, define f (i)(λ) to be the weighted linear regression
estimate the ith spectrum. Use your code from part (b)(ii) above to smooth all spectra
in the training set using τ = 5. Do the same for the test set. We will now operate on
these smoothed spectra.

ii. [14 points] Using your estimated regression functions f (i) for i = 1, . . . ,m, we now
wish to estimate the unobserved spectrum fleft of a quasar from its (noisy) observed
spectrum fright. To do so, we perform a weighted regression of the locally weighted

regressions. In particular, given a new noisy spectrum observation:

fobs(λ) = f(λ) + noise(λ) for λ ∈ {1300, . . . , 1599}.

We define a metric d which takes as input, two spectra f1 and f2, and outputs a scalar:

d(f1, f2) =
∑

i

(
f1(λi)− f2(λi)

)2
.

The metric d computes squared distance between the new datapoint and previous
datapoints. If f1 and f2 are right spectra, then we take the preceding sum only over
λ ∈ {1300, . . . , 1599}, rather than the entire spectrum.
Based on this distance function, we may define the nonparametric functional regression
estimator, which is a locally weighted sum of functions fleft from the training data (this
is like locally weighted linear regression, except that instead of predicting y ∈ R we
predict a function fleft). Specifically, let fright denote the right side of a spectrum, which
we have smoothed using locally weighted linear regression (as you were told to do in
the previous part of the problem). We wish to estimate the associated left spectrum
fleft. Define the function ker(t) = max{1 − t, 0} and let neighbk(fright) denote the k
indices i ∈ {1, 2, . . . ,m} that are closest to fright, that is

d(f
(i)
right, fright) < d(f

(j)
right, fright) for all i ∈ neighbk(fright), j 6∈ neighbk(fright)

and neighbk(fright) contains exactly k indices. In addition, let

h := max
i∈{1,...,m}

d(f
(i)
right, fright).

Then define the estimated function f̂left : R → R by

f̂left(λ) =

∑
i∈neighbk(fright)

ker(d(f
(i)
right, fright)/h)f

(i)
left(λ)

∑
i∈neighbk(fright)

ker(d(f
(i)
right, fright)/h)

. (21)
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Recall that f
(i)
right is the smoothed (weighted linear regression) estimate of the ith train-

ing spectrum.
Construct the functional regression estimate (21) for each spectrum in the entire train-
ing set using k = 3 nearest neighbors: for each j = 1, . . . ,m, construct the estimator

f̂left from (21) using fright = f
(j)
right. Then compute the error d(f

(j)
left, f̂left) between the

true spectrum f
(j)
left and your estimated spectrum f̂left for each j, and return the average

over the training data. What is your average training error?
Answer: We achieve a training set error of 1.0664.

iii. [4 points] Perform functional regression on the test set using the same procedure as in
the previous subquestion. What is your average test error? For test examples 1 and 6,

include a plot with both the entire smooth spectrum and the fitted curve f̂left curve on
the same graph. You should submit two plots: one for test example 1 and one for test
example 6.
Answer: We achieve a test set error of 2.7100.

1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 4: Resulting functional regression for test set example 1.

Code for the entire problem is included below

Answer:

function yhat = local_linear_regression(x, y, tau)

% LOCAL_LINEAR_REGRESSION Performs a local linear regression to smooth the

% given input signal.

%

% yhat = local_linear_regression(x, y, tau) takes as input the vectors x

% and y, both of the same dimension. Then, at each point x in the given

% vector, fits a local linear regression using the features (1, x) at that
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Figure 5: Resulting functional regression for test set example 6.

% point, with weights given by

%

% w^i(x) = exp(-(x - x^i)^2 / (2 * tau^2)),

%

% that is, transforms the input so that

%

% yhat(i) = [1, x(i)] * theta^(i)

%

% where theta^(i) minimizes

%

% J_i(theta) = sum_{j=1}^m w^j(x(i)) * (y(j) - [1 x(j)] * theta)^2.

if (length(x) ~= length(y))

error(’Length of x (%d) not same as y (%d)’, length(x), length(y));

end

nn = length(x);

X = [ones(nn, 1), x];

yhat = zeros(nn, 1);

for ii = 1:nn

w = exp(-(x - x(ii)).^2 / (2 * tau^2));

XwX = X’ * ([w, w] .* X);

XtWy = X’ * (w .* y);

theta = XwX \ XtWy;

yhat(ii) = [1 x(ii)] * theta;
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end

% Full quasar solution, including plots

load_quasar_data;

[mm, nn] = size(train_qso);

mtest = size(test_qso, 1);

%% Part (a)i: Linear regression

y = train_qso(1, :)’;

X = [ones(nn, 1), lambdas];

theta = X\y; % Solves linear regression directly

figure;

h = plot(lambdas, train_qso(1, :), ’k+’);

set(h, ’linewidth’, 1);

hold on;

h = plot(lambdas, theta(1) + lambdas * theta(2), ’r-’);

set(h, ’linewidth’, 2);

h = legend(’Raw data’, ’Regression line’);

set(h, ’fontsize’, 20);

print -depsc2 quasar_linear_regression.eps;

%% Part (a)ii/iii: Smoothing the quasars with LWLR

figure;

X = [ones(nn, 1), lambdas];

y = train_qso(1, :)’;

h = plot(lambdas, y, ’k+’);

set(h, ’linewidth’, 1);

hold on;

colors = {’r-’, ’b-’, ’g-’, ’m-’, ’c-’};

taus = [1, 5, 10, 100, 1000];

for tau_ind = 1:5

tau = taus(tau_ind);

y_smooth = local_linear_regression(lambdas, y, tau);

h = plot(lambdas, y_smooth, char(colors(tau_ind)));

set(h, ’linewidth’, 2);

end

h = legend(’Raw data’, ’tau = 1’, ’tau = 5’, ’tau = 10’, ...

’tau = 100’, ’tau = 1000’);

set(h, ’fontsize’, 20);

print -depsc2 sprintf(’quasar_locally_taus.eps’, tau);
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%% Part (b)i: Smooth all quasars with LWLR

train_smooth = train_qso;

test_smooth = test_qso;

tau = 5;

X = [ones(nn, 1), lambdas];

for jj = 1:mm

ytrain = train_qso(jj, :)’;

train_smooth(jj, :) = local_linear_regression(lambdas, ytrain, tau)’;

end

for jj = 1:mtest

ytest = test_qso(jj, :)’;

test_smooth(jj, :) = local_linear_regression(lambdas, ytest, tau)’;

end

%% Find the right-most function parts

right_trains = train_smooth(:, 151:end);

left_trains = train_smooth(:, 1:50);

right_tests = test_smooth(:, 151:end);

left_tests = test_smooth(:, 1:50);

%% Construct matrix of all pairs of distances between training quasar spectra

train_dists = zeros(mm, mm);

for ii = 1:mm

for jj = (ii + 1):mm

train_dists(ii, jj) = norm(right_trains(ii, :) - right_trains(jj, :))^2;

end

end

train_dists = train_dists + train_dists’;

train_dists = train_dists / max(train_dists(:));

%% Reconstruct training curves

f_left_estimates = zeros(mm, 50);

num_nearest = 3;

for ii = 1:mm

[train_dist_sort, inds] = sort(train_dists(:, ii), 1, ’ascend’);

close_inds = ones(mm, 1);

close_inds(inds((num_nearest + 1):end)) = 0;

h = max(train_dists(:, ii));

kerns = max(1 - train_dists(:, ii) / h, 0); % An m-by-1 vector

kerns = kerns .* close_inds;

f_left_estimates(ii, :) = left_trains’ * kerns / sum(kerns);

end
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% Compute error rate of estimates

err = sum((left_trains(:) - f_left_estimates(:)).^2);

err = err / mm;

fprintf(1, ’Average training error: %1.4f\n’, err);

%% Reconstruct test curves

% Construct matrix of all pairs of distances between training and testing

% quasar spectra

train_to_test_dists = zeros(mm, mtest);

for ii = 1:mm

for jj = 1:mtest

train_to_test_dists(ii, jj) = ...

norm(right_trains(ii, :) - right_tests(jj, :))^2;

end

end

train_to_test_dists = train_to_test_dists / max(train_to_test_dists(:));

f_left_estimates = zeros(mtest, 50);

for ii = 1:mtest

[tttd_sorted, inds] = sort(train_to_test_dists(:, ii), 1, ’ascend’);

close_inds = ones(mm, 1);

close_inds(inds((num_nearest + 1):end)) = 0;

h = max(train_to_test_dists(:, ii));

kerns = max(1 - train_to_test_dists(:, ii) / h, 0);

kerns = kerns .* close_inds;

f_left_estimates(ii, :) = left_trains’ * kerns / sum(kerns);

end

%% Compute error rate of estimates

err = sum((left_tests(:) - f_left_estimates(:)).^2);

err = err / mtest;

fprintf(1, ’Average testing error: %1.4f\n’, err);

%% Final plots

figure;

plot(lambdas, test_smooth(1, :), ’k-’, ’linewidth’, 1);

hold on;

plot(lambdas(1:50), f_left_estimates(1, :), ’r-’, ’linewidth’, 2);

print -depsc2 ’quasar_test_1.eps’;

figure;

plot(lambdas(1:50), f_left_estimates(6, :), ’r-’, ’linewidth’, 2)

hold on;

plot(lambdas, test_smooth(6, :), ’k-’, ’linewidth’, 1);

print -depsc2 ’quasar_test_6.eps’;
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Reminder: Please include in your submission a printout of your code and figures for the
programming questions.
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CS 229, Autumn 2016
Problem Set #2: Naive Bayes, SVMs, and Theory

Due Wednesday, November 2 at 11:00 am on Gradescope.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/autumn2016/cs229. (3)
If you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4) For
problems that require programming, please include in your submission a printout of your code
(with comments) and any figures that you are asked to plot.

If you are scanning your document by cellphone, please check the Piazza forum for recommended
cellphone scanning apps and best practices.

1. [15 points] Constructing kernels

In class, we saw that by choosing a kernel K(x, z) = φ(x)Tφ(z), we can implicitly map
data to a high dimensional space, and have the SVM algorithm work in that space. One
way to generate kernels is to explicitly define the mapping φ to a higher dimensional space,
and then work out the corresponding K.

However in this question we are interested in direct construction of kernels. I.e., suppose
we have a function K(x, z) that we think gives an appropriate similarity measure for our
learning problem, and we are considering plugging K into the SVM as the kernel function.
However for K(x, z) to be a valid kernel, it must correspond to an inner product in some
higher dimensional space resulting from some feature mapping φ. Mercer’s theorem tells
us that K(x, z) is a (Mercer) kernel if and only if for any finite set {x(1), . . . , x(m)}, the
matrix K is symmetric and positive semidefinite, where the square matrix K ∈ R

m×m is
given by Kij = K(x(i), x(j)).

Now here comes the question: Let K1, K2 be kernels over Rn×R
n, let a ∈ R

+ be a positive
real number, let f : Rn 7→ R be a real-valued function, let φ : Rn → R

d be a function
mapping from R

n to R
d, let K3 be a kernel over Rd × R

d, and let p(x) a polynomial over
x with positive coefficients.

For each of the functions K below, state whether it is necessarily a kernel. If you think it
is, prove it; if you think it isn’t, give a counter-example.

(a) [1 points] K(x, z) = K1(x, z) +K2(x, z)

(b) [1 points] K(x, z) = K1(x, z)−K2(x, z)

(c) [1 points] K(x, z) = aK1(x, z)

(d) [1 points] K(x, z) = −aK1(x, z)

(e) [5 points] K(x, z) = K1(x, z)K2(x, z)

(f) [2 points] K(x, z) = f(x)f(z)

(g) [2 points] K(x, z) = K3(φ(x), φ(z))

(h) [2 points] K(x, z) = p(K1(x, z))

https://piazza.com/stanford/autumn2016/cs229
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[Hint: For part (e), the answer is that the K there is indeed a kernel. You still have to
prove it, though. (This one may be harder than the rest.) This result may also be useful
for another part of the problem.]

2. [10 points] Kernelizing the Perceptron

Let there be a binary classification problem with y ∈ {−1, 1}. The perceptron uses hy-
potheses of the form hθ(x) = g(θTx), where g(z) = sign(z) = 1 if z ≥ 0, −1 otherwise.
In this problem we will consider a stochastic gradient descent-like implementation of the
perceptron algorithm where each update to the parameters θ is made using only one train-
ing example. However, unlike stochastic gradient descent, the perceptron algorithm will
only make one pass through the entire training set. The update rule for this version of the
perceptron algorithm is given by

θ(i+1) :=

{

θ(i) + αy(i+1)x(i+1) if hθ(i)(x(i+1))y(i+1) < 0

θ(i) otherwise,

where θ(i) is the value of the parameters after the algorithm has seen the first i training
examples. Prior to seeing any training examples, θ(0) is initialized to ~0.

Let K be a Mercer kernel corresponding to some very high-dimensional feature mapping φ.
Suppose φ is so high-dimensional (say, ∞-dimensional) that it’s infeasible to ever represent
φ(x) explicitly. Describe how you would apply the “kernel trick” to the perceptron to make
it work in the high-dimensional feature space φ, but without ever explicitly computing φ(x).
[Note: You don’t have to worry about the intercept term. If you like, think of φ as having
the property that φ0(x) = 1 so that this is taken care of.] Your description should specify

(a) How you will (implicitly) represent the high-dimensional parameter vector θ(i), in-
cluding how the initial value θ(0) = ~0 is represented (note that θ(i) is now a vector
whose dimension is the same as the feature vectors φ(x));

(b) How you will efficiently make a prediction on a new input x(i+1). I.e., how you will

compute hθ(i)(x(i+1)) = g(θ(i)
T
φ(x(i+1))), using your representation of θ(i); and

(c) How you will modify the update rule given above to perform an update to θ on a
new training example (x(i+1), y(i+1)); i.e., using the update rule corresponding to the
feature mapping φ:

θ(i+1) := θ(i) + α1{θ(i)Tφ(x(i+1))y(i+1) < 0}y(i+1)φ(x(i+1)).

[Hint: our discussion of the representer theorem may be useful.]

3. [30 points] Spam classification

In this problem, we will use the naive Bayes algorithm and an SVM to build a spam
classifier.

In recent years, spam on electronic newsgroups has been an increasing problem. Here, we’ll
build a classifier to distinguish between “real” newsgroup messages, and spam messages.
For this experiment, we obtained a set of spam emails, and a set of genuine newsgroup
messages.1 Using only the subject line and body of each message, we’ll learn to distinguish
between the spam and non-spam.

1Thanks to Christian Shelton for providing the spam email. The non-spam messages are from the 20 news-
groups data at http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html.

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html
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All the files for the problem are in http://cs229.stanford.edu/materials/spam_data.

tgz. Note: Please do not circulate this data outside this class. In order to get the
text emails into a form usable by naive Bayes, we’ve already done some preprocessing on the
messages. You can look at two sample spam emails in the files spam sample original*,
and their preprocessed forms in the files spam sample preprocessed*. The first line in
the preprocessed format is just the label and is not part of the message. The preprocessing
ensures that only the message body and subject remain in the dataset; email addresses
(EMAILADDR), web addresses (HTTPADDR), currency (DOLLAR) and numbers (NUM-
BER) were also replaced by the special tokens to allow them to be considered properly in the
classification process. (In this problem, we’ll going to call the features “tokens” rather than
“words,” since some of the features will correspond to special values like EMAILADDR.
You don’t have to worry about the distinction.) The files news sample original and
news sample preprocessed also give an example of a non-spam mail.

The work to extract feature vectors out of the documents has also been done for you, so you
can just load in the design matrices (called document-word matrices in text classification)
containing all the data. In a document-word matrix, the ith row represents the ith docu-
ment/email, and the jth column represents the jth distinct token. Thus, the (i, j)-entry of
this matrix represents the number of occurrences of the jth token in the ith document.

For this problem, we’ve chosen as our set of tokens considered (that is, as our vocabulary)
only the medium frequency tokens. The intuition is that tokens that occur too often or
too rarely do not have much classification value. (Examples tokens that occur very often
are words like “the,” “and,” and “of,” which occur in so many emails and are sufficiently
content-free that they aren’t worth modeling.) Also, words were stemmed using a standard
stemming algorithm; basically, this means that “price,” “prices” and “priced” have all been
replaced with “price,” so that they can be treated as the same word. For a list of the tokens
used, see the file TOKENS LIST.

Since the document-word matrix is extremely sparse (has lots of zero entries), we have
stored it in our own efficient format to save space. You don’t have to worry about this
format.2 The file readMatrix.m provides the readMatrix function that reads in the
document-word matrix and the correct class labels for the various documents. Code in
nb train.m and nb test.m shows how readMatrix should be called. The documentation
at the top of these two files will tell you all you need to know about the setup.

(a) [11 points] Implement a naive Bayes classifier for spam classification, using the multi-
nomial event model and Laplace smoothing.

You should use the code outline provided in nb train.m to train your parameters,
and then use these parameters to classify the test set data by filling in the code in
nb test.m. You may assume that any parameters computed in nb train.m are in
memory when nb test.m is executed, and do not need to be recomputed (i.e., that
nb test.m is executed immediately after nb train.m) 3.

Train your parameters using the document-word matrix in MATRIX.TRAIN, and then
report the test set error on MATRIX.TEST.

Remark. If you implement naive Bayes the straightforward way, you’ll find that
the computed p(x|y) = ∏

i p(xi|y) often equals zero. This is because p(x|y), which is

2Unless you’re not using Matlab/Octave, in which case feel free to ask us about it. We have provided Julia
code to read the file in MatrixReading.jl.

3Matlab note: If a .m file doesn’t begin with a function declaration, the file is a script. Variables in a script
are put into the global namespace, unlike with functions.

http://cs229.stanford.edu/materials/spam_data.tgz
http://cs229.stanford.edu/materials/spam_data.tgz
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the product of many numbers less than one, is a very small number. The standard
computer representation of real numbers cannot handle numbers that are too small,
and instead rounds them off to zero. (This is called “underflow.”) You’ll have to find
a way to compute naive Bayes’ predicted class labels without explicitly representing
very small numbers such as p(x|y). [Hint: Think about using logarithms.]

(b) [3 points] Intuitively, some tokens may be particularly indicative of an email being in
a particular class. We can try to get an informal sense of how indicative token i is for
the SPAM class by looking at:

log
p(xj = i|y = 1)

p(xj = i|y = 0)
= log

(

P (token i|email is SPAM)

P (token i|email is NOTSPAM)

)

.

Using the parameters fit in part (a), find the 5 tokens that are most indicative of
the SPAM class (i.e., have the highest positive value on the measure above). The
numbered list of tokens in the file TOKENS LIST should be useful for identifying the
words/tokens.

(c) [3 points] Repeat part (a), but with training sets of size ranging from 50, 100, 200,
. . . , up to 1400, by using the files MATRIX.TRAIN.*. Plot the test error each time (use
MATRIX.TEST as the test data) to obtain a learning curve (test set error vs. training
set size). You may need to change the call to readMatrix in nb train.m to read the
correct file each time. Which training-set size gives the best test set error?

(d) [11 points] Train an SVM on this dataset using stochastic gradient descent and the
radial basis function (also known as the Gaussian) kernel, which sets

K(x, z) = exp

(

− 1

2τ2
‖x− z‖22

)

.

In this case, recall that (as proved in class) the objective with kernel matrix K =
[K(1) · · · K(m)] ∈ R

m×m is given by

J(α) =
1

m

m
∑

i=1

[

1− y(i)K(i)Tα
]

+
+

λ

2
αTKα

where [t]+ = max{t, 0} is the positive part function. In this case, the gradient (actu-
ally, this is known as a subgradient) of the individual loss terms is

∇α

[

1− y(i)K(i)α
]

+
=

{

−y(i)K(i) if y(i)K(i)Tα < 1

0 otherwise.

In your SVM training, you should perform stochastic gradient descent, where in each
iteration you choose an index i ∈ {1, . . . ,m} uniformly at random, for a total of
40 ·m steps, where m is the training set size, and your kernel should use τ = 8 and
regularization multiplier λ = 1

64m . For this part of the problem, you should also

replace each training or test point x(i) with a zero-one vector z(i), where z
(i)
j = 1 if

x
(i)
j > 0 and z

(i)
j = 0 if x

(i)
j = 0. Initialize your SGD procedure at α = 0.

The output of your training code, which you should implement in svm test.m, should
be the α vector that is the average of all the α vectors that your iteration updates.
At iteration t of stochastic gradient descent you should use stepsize 1/

√
t.
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Similar to part (c), train an SVM with training set sizes 50, 100, 200, . . . , 1400,
by using the file MATRIX.TRAIN.50 and so on. Plot the test error each time, using
MATRIX.TEST as the test data.

(A few hints for more efficient Matlab code: you should try to vectorize creation of
the Kernel matrix, and you should call the method full to make the matrix non-
sparse, which will make the method faster. In addition, the training data uses labels
in {0, 1}, so you should change the output of the readMatrix method to have labels
y ∈ {−1, 1}.)

(e) [2 points] How do naive Bayes and Support Vector Machines compare (in terms of
generalization error) as a function of the training set size?

4. [20 points] Properties of VC dimension

In this problem, we investigate a few properties of the Vapnik-Chervonenkis dimension,
mostly relating to how VC(H) increases as the set H increases. For each part of this
problem, you should state whether the given statement is true, and justify your answer
with either a formal proof or a counter-example.

(a) Let two hypothesis classes H1 and H2 satisfy H1 ⊆ H2. Prove or disprove: VC(H1) ≤
VC(H2).

(b) Let H1 = H2 ∪{h1, . . . , hk}. (I.e., H1 is the union of H2 and some set of k additional
hypotheses.) Prove or disprove: VC(H1) ≤ VC(H2) + k. [Hint: You might want to
start by considering the case of k = 1.]

(c) Let H1 = H2 ∪H3. Prove or disprove: VC(H1) ≤ VC(H2) + VC(H3).

5. [20 points] Training and testing on different distributions

In the discussion in class about learning theory, a key assumption was that we trained
and tested our learning algorithms on the same distribution D. In this problem, we’ll
investigate one special case of training and testing on different distributions. Specifically,
we will consider what happens when the training labels are noisy, but the test labels are
not.

Consider a binary classification problem with labels y ∈ {0, 1}, and let D be a distribution
over (x, y), that we’ll think of as the original, “clean” or “uncorrupted” distribution. Define
Dτ to be a “corrupted” distribution over (x, y) which is the same as D, except that the
labels y have some probability 0 ≤ τ < 0.5 of being flipped. Thus, to sample from Dτ ,
we would first sample (x, y) from D, and then with probability τ (independently of the
observed x and y) replace y with 1− y. Note that D0 = D.

The distribution Dτ models a setting in which an unreliable human (or other source)
is labeling your training data for you, and on each example he/she has a probability τ
of mislabeling it. Even though our training data is corrupted, we are still interested in
evaluating our hypotheses with respect to the original, uncorrupted distribution D.

We define the generalization error with respect to Dτ to be

ετ (h) = P(x,y)∼Dτ
[h(x) 6= y].

Note that ε0(h) is the generalization error with respect to the “clean” distribution; it is
with respect to ε0 that we wish to evaluate our hypotheses.
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(a) For any hypothesis h, the quantity ε0(h) can be calculated as a function of ετ (h) and
τ . Write down a formula for ε0(h) in terms of ετ (h) and τ , and justify your answer.

(b) Let |H| be finite, and suppose our training set S = {(x(i), y(i)); i = 1, . . . ,m} is
obtained by drawing m examples IID from the corrupted distribution Dτ . Suppose
we pick h ∈ H using empirical risk minimization: ĥ = argminh∈H ε̂S(h). Also, let
h∗ = argminh∈H ε0(h).

Let any δ, γ > 0 be given. Prove that for

ε0(ĥ) ≤ ε0(h
∗) + 2γ

to hold with probability 1− δ, it suffices that

m ≥ 1

2(1− 2τ)2γ2
log

2|H|
δ

.

Remark. This result suggests that, roughly, m examples that have been corrupted at
noise level τ are worth about as much as (1− 2τ)2m uncorrupted training examples.
This is a useful rule-of-thumb to know if you ever need to decide whether/how much to
pay for a more reliable source of training data. (If you’ve taken a class in information
theory, you may also have heard that (1−H(τ))m is a good estimate of the information
in the m corrupted examples, where H(τ) = −(τ log2 τ + (1 − τ) log2(1 − τ)) is the
“binary entropy” function. And indeed, the functions (1−2τ)2 and 1−H(τ) are quite
close to each other.)

(c) Comment briefly on what happens as τ approaches 0.5.

6. [19 points] Boosting and high energy physics

In class, we discussed boosting algorithms and decision stumps. In this problem, we explore
applications of these ideas to detect particle emissions in a high-energy particle accelerator.
In high energy physics, such as at the Large Hadron Collider (LHC), one accelerates small
particles to relativistic speeds and smashes them into one another, tracking the emitted
particles. The goal in these problems is to detect the emission of certain interesting particles
based on other observed particles and energies.4 In this problem, we explore the application
of boosting to a high energy physics problem, where we use decision stumps applied to
18 low- and high-level physics-based features. All data for the problem is available at
http://cs229.stanford.edu/materials/boost_data.tgz.

For the first part of the problem, we explore how decision stumps based on thresholding can
provide a weak-learning guarantee. In particular, we show that for real-valued attributes
x, there is an edge γ > 0 that decision stumps guarantee. Recall that thresholding-based
decision stumps are functions indexed by a threshold s and sign +/−, such that

φs,+(x) =

{

1 if x ≥ s

−1 if x < s
and φs,−(x) =

{

−1 if x ≥ s

1 if x < s.

That is, φs,+(x) = −φs,−(x). We assume for simplicity in the theoretical parts of this
exercise that our input attribute vectors x ∈ R, that is, they are one-dimensional. Now,
we would like guarantee that there is some γ > 0 and a threshold s such that, for any

4For more, see the following paper: Baldi, Sadowski, Whiteson. Searching for Exotic Particles in High-Energy
Physics with Deep Learning. Nature Communications 5, Article 4308. http://arxiv.org/abs/1402.4735.

http://cs229.stanford.edu/materials/boost_data.tgz
http://arxiv.org/abs/1402.4735
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distribution p on the training set {x(i), y(i)}mi=1 (where y(i) ∈ {−1,+1} and x(i) ∈ R, and
we recall that p is a distribution on the training set if

∑m

i=1 pi = 1 and pi ≥ 0 for each i)
we have

m
∑

i=1

pi1
{

y(i) 6= φs,+(x
(i))

}

≤ 1

2
− γ or

m
∑

i=1

pi1
{

y(i) 6= φs,−(x
(i))

}

≤ 1

2
− γ.

For simplicity, we assume that all of the x(i) are distinct, so that none of them are equal. We
also assume (without loss of generality, but this makes the problem notationally simpler)
that

x(1) > x(2) > · · · > x(m).

(a) [3 points] Show that for each threshold s, there is some m0(s) ∈ {0, 1, . . . ,m} such
that

m
∑

i=1

pi1
{

φs,+(x
(i)) 6= y(i)

}

=
1

2
− 1

2





m0(s)
∑

i=1

y(i)pi −
m
∑

i=m0(s)+1

y(i)pi





and
m
∑

i=1

pi1
{

φs,−(x
(i)) 6= y(i)

}

=
1

2
− 1

2





m
∑

i=m0(s)+1

y(i)pi −
m0(s)
∑

i=1

y(i)pi





Treat sums over empty sets of indices as zero, so that
∑0

i=1 ai = 0 for any ai, and
similarly

∑m

i=m+1 ai = 0.

(b) [3 points] Define, for each m0 ∈ {0, 1, . . . ,m},

f(m0) =

m0
∑

i=1

y(i)pi −
m
∑

i=m0+1

y(i)pi.

Show that there exists some γ > 0, which may depend on the training set size m (but
should not depend on p), such that for any set of probabilities p on the training set,
where pi ≥ 0 and

∑m

i=1 pi = 1, we can find m0 with

|f(m0)| ≥ 2γ.

What is your γ?

(Hint: Consider the difference f(m0)− f(m0 + 1).)

(c) [2 points] Based on your answer to part (6b), what edge can thresholded decision
stumps guarantee on any training set {x(i), y(i)}mi=1, where the raw attributes x(i) ∈ R

are all distinct? Recall that the edge of a weak classifier φ : R → {−1, 1} is the
constant γ ∈ [0, 1

2 ] such that

m
∑

i=1

pi1
{

φ(x(i)) 6= y(i)
}

≤ 1

2
− γ.

Can you give an upper bound on the number of thresholded decision stumps required
to achieve zero error on a given training set?
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(d) [11 points] Now you will implement boosting on data developed from a physics-
based simulation of a high-energy particle accelerator. We provide two datasets,
boosting-train.csv and boosting-test.csv, which consist of training data and
test data for a binary classification problem on which you will apply boosting tech-
niques. (For those not using Matlab, the files are comma-separated files, the first
column of which consists of binary ±1-labels y(i), the remaining 18 columns are the
raw attribtues.) The file load data.m, which we provide, loads the datasets into
memory, storing training data and labels in appropriate vectors and matrices, and
then performs boosting using your implemented code, and plots the results.

i. [5 points] Implement a method that finds the optimal thresholded decision stump
for a training set {x(i), y(i)}mi=1 and distribution p ∈ R

m
+ on the training set. In

particular, fill out the code in the method find best threshold.m. Include your
code in your solution.

ii. [2 points] Implement boosted decision stumps by filling out the code in the method
stump booster.m. Your code should implement the weight updating at each
iteration t = 1, 2, . . . to find the optimal value θt given the feature index and
threshold. Include your code in your solution.

iii. [2 points] Implement random boosting, where at each step the choice of decision
stump is made completely randomly. In particular, at iteration t random boosting
chooses a random index j ∈ {1, 2, . . . , n}, then chooses a random threshold s from

among the data values {x(i)
j }mi=1, and then chooses the tth weight θt optimally

for this (random) classifier φs,+(x) = sign(xj − s). Implement this by filling out
the code in random booster.m.

iv. [2 points] Run the method load data.m with your implemented boosting meth-
ods. Include the plots this method displays, which show the training and test
error for boosting at each iteration t = 1, 2, . . .. Which method is better?

[A few notes: we do not expect boosting to get classification accuracy better than
approximately 80% for this problem.]
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CS 229, Autumn 2016
Problem Set #2: Naive Bayes, SVMs, and Theory

Due Wednesday, November 2 at 11:00 am on Gradescope.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/autumn2016/cs229. (3)
If you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4) For
problems that require programming, please include in your submission a printout of your code
(with comments) and any figures that you are asked to plot.

If you are scanning your document by cellphone, please check the Piazza forum for recommended
cellphone scanning apps and best practices.

1. [15 points] Constructing kernels

In class, we saw that by choosing a kernel K(x, z) = φ(x)Tφ(z), we can implicitly map
data to a high dimensional space, and have the SVM algorithm work in that space. One
way to generate kernels is to explicitly define the mapping φ to a higher dimensional space,
and then work out the corresponding K.

However in this question we are interested in direct construction of kernels. I.e., suppose
we have a function K(x, z) that we think gives an appropriate similarity measure for our
learning problem, and we are considering plugging K into the SVM as the kernel function.
However for K(x, z) to be a valid kernel, it must correspond to an inner product in some
higher dimensional space resulting from some feature mapping φ. Mercer’s theorem tells
us that K(x, z) is a (Mercer) kernel if and only if for any finite set {x(1), . . . , x(m)}, the
matrix K is symmetric and positive semidefinite, where the square matrix K ∈ R

m×m is
given by Kij = K(x(i), x(j)).

Now here comes the question: Let K1, K2 be kernels over Rn×R
n, let a ∈ R

+ be a positive
real number, let f : Rn 7→ R be a real-valued function, let φ : Rn → R

d be a function
mapping from R

n to R
d, let K3 be a kernel over Rd × R

d, and let p(x) a polynomial over
x with positive coefficients.

For each of the functions K below, state whether it is necessarily a kernel. If you think it
is, prove it; if you think it isn’t, give a counter-example.

(a) [1 points] K(x, z) = K1(x, z) +K2(x, z)

(b) [1 points] K(x, z) = K1(x, z)−K2(x, z)

(c) [1 points] K(x, z) = aK1(x, z)

(d) [1 points] K(x, z) = −aK1(x, z)

(e) [5 points] K(x, z) = K1(x, z)K2(x, z)

(f) [2 points] K(x, z) = f(x)f(z)

(g) [2 points] K(x, z) = K3(φ(x), φ(z))

(h) [2 points] K(x, z) = p(K1(x, z))

https://piazza.com/stanford/autumn2016/cs229
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[Hint: For part (e), the answer is that the K there is indeed a kernel. You still have to
prove it, though. (This one may be harder than the rest.) This result may also be useful
for another part of the problem.]

Answer: All 8 cases of proposed kernels K are trivially symmetric because K1,K2,K3 are
symmetric; and because the product of 2 real numbers is commutative (for (1f)). Thanks to
Mercer’s theorem, it is sufficient to prove the corresponding properties for positive semidefinite
matrices. To differentiate between matrix and kernel function, we’ll use Gi to denote a kernel
matrix (Gram matrix) corresponding to a kernel function Ki.

(a) Kernel. The sum of 2 positive semidefinite matrices is a positive semidefinite matrix:
∀z zTG1z ≥ 0, zTG2z ≥ 0 since K1,K2 are kernels. This implies ∀z zTGz = zTG1z +
zTG2z ≥ 0.

(b) Not a kernel. Counterexample: let K2 = 2K1 (we are using (1c) here to claim K2 is a
kernel). Then we have ∀z zTGz = zT (G1 − 2G1)z = −zTG1z ≤ 0.

(c) Kernel. ∀z zTG1z ≥ 0, which implies ∀z azTG1z ≥ 0.

(d) Not a kernel. Counterexample: a = 1. Then we have ∀z − zTG1z ≤ 0.

(e) Kernel. K1 is a kernel, thus ∃φ(1) K1(x, z) = φ(1)(x)Tφ(1)(z) =
∑

i φ
(1)
i (x)φ

(1)
i (z).

Similarly, K2 is a kernel, thus ∃φ(2) K2(x, z) = φ(2)(x)Tφ(2)(z) =
∑

j φ
(2)
j (x)φ

(2)
j (z).

K(x, z) = K1(x, z)K2(x, z) (1)

=
∑

i

φ
(1)
i (x)φ

(1)
i (z)

∑

i

φ
(2)
i (x)φ

(2)
i (z) (2)

=
∑

i

∑

j

φ
(1)
i (x)φ

(1)
i (z)φ

(2)
j (x)φ

(2)
j (z) (3)

=
∑

i

∑

j

(φ
(1)
i (x)φ

(2)
j (x))(φ

(1)
i (z)φ

(2)
j (z)) (4)

=
∑

(i,j)

ψi,j(x)ψi,j(z) (5)

Where the last equality holds because that’s how we define ψ. We see K can be written
in the form K(x, z) = ψ(x)Tψ(z) so it is a kernel.

Here is an alternate super-slick linear-algebraic proof. If G is the Gram matrix for the
product K1 × K2, then G is a principal submatrix of the Kronecker product G1 ⊗ G2,
where Gi is the Gram matrix for Ki. As the Kronecker product is positive semi-definite,
so are its principal submatrices.

(f) Kernel. Just let ψ(x) = f(x), and since f(x) is a scalar, we have K(x, z) = φ(x)Tφ(z)
and we are done.

(g) Kernel. Since K3 is a kernel, the matrix G3 obtained for any finite set {x(1), . . . , x(m)} is
positive semidefinite, and so it is also positive semidefinite for the sets {φ(x(1)), . . . , φ(x(m))}.

(h) Kernel. By combining (1a) sum, (1c) scalar product, (1e) powers, (1f) constant term, we
see that any polynomial of a kernel K1 will again be a kernel.

2. [10 points] Kernelizing the Perceptron

Let there be a binary classification problem with y ∈ {−1, 1}. The perceptron uses hy-
potheses of the form hθ(x) = g(θTx), where g(z) = sign(z) = 1 if z ≥ 0, −1 otherwise.
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In this problem we will consider a stochastic gradient descent-like implementation of the
perceptron algorithm where each update to the parameters θ is made using only one train-
ing example. However, unlike stochastic gradient descent, the perceptron algorithm will
only make one pass through the entire training set. The update rule for this version of the
perceptron algorithm is given by

θ(i+1) :=

{

θ(i) + αy(i+1)x(i+1) if hθ(i)(x(i+1))y(i+1) < 0

θ(i) otherwise,

where θ(i) is the value of the parameters after the algorithm has seen the first i training
examples. Prior to seeing any training examples, θ(0) is initialized to ~0.

Let K be a Mercer kernel corresponding to some very high-dimensional feature mapping φ.
Suppose φ is so high-dimensional (say, ∞-dimensional) that it’s infeasible to ever represent
φ(x) explicitly. Describe how you would apply the “kernel trick” to the perceptron to make
it work in the high-dimensional feature space φ, but without ever explicitly computing φ(x).
[Note: You don’t have to worry about the intercept term. If you like, think of φ as having
the property that φ0(x) = 1 so that this is taken care of.] Your description should specify

(a) How you will (implicitly) represent the high-dimensional parameter vector θ(i), in-
cluding how the initial value θ(0) = ~0 is represented (note that θ(i) is now a vector
whose dimension is the same as the feature vectors φ(x));

(b) How you will efficiently make a prediction on a new input x(i+1). I.e., how you will

compute hθ(i)(x(i+1)) = g(θ(i)
T
φ(x(i+1))), using your representation of θ(i); and

(c) How you will modify the update rule given above to perform an update to θ on a
new training example (x(i+1), y(i+1)); i.e., using the update rule corresponding to the
feature mapping φ:

θ(i+1) := θ(i) + α1{θ(i)Tφ(x(i+1))y(i+1) < 0}y(i+1)φ(x(i+1)).

[Hint: our discussion of the representer theorem may be useful.]

Answer:

In the high-dimensional space we update θ as follows:

θ := θ + α(y(i) − hθ(φ(x
(i))))φ(x(i))

So (assuming we initialize θ(0) = ~0) θ will always be a linear combination of the φ(x(i)), i.e.,

∃βl such that θ(i) =
∑i

l=1 βlφ(x
(l)) after having incorporated i training points. Thus θ(i) can

be compactly represented by the coefficients βl of this linear combination, i.e., i real numbers
after having incorporated i training points x(i). The initial value θ(0) simply corresponds to
the case where the summation has no terms (i.e., an empty list of coefficients βl).

We do not work explicitly in the high-dimensional space, but use the fact that g(θ(i)
T
φ(x(i+1))) =

g(
∑i

l=1 βl ·φ(x(l))Tφ(xi+1)) = g(
∑i

l=1 βlK(x(l), x(i+1))), which can be computed efficiently.

We can efficiently update θ. We just need to compute βi = α(y(i) − g(θ(i−1)Tφ(x(i))))

at iteration i. This can be computed efficiently, if we compute θ(i−1)Tφ(x(i)) efficiently as
described above.
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In an alternative approach, one can observe that, unless a sample φ(x(i)) is misclassified,
y(i)−hθ(i)(φ(x(i))) will be zero; otherwise, it will be ±1 (or ±2, if the convention y, h ∈ {−1, 1}
is taken). The vector θ, then, can be represented as the sum

∑

{i:y(i) 6=h
θ(i)

(φ(x(i)))} α(2y
(i) −

1)φ(x(i)) under the y, h ∈ {0, 1} convention, and containing (2y(i)) under the other convention.
This can then be expressed as θ(i) =

∑

i∈Misclassified
βiφ(x

(i)) to be in more obvious congruence
with the above. The efficient representation can now be said to be a list which stores only
those indices that were misclassified, as the βis can be recomputed from the y(i)s and α on
demand. The derivation for (b) is then only cosmetically different, and in (c) the update rule
is to add (i+ 1) to the list if φ(x(i+1)) is misclassified.

3. [30 points] Spam classification

In this problem, we will use the naive Bayes algorithm and an SVM to build a spam
classifier.

In recent years, spam on electronic newsgroups has been an increasing problem. Here, we’ll
build a classifier to distinguish between “real” newsgroup messages, and spam messages.
For this experiment, we obtained a set of spam emails, and a set of genuine newsgroup
messages.1 Using only the subject line and body of each message, we’ll learn to distinguish
between the spam and non-spam.

All the files for the problem are in http://cs229.stanford.edu/materials/spam_data.

tgz. Note: Please do not circulate this data outside this class. In order to get the
text emails into a form usable by naive Bayes, we’ve already done some preprocessing on the
messages. You can look at two sample spam emails in the files spam sample original*,
and their preprocessed forms in the files spam sample preprocessed*. The first line in
the preprocessed format is just the label and is not part of the message. The preprocessing
ensures that only the message body and subject remain in the dataset; email addresses
(EMAILADDR), web addresses (HTTPADDR), currency (DOLLAR) and numbers (NUM-
BER) were also replaced by the special tokens to allow them to be considered properly in the
classification process. (In this problem, we’ll going to call the features “tokens” rather than
“words,” since some of the features will correspond to special values like EMAILADDR.
You don’t have to worry about the distinction.) The files news sample original and
news sample preprocessed also give an example of a non-spam mail.

The work to extract feature vectors out of the documents has also been done for you, so you
can just load in the design matrices (called document-word matrices in text classification)
containing all the data. In a document-word matrix, the ith row represents the ith docu-
ment/email, and the jth column represents the jth distinct token. Thus, the (i, j)-entry of
this matrix represents the number of occurrences of the jth token in the ith document.

For this problem, we’ve chosen as our set of tokens considered (that is, as our vocabulary)
only the medium frequency tokens. The intuition is that tokens that occur too often or
too rarely do not have much classification value. (Examples tokens that occur very often
are words like “the,” “and,” and “of,” which occur in so many emails and are sufficiently
content-free that they aren’t worth modeling.) Also, words were stemmed using a standard
stemming algorithm; basically, this means that “price,” “prices” and “priced” have all been
replaced with “price,” so that they can be treated as the same word. For a list of the tokens
used, see the file TOKENS LIST.

1Thanks to Christian Shelton for providing the spam email. The non-spam messages are from the 20 news-
groups data at http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html.

http://cs229.stanford.edu/materials/spam_data.tgz
http://cs229.stanford.edu/materials/spam_data.tgz
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html
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Since the document-word matrix is extremely sparse (has lots of zero entries), we have
stored it in our own efficient format to save space. You don’t have to worry about this
format.2 The file readMatrix.m provides the readMatrix function that reads in the
document-word matrix and the correct class labels for the various documents. Code in
nb train.m and nb test.m shows how readMatrix should be called. The documentation
at the top of these two files will tell you all you need to know about the setup.

(a) [11 points] Implement a naive Bayes classifier for spam classification, using the multi-
nomial event model and Laplace smoothing.

You should use the code outline provided in nb train.m to train your parameters,
and then use these parameters to classify the test set data by filling in the code in
nb test.m. You may assume that any parameters computed in nb train.m are in
memory when nb test.m is executed, and do not need to be recomputed (i.e., that
nb test.m is executed immediately after nb train.m) 3.

Train your parameters using the document-word matrix in MATRIX.TRAIN, and then
report the test set error on MATRIX.TEST.

Remark. If you implement naive Bayes the straightforward way, you’ll find that
the computed p(x|y) = ∏

i p(xi|y) often equals zero. This is because p(x|y), which is
the product of many numbers less than one, is a very small number. The standard
computer representation of real numbers cannot handle numbers that are too small,
and instead rounds them off to zero. (This is called “underflow.”) You’ll have to find
a way to compute naive Bayes’ predicted class labels without explicitly representing
very small numbers such as p(x|y). [Hint: Think about using logarithms.]

(b) [3 points] Intuitively, some tokens may be particularly indicative of an email being in
a particular class. We can try to get an informal sense of how indicative token i is for
the SPAM class by looking at:

log
p(xj = i|y = 1)

p(xj = i|y = 0)
= log

(

P (token i|email is SPAM)

P (token i|email is NOTSPAM)

)

.

Using the parameters fit in part (a), find the 5 tokens that are most indicative of
the SPAM class (i.e., have the highest positive value on the measure above). The
numbered list of tokens in the file TOKENS LIST should be useful for identifying the
words/tokens.

(c) [3 points] Repeat part (a), but with training sets of size ranging from 50, 100, 200,
. . . , up to 1400, by using the files MATRIX.TRAIN.*. Plot the test error each time (use
MATRIX.TEST as the test data) to obtain a learning curve (test set error vs. training
set size). You may need to change the call to readMatrix in nb train.m to read the
correct file each time. Which training-set size gives the best test set error?

(d) [11 points] Train an SVM on this dataset using stochastic gradient descent and the
radial basis function (also known as the Gaussian) kernel, which sets

K(x, z) = exp

(

− 1

2τ2
‖x− z‖22

)

.

2Unless you’re not using Matlab/Octave, in which case feel free to ask us about it. We have provided Julia
code to read the file in MatrixReading.jl.

3Matlab note: If a .m file doesn’t begin with a function declaration, the file is a script. Variables in a script
are put into the global namespace, unlike with functions.
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In this case, recall that (as proved in class) the objective with kernel matrix K =
[K(1) · · · K(m)] ∈ R

m×m is given by

J(α) =
1

m

m
∑

i=1

[

1− y(i)K(i)Tα
]

+
+
λ

2
αTKα

where [t]+ = max{t, 0} is the positive part function. In this case, the gradient (actu-
ally, this is known as a subgradient) of the individual loss terms is

∇α

[

1− y(i)K(i)α
]

+
=

{

−y(i)K(i) if y(i)K(i)Tα < 1

0 otherwise.

In your SVM training, you should perform stochastic gradient descent, where in each
iteration you choose an index i ∈ {1, . . . ,m} uniformly at random, for a total of
40 ·m steps, where m is the training set size, and your kernel should use τ = 8 and
regularization multiplier λ = 1

64m . For this part of the problem, you should also

replace each training or test point x(i) with a zero-one vector z(i), where z
(i)
j = 1 if

x
(i)
j > 0 and z

(i)
j = 0 if x

(i)
j = 0. Initialize your SGD procedure at α = 0.

The output of your training code, which you should implement in svm test.m, should
be the α vector that is the average of all the α vectors that your iteration updates.
At iteration t of stochastic gradient descent you should use stepsize 1/

√
t.

Similar to part (c), train an SVM with training set sizes 50, 100, 200, . . . , 1400,
by using the file MATRIX.TRAIN.50 and so on. Plot the test error each time, using
MATRIX.TEST as the test data.

(A few hints for more efficient Matlab code: you should try to vectorize creation of
the Kernel matrix, and you should call the method full to make the matrix non-
sparse, which will make the method faster. In addition, the training data uses labels
in {0, 1}, so you should change the output of the readMatrix method to have labels
y ∈ {−1, 1}.)

(e) [2 points] How do naive Bayes and Support Vector Machines compare (in terms of
generalization error) as a function of the training set size?

Answer:

(a) The test error when training on the full training set was 1.63%. If you got a different error
(or if you got the words website and lowest for part b), you most probably implemented
the wrong Naive Bayes model.

(b) The five most indicative words for the spam class were: httpaddr, spam, unsubscrib,
ebai and valet.

(c) The test set error for different training set set sizes was:

i. Training set size 50: Test set error = 3.87%

ii. Training set size 100: Test set error = 2.62%

iii. Training set size 200: Test set error = 2.62%

iv. Training set size 400: Test set error = 1.87%

v. Training set size 800: Test set error = 1.75%

vi. Training set size 1400: Test set error = 1.63%
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vii. Full training set: Test set error = 1.63%

(d) The test set error from the SVM for different training set sizes, averaged over 10 random-
izations of the training data order, was:

i. Training set size 50: Test set error = 2.26%

ii. Training set size 100: Test set error = 1.47%

iii. Training set size 200: Test set error = .26%

iv. Training set size 400: Test set error = .14%

v. Training set size 800: Test set error = 0%

vi. Training set size 1400: Test set error = 0%

(e) The deduction that can be drawn is that for this dataset, Naive Bayes is simply not as
good as the Kernelized SVM.

The Matlab code for the problem:

% ----------------------------------------------------------------------- %

% --------------- Outer loop -------------- %

% ----------------------------------------------------------------------- %

training_set_size_list = [50, 100, 200, 400, 800, 1400];

%% SVM training %%

test_errors_svm = zeros(length(training_set_size_list), 1);

total_svms_to_avg = 10;

[M, tokenlist, category] = readMatrix(’MATRIX.TEST’);

Xtest = M;

ytest = (2 * category - 1)’;

for train_ind = 1:length(training_set_size_list)

for iter = 1:total_svms_to_avg

num_train = training_set_size_list(train_ind);

svm_train;

svm_test;

test_errors_svm(train_ind) = test_errors_svm(train_ind) + test_error;

end

end

test_errors_svm = test_errors_svm / total_svms_to_avg;

%% Naive Bayes training %%

test_errors_nb = zeros(length(training_set_size_list), 1);

for train_ind = 1:length(training_set_size_list)

num_train = training_set_size_list(train_ind);

nb_train;

nb_test;

test_errors_nb(train_ind) = error;
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end

figure;

semilogx(training_set_size_list, test_errors_svm, ’bs-’, ’linewidth’, 2);

hold on;

semilogx(training_set_size_list, test_errors_nb, ’ko-’, ’linewidth’, 2);

legend(’SVM error’, ’NB error’);

set(gca, ’fontsize’, 18);

axis([min(training_set_size_list), max(training_set_size_list), 0, .04]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% svm_train.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[sparseTrainMatrix, tokenlist, trainCategory] = ...

readMatrix(sprintf(’MATRIX.TRAIN.%d’, num_train));

m_train = size(Xtrain, 1);

ytrain = (2 * trainCategory - 1)’;

Xtrain = 1.0 * (Xtrain > 0);

squared_X_train = sum(Xtrain.^2, 2);

gram_train = Xtrain * Xtrain’;

tau = 8;

% Get full training matrix for kernels using vectorized code.

Ktrain = full(exp(-(repmat(squared_X_train, 1, m_train) ...

+ repmat(squared_X_train’, m_train, 1) ...

- 2 * gram_train) / (2 * tau^2)));

lambda = 1 / (64 * m_train);

num_outer_loops = 40;

alpha = zeros(m_train, 1);

avg_alpha = zeros(m_train, 1);

Imat = eye(m_train);

count = 0;

for ii = 1:(num_outer_loops * m_train)

count = count + 1;

ind = ceil(rand * m_train);

margin = ytrain(ind) * Ktrain(ind, :) * alpha;

g = -(margin < 1) * ytrain(ind) * Ktrain(:, ind) + ...

m_train * lambda * (Ktrain(:, ind) * alpha(ind));

% g(ind) = g(ind) + m_train * lambda * Ktrain(ind,:) * alpha;

alpha = alpha - g / sqrt(count);

avg_alpha = avg_alpha + alpha;

end

avg_alpha = avg_alpha / (num_outer_loops * m_train);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% svm_test.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct test and train matrices

Xtest = 1.0 * (Xtest > 0);

squared_X_test = sum(Xtest.^2, 2);

m_test = size(Xtest, 1);

gram_test = Xtest * Xtrain’;

Ktest = full(exp(-(repmat(squared_X_test, 1, m_train) ...

+ repmat(squared_X_train’, m_test, 1) ...

- 2 * gram_test) / (2 * tau^2)));

% preds = Ktest * alpha;

% fprintf(1, ’Test error rate for final alpha: %1.4f\n’, ...

% sum(preds .* ytest <= 0) / length(ytest));

preds = Ktest * avg_alpha;

fprintf(1, ’Test error rate for average alpha: %1.4f\n’, ...

sum(preds .* ytest <= 0) / length(ytest));

test_error = sum(preds .* ytest <= 0) / length(ytest);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% nb_test.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[spmatrix, tokenlist, category] = readMatrix(’MATRIX.TEST’);

testMatrix = full(spmatrix);

numTestDocs = size(testMatrix, 1);

numTokens = size(testMatrix, 2);

% ...

output = zeros(numTestDocs, 1);

%---------------

% YOUR CODE HERE

for k=1:numTestDocs,

[i,j,v] = find(testMatrix(k,:));

neg_posterior = sum(v .* neg_log_phi(j)) + neg_log_prior;

pos_posterior = sum(v .* pos_log_phi(j)) + pos_log_prior;

if (neg_posterior > pos_posterior)

output(k) = 0;

else

output(k) = 1;

end
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end

%---------------

y = full(category);

y = y(:);

% Compute the error on the test set

error = sum(y ~= output) / numTestDocs;

%Print out the classification error on the test set

fprintf(1, ’Test error: %1.4f\n’, error);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% nb_train.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[spmatrix, tokenlist, trainCategory] = ...

readMatrix(sprintf(’MATRIX.TRAIN.%d’, num_train));

trainMatrix = full(spmatrix);

numTrainDocs = size(trainMatrix, 1);

numTokens = size(trainMatrix, 2);

% ...

% YOUR CODE HERE

V = size(trainMatrix, 2);

neg = trainMatrix(find(trainCategory == 0), :);

pos = trainMatrix(find(trainCategory == 1), :);

neg_words = sum(sum(neg));

pos_words = sum(sum(pos));

neg_log_prior = log(size(neg,1) / numTrainDocs);

pos_log_prior = log(size(pos,1) / numTrainDocs);

for k=1:V,

neg_log_phi(k) = log((sum(neg(:,k)) + 1) / (neg_words + V));

pos_log_phi(k) = log((sum(pos(:,k)) + 1) / (pos_words + V));

end

4. [20 points] Properties of VC dimension

In this problem, we investigate a few properties of the Vapnik-Chervonenkis dimension,
mostly relating to how VC(H) increases as the set H increases. For each part of this
problem, you should state whether the given statement is true, and justify your answer
with either a formal proof or a counter-example.
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(a) Let two hypothesis classes H1 and H2 satisfy H1 ⊆ H2. Prove or disprove: VC(H1) ≤
VC(H2).

(b) Let H1 = H2 ∪{h1, . . . , hk}. (I.e., H1 is the union of H2 and some set of k additional
hypotheses.) Prove or disprove: VC(H1) ≤ VC(H2) + k. [Hint: You might want to
start by considering the case of k = 1.]

(c) Let H1 = H2 ∪H3. Prove or disprove: VC(H1) ≤ VC(H2) + VC(H3).

Answer:

(a) True. Suppose that V C(H1) = d. Then there exists a set of d points that is shattered by
H1 (i.e., for each possible labeling of the d points, there exists a hypothesis h ∈ H1 which
realizes that labeling). Now, since H2 contains all hypotheses in H1, then H2 shatters
the same set, and thus we have V C(H2) ≥ d = V C(H1).

(b) True. If we can prove the result for k = 1, then the result stated in the problem set follows
immediately by applying the same logic inductively, one hypothesis at a time. So, let us
prove that if H1 = H2 ∪{h}, then V C(H1) ≤ V C(H2)+1. Suppose that V C(H1) = d,
and let S1 be a set of d points that is shattered by H1. Now, pick an arbitrary x ∈ S1.
Since H1 shatters S1, there must be some h̄ ∈ H1 such that h and h̄ agree on labelings for
all points in S1 except x. This means that H ′ := H1 \ {h} achieves all possible labelings
on S′ := S1 \ {x} (i.e. H ′ shatters S′), so V C(H ′) ≥ |S′| = d − 1. But H ′ ⊆ H2, so
from part (a), V C(H ′) ≤ V C(H2). It follows that V C(H2) ≥ d − 1, or equivalently,
V C(H1) ≤ V C(H2) + 1, as desired.

For this problem, there were a number of possible correct proof methods; generally, to get
full credit, you needed to argue formally that there exists no set of (V C(H2) + 2) points
shattered by H1, or equivalently, that there always exists a set of (V C(H1) − 1) points
shattered by H2. Here are a couple of the more common errors:

• Some submitted solutions stated that adding a single hypothesis to H2 increases the
VC dimension by at most one, since the new hypothesis can only realize a single
labeling. While this statement is vaguely true, it is neither sufficiently precise, nor is
its correctness immediately obvious.

• Some solutions made arguments relating to the cardinality of the sets H1 and H2.
However, generally when we speak about VC dimension, the sets H1 and H2 often
have infinite cardinality (e.g., the set of all linear classifiers in R

2).

(c) False. Counterexample: let H1 = {h1}, H2 = {h2}, and ∀x, h1(x) = 0, h2(x) = 1.
Then we have V C(H1) = V C(H2) = 0, but V C(H1 ∪H2) = 1.

5. [20 points] Training and testing on different distributions

In the discussion in class about learning theory, a key assumption was that we trained
and tested our learning algorithms on the same distribution D. In this problem, we’ll
investigate one special case of training and testing on different distributions. Specifically,
we will consider what happens when the training labels are noisy, but the test labels are
not.

Consider a binary classification problem with labels y ∈ {0, 1}, and let D be a distribution
over (x, y), that we’ll think of as the original, “clean” or “uncorrupted” distribution. Define
Dτ to be a “corrupted” distribution over (x, y) which is the same as D, except that the
labels y have some probability 0 ≤ τ < 0.5 of being flipped. Thus, to sample from Dτ ,
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we would first sample (x, y) from D, and then with probability τ (independently of the
observed x and y) replace y with 1− y. Note that D0 = D.

The distribution Dτ models a setting in which an unreliable human (or other source)
is labeling your training data for you, and on each example he/she has a probability τ
of mislabeling it. Even though our training data is corrupted, we are still interested in
evaluating our hypotheses with respect to the original, uncorrupted distribution D.

We define the generalization error with respect to Dτ to be

ετ (h) = P(x,y)∼Dτ
[h(x) 6= y].

Note that ε0(h) is the generalization error with respect to the “clean” distribution; it is
with respect to ε0 that we wish to evaluate our hypotheses.

(a) For any hypothesis h, the quantity ε0(h) can be calculated as a function of ετ (h) and
τ . Write down a formula for ε0(h) in terms of ετ (h) and τ , and justify your answer.

(b) Let |H| be finite, and suppose our training set S = {(x(i), y(i)); i = 1, . . . ,m} is
obtained by drawing m examples IID from the corrupted distribution Dτ . Suppose
we pick h ∈ H using empirical risk minimization: ĥ = argminh∈H ε̂S(h). Also, let
h∗ = argminh∈H ε0(h).

Let any δ, γ > 0 be given. Prove that for

ε0(ĥ) ≤ ε0(h
∗) + 2γ

to hold with probability 1− δ, it suffices that

m ≥ 1

2(1− 2τ)2γ2
log

2|H|
δ

.

Remark. This result suggests that, roughly, m examples that have been corrupted at
noise level τ are worth about as much as (1− 2τ)2m uncorrupted training examples.
This is a useful rule-of-thumb to know if you ever need to decide whether/how much to
pay for a more reliable source of training data. (If you’ve taken a class in information
theory, you may also have heard that (1−H(τ))m is a good estimate of the information
in the m corrupted examples, where H(τ) = −(τ log2 τ + (1 − τ) log2(1 − τ)) is the
“binary entropy” function. And indeed, the functions (1−2τ)2 and 1−H(τ) are quite
close to each other.)

(c) Comment briefly on what happens as τ approaches 0.5.

Answer:

(a) We compute ετ as a function of ε0 and then invert the obtained expression. An error
occurs on the corrupted distribution, if and only if, an error occurred for the original
distribution and the point that was not corrupted, or no error occurred for the original
distribution but the point was corrupted. So we have

ετ = ε0(1− τ) + (1− ε0)τ

Solving for ε0 gives

ε0 =
ετ − τ

1− 2τ
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(b) We will need to apply the following (in the right order):

∀h ∈ H, |ετ (h)− ε̂τ (h)| ≤ γ̄ w.p.(1− δ), δ = 2K exp(−2γ̄2m) (6)

ετ = (1− 2τ)ε+ τ, ε0 =
ετ − τ

1− 2τ
(7)

∀h ∈ H, ε̂τ (ĥ) ≤ ε̂τ (h), in particular for h∗ (8)

Here is the derivation:

ε0(ĥ) =
ετ (ĥ)− τ

1− 2τ
(9)

≤ ε̂τ (ĥ) + γ̄ − τ

1− 2τ
w.p.(1− δ) (10)

≤ ε̂τ (h
∗) + γ̄ − τ

1− 2τ
w.p.(1− δ) (11)

≤ ετ (h
∗) + 2γ̄ − τ

1− 2τ
w.p.(1− δ) (12)

=
(1− 2τ)ε0(h

∗) + τ + 2γ̄ − τ

1− 2τ
w.p.(1− δ) (13)

= ε0(h
∗) +

2γ̄

1− 2τ
w.p.(1− δ) (14)

= ε0(h
∗) + 2γ w.p.(1− δ) (15)

Where we used in the following order: (7)(6)(8)(6)(7), and the last 2 steps are algebraic
simplifications, and defining γ as a function of γ̄. Now we can fill out γ̄ = γ(1− 2τ) into
δ of (6), solve for m and we are done.

Note: one could shorten the above derivation and go straight from (9) to (12) by using
that result from class.

(c) The closer τ is to 0.5, the more samples are needed to get the same generalization error
bound. For τ approaching 0.5, the training data becomes more and more random; having
no information at all about the underlying distribution for τ = 0.5.

6. [19 points] Boosting and high energy physics

In class, we discussed boosting algorithms and decision stumps. In this problem, we explore
applications of these ideas to detect particle emissions in a high-energy particle accelerator.
In high energy physics, such as at the Large Hadron Collider (LHC), one accelerates small
particles to relativistic speeds and smashes them into one another, tracking the emitted
particles. The goal in these problems is to detect the emission of certain interesting particles
based on other observed particles and energies.4 In this problem, we explore the application
of boosting to a high energy physics problem, where we use decision stumps applied to
18 low- and high-level physics-based features. All data for the problem is available at
http://cs229.stanford.edu/materials/boost_data.tgz.

4For more, see the following paper: Baldi, Sadowski, Whiteson. Searching for Exotic Particles in High-Energy
Physics with Deep Learning. Nature Communications 5, Article 4308. http://arxiv.org/abs/1402.4735.

http://cs229.stanford.edu/materials/boost_data.tgz
http://arxiv.org/abs/1402.4735
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For the first part of the problem, we explore how decision stumps based on thresholding can
provide a weak-learning guarantee. In particular, we show that for real-valued attributes
x, there is an edge γ > 0 that decision stumps guarantee. Recall that thresholding-based
decision stumps are functions indexed by a threshold s and sign +/−, such that

φs,+(x) =

{

1 if x ≥ s

−1 if x < s
and φs,−(x) =

{

−1 if x ≥ s

1 if x < s.

That is, φs,+(x) = −φs,−(x). We assume for simplicity in the theoretical parts of this
exercise that our input attribute vectors x ∈ R, that is, they are one-dimensional. Now,
we would like guarantee that there is some γ > 0 and a threshold s such that, for any

distribution p on the training set {x(i), y(i)}mi=1 (where y(i) ∈ {−1,+1} and x(i) ∈ R, and
we recall that p is a distribution on the training set if

∑m
i=1 pi = 1 and pi ≥ 0 for each i)

we have
m
∑

i=1

pi1
{

y(i) 6= φs,+(x
(i))

}

≤ 1

2
− γ or

m
∑

i=1

pi1
{

y(i) 6= φs,−(x
(i))

}

≤ 1

2
− γ.

For simplicity, we assume that all of the x(i) are distinct, so that none of them are equal. We
also assume (without loss of generality, but this makes the problem notationally simpler)
that

x(1) > x(2) > · · · > x(m).

(a) [3 points] Show that for each threshold s, there is some m0(s) ∈ {0, 1, . . . ,m} such
that

m
∑

i=1

pi1
{

φs,+(x
(i)) 6= y(i)

}

=
1

2
− 1

2





m0(s)
∑

i=1

y(i)pi −
m
∑

i=m0(s)+1

y(i)pi





and
m
∑

i=1

pi1
{

φs,−(x
(i)) 6= y(i)

}

=
1

2
− 1

2





m
∑

i=m0(s)+1

y(i)pi −
m0(s)
∑

i=1

y(i)pi





Treat sums over empty sets of indices as zero, so that
∑0

i=1 ai = 0 for any ai, and
similarly

∑m
i=m+1 ai = 0.

Answer:

We perform several algebraic steps. Let sgn(t) = 1 if t ≥ 0, and sgn(t) = −1 otherwise.
Then 1 {φs,+(x) 6= y} = 1 {sgn(x− s) 6= y} = 1 {y sgn(x− s) ≤ 0}. Thus we have

m
∑

i=1

pi1
{

φs,+(x
(i)) 6= y(i)

}

=

m
∑

i=1

pi1
{

y(i) · sgn(x(i) − s) ≤ 0
}

=
∑

i:x(i)≥s

pi1
{

y(i) = −1
}

+
∑

i:x(i)<s

pi1
{

y(i) = 1
}

.

Thus, if we let m0(s) be the index in {1, . . . ,m} such that x(i) ≥ s for i ≤ m0(s) and
x(i) < s for i > m0(s), which we know must exist because x(1) > x(2) > · · · , we have

m
∑

i=1

pi1
{

φs,+(x
(i)) 6= y(i)

}

=

m0(s)
∑

i=1

pi1
{

y(i) = −1
}

+

m
∑

i=m0(s)+1

pi1
{

y(i) = 1
}

.
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Now we make the key observation: we have

1 {y = −1} =
1− y

2
and 1 {y = 1} =

1 + y

2
,

as y ∈ {−1, 1}. Consquently,

m
∑

i=1

pi1
{

φs,+(x
(i)) 6= y(i)

}

=

m0(s)
∑

i=1

pi1
{

y(i) = −1
}

+

m
∑

i=m0(s)+1

pi1
{

y(i) = 1
}

=

m0(s)
∑

i=1

pi
1− y(i)

2
+

m
∑

i=m0(s)+1

pi
1 + y(i)

2

=
1

2

m
∑

i=1

pi −
1

2

m0(s)
∑

i=1

piy
(i) +

1

2

m
∑

i=m0(s)+1

piy
(i)

=
1

2
− 1

2





m0(s)
∑

i=1

piy
(i) −

m
∑

i=m0(s)+1

piy
(i)



 .

The last equality follows because
∑m

i=1 pi = 1. The case for φs,− is symmetric to this
one, so we omit the argument.

(b) [3 points] Define, for each m0 ∈ {0, 1, . . . ,m},

f(m0) =

m0
∑

i=1

y(i)pi −
m
∑

i=m0+1

y(i)pi.

Show that there exists some γ > 0, which may depend on the training set size m (but
should not depend on p), such that for any set of probabilities p on the training set,
where pi ≥ 0 and

∑m
i=1 pi = 1, we can find m0 with

|f(m0)| ≥ 2γ.

What is your γ?

(Hint: Consider the difference f(m0)− f(m0 + 1).)

Answer: We have for m0 ∈ {1, . . . ,m} that

f(m0)−f(m0−1) =

m0
∑

i=1

y(i)pi−
m
∑

i=m0+1

y(i)pi−
m0−1
∑

i=1

y(i)pi+

m
∑

i=m0

y(i)pi = 2y(m0)pm0
.

In particular, we have |f(m0)−f(m0−1)| = 2|y(m0)|pm0
= 2pm0

for allm0 ∈ {1, . . . ,m}.
Because

∑m
i=1 pi = 1, there must be at least 1 index m0 with pm0

≥ 1
m
. Thus we have

for some index m0 that |f(m0) − f(m0 − 1)| ≥ 2
m
, and so it must be the case that at

least one of

|f(m0)| ≥
1

m
or |f(m0 − 1)| ≥ 1

m

holds. We have γ = 1
2m .
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(c) [2 points] Based on your answer to part (6b), what edge can thresholded decision
stumps guarantee on any training set {x(i), y(i)}mi=1, where the raw attributes x(i) ∈ R

are all distinct? Recall that the edge of a weak classifier φ : R → {−1, 1} is the
constant γ ∈ [0, 12 ] such that

m
∑

i=1

pi1
{

φ(x(i)) 6= y(i)
}

≤ 1

2
− γ.

Can you give an upper bound on the number of thresholded decision stumps required
to achieve zero error on a given training set?

Answer: Based on our answer to the first part of the question, the thresholded decision
stumps are guaranteed to have edge at least γ = 1

2m over random guessing.

Boosting takes logm
2γ2 iterations to achieve zero error, as shown in class, so with decision

stumps we will achieve zero error in at most 2m2 logm iterations of boosting. Each itera-
tion of boosting introduces a single new weak classifier/hypothesis, so at most 2m2 logm
thresholded decision stumps are necessary.

(d) [11 points] Now you will implement boosting on data developed from a physics-
based simulation of a high-energy particle accelerator. We provide two datasets,
boosting-train.csv and boosting-test.csv, which consist of training data and
test data for a binary classification problem on which you will apply boosting tech-
niques. (For those not using Matlab, the files are comma-separated files, the first
column of which consists of binary ±1-labels y(i), the remaining 18 columns are the
raw attribtues.) The file load data.m, which we provide, loads the datasets into
memory, storing training data and labels in appropriate vectors and matrices, and
then performs boosting using your implemented code, and plots the results.

i. [5 points] Implement a method that finds the optimal thresholded decision stump
for a training set {x(i), y(i)}mi=1 and distribution p ∈ R

m
+ on the training set. In

particular, fill out the code in the method find best threshold.m. Include your
code in your solution.

ii. [2 points] Implement boosted decision stumps by filling out the code in the method
stump booster.m. Your code should implement the weight updating at each
iteration t = 1, 2, . . . to find the optimal value θt given the feature index and
threshold. Include your code in your solution.

iii. [2 points] Implement random boosting, where at each step the choice of decision
stump is made completely randomly. In particular, at iteration t random boosting
chooses a random index j ∈ {1, 2, . . . , n}, then chooses a random threshold s from

among the data values {x(i)j }mi=1, and then chooses the tth weight θt optimally
for this (random) classifier φs,+(x) = sign(xj − s). Implement this by filling out
the code in random booster.m.

iv. [2 points] Run the method load data.m with your implemented boosting meth-
ods. Include the plots this method displays, which show the training and test
error for boosting at each iteration t = 1, 2, . . .. Which method is better?
Answer: Random decision stumps require about 200 iterations to get to error
.22 or so, while regular boosting (with greedy decision stumps) requires about 15
iterations to get this error. See Fig. 1.

[A few notes: we do not expect boosting to get classification accuracy better than
approximately 80% for this problem.]
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Figure 1: Boosting error for random selection of decision stumps and the greedy selection made
by boosting.

Answer: Here is code for each of the three coding parts.

function [ind, thresh] = find_best_threshold(X, y, p_dist)

% FIND_BEST_THRESHOLD Finds the best threshold for the given data

%

% [ind, thresh] = find_best_threshold(X, y, p_dist) returns a threshold

% thresh and index ind that gives the best thresholded classifier for the

% weights p_dist on the training data. That is, the returned index ind

% and threshold thresh minimize

%

% sum_{i = 1}^m p(i) * 1{sign(X(i, ind) - thresh) ~= y(i)}

%

% OR

%

% sum_{i = 1}^m p(i) * 1{sign(thresh - X(i, ind)) ~= y(i)}.

%

% We must check both signed directions, as it is possible that the best

% decision stump (coordinate threshold classifier) is of the form

% sign(threshold - x_j) rather than sign(x_j - threshold).

%

% The data matrix X is of size m-by-n, where m is the training set size

% and n is the dimension.

%

% The solution version uses efficient sorting and data structures to perform

% this calculation in time O(n m log(m)), where the size of the data matrix

% X is m-by-n.

[mm, nn] = size(X);

best_err = inf;

ind = 1;
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thresh = 0;

for jj = 1:nn

[x_sort, inds] = sort(X(:, jj), 1, ’descend’);

p_sort = p_dist(inds);

y_sort = y(inds);

% We let the thresholds be s_0, s_1, ..., s_{m-1}, where s_k is between

% x_sort(k-1) and x_sort(k) (so that s_0 > x_sort(1)). Then the empirical

% error associated with threshold s_k is exactly

%

% err(k) = sum_{l = k + 1}^m p_sort(l) * 1(y_sort(l) == 1)

% + sum_{l = 1}^k p_sort(l) * 1(y_sort(l) == -1),

%

% because this is where the thresholds fall. Then we can sequentially

% compute

%

% err(l) = err(l - 1) - p_sort(l) y_sort(l),

%

% where err(0) = p_sort’ * (y_sort == 1).

%

% The code below actually performs this calculation with indices shifted by

% one due to Matlab indexing.

s = x_sort(1) + 1;

possible_thresholds = x_sort;

possible_thresholds = (x_sort + circshift(x_sort, 1)) / 2;

possible_thresholds(1) = x_sort(1) + 1;

increments = circshift(p_sort .* y_sort, 1);

increments(1) = 0;

emp_errs = ones(mm, 1) * (p_sort’ * (y_sort == 1));

emp_errs = emp_errs - cumsum(increments);

[best_low, thresh_ind] = min(emp_errs);

[best_high, thresh_high] = max(emp_errs);

best_high = 1 - best_high;

best_err_j = min(best_high, best_low);

if (best_high < best_low)

thresh_ind = thresh_high;

end

if (best_err_j < best_err)

ind = jj;

thresh = possible_thresholds(thresh_ind);

best_err = best_err_j;

end

end

function [theta, feature_inds, thresholds] = stump_booster(X, y, T)

% STUMP_BOOSTER Uses boosted decision stumps to train a classifier

%

% [theta, feature_inds, thresholds] = stump_booster(X, y, T)

% performs T rounds of boosted decision stumps to classify the data X,



CS229 Problem Set #2 Solutions 19

% which is an m-by-n matrix of m training examples in dimension n,

% to match y.

%

% The returned parameters are theta, the parameter vector in T dimensions,

% the feature_inds, which are indices of the features (a T dimensional

% vector taking values in {1, 2, ..., n}), and thresholds, which are

% real-valued thresholds. The resulting classifier may be computed on an

% n-dimensional training example by

%

% theta’ * sign(x(feature_inds) - thresholds).

%

% The resulting predictions may be computed simultaneously on an

% n-dimensional dataset, represented as an m-by-n matrix X, by

%

% sign(X(:, feature_inds) - repmat(thresholds’, m, 1)) * theta.

%

% This is an m-vector of the predicted margins.

[mm, nn] = size(X);

p_dist = ones(mm, 1);

p_dist = p_dist / sum(p_dist);

theta = [];

feature_inds = [];

thresholds = [];

for iter = 1:T

[ind, thresh] = find_best_threshold(X, y, p_dist);

Wplus = p_dist’ * (sign(X(:, ind) - thresh) == y);

Wminus = p_dist’ * (sign(X(:, ind) - thresh) ~= y);

theta = [theta; .5 * log(Wplus / Wminus)];

feature_inds = [feature_inds; ind];

thresholds = [thresholds; thresh];

p_dist = exp(-y .* (...

sign(X(:, feature_inds) - repmat(thresholds’, mm, 1)) * theta));

fprintf(1, ’Iter %d, empirical risk = %1.4f, empirical error = %1.4f\n’, ...

iter, sum(p_dist), sum(p_dist >= 1));

p_dist = p_dist / sum(p_dist);

end

function [theta, feature_inds, thresholds] = random_booster(X, y, T)

% RANDOM_BOOSTER Uses random thresholds and indices to train a classifier

%

% [theta, feature_inds, thresholds] = random_booster(X, y, T)

% performs T rounds of boosted decision stumps to classify the data X,

% which is an m-by-n matrix of m training examples in dimension n.

%

% The returned parameters are theta, the parameter vector in T dimensions,

% the feature_inds, which are indices of the features (a T dimensional vector
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% taking values in {1, 2, ..., n}), and thresholds, which are real-valued

% thresholds. The resulting classifier may be computed on an n-dimensional

%

% theta’ * sgn(x(feature_inds) - thresholds).

[mm, nn] = size(X);

p_dist = ones(mm, 1);

p_dist = p_dist / sum(p_dist);

theta = [];

feature_inds = [];

thresholds = [];

for iter = 1:T

ind = ceil(rand * nn);

thresh = X(ceil(rand * mm), ind) + 1e-8 * randn;

Wplus = p_dist’ * (sign(X(:, ind) - thresh) == y);

Wminus = p_dist’ * (sign(X(:, ind) - thresh) ~= y);

theta = [theta; .5 * log(Wplus / Wminus)];

feature_inds = [feature_inds; ind];

thresholds = [thresholds; thresh];

p_dist = exp(-y .* (...

sign(X(:, feature_inds) - repmat(thresholds’, mm, 1)) * theta));

fprintf(1, ’Iter %d, empirical risk = %1.4f, empirical error = %1.4f\n’, ...

iter, sum(p_dist), sum(p_dist >= 1));

p_dist = p_dist / sum(p_dist);

end

function s = sgn(v)

s = 2 * (v >= 0) - 1;
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CS 229 Autumn 2016
Problem Set#3:Theory & Unsupervised learning

Due Wednesday, November 16 at 11:00 am on Gradescope.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/autumn2016/cs229. (3)
If you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4) For
problems that require programming, please include in your submission a printout/scan of your
code (with comments) and any figures that you are asked to plot.

If you are skipping a question, please include it on your PDF/photo, but leave the question
blank and tag it appropriately on Gradescope. This includes extra credit problems. If you are
scanning your document by cellphone, please check the Piazza forum for recommended cellphone
scanning apps and best practices.

1. [23 points] Uniform convergence

You are hired by CNN to help design the sampling procedure for making their electoral
predictions for the next presidential election in the (fictitious) country of Elbania.

The country of Elbania is organized into states, and there are only two candidates running
in this election: One from the Elbanian Democratic party, and another from the Labor
Party of Elbania. The plan for making our electorial predictions is as follows: We’ll sample
m voters from each state, and ask whether they’re voting democrat. We’ll then publish,
for each state, the estimated fraction of democrat voters. In this problem, we’ll work out
how many voters we need to sample in order to ensure that we get good predictions with
high probability.

One reasonable goal might be to set m large enough that, with high probability, we obtain
uniformly accurate estimates of the fraction of democrat voters in every state. But this
might require surveying very many people, which would be prohibitively expensive. So,
we’re instead going to demand only a slightly lower degree of accuracy.

Specifically, we’ll say that our prediction for a state is “highly inaccurate” if the estimated
fraction of democrat voters differs from the actual fraction of democrat voters within that
state by more than a tolerance factor γ. CNN knows that their viewers will tolerate some
small number of states’ estimates being highly inaccurate; however, their credibility would
be damaged if they reported highly inaccurate estimates for too many states. So, rather
than trying to ensure that all states’ estimates are within γ of the true values (which
would correspond to no state’s estimate being highly inaccurate), we will instead try only
to ensure that the number of states with highly inaccurate estimates is small.

To formalize the problem, let there be n states, and let m voters be drawn IID from each
state. Let the actual fraction of voters in state i that voted democrat be φi. Also let Xij

(1 ≤ i ≤ n, 1 ≤ j ≤ m) be a binary random variable indicating whether the j-th randomly
chosen voter from state i voted democrat:

Xij =

{

1 if the jth example from the ith state voted democrat
0 otherwise
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We assume that the voters correctly disclose their vote during the survey. Thus, for each
value of i, we have that Xij are drawn IID from a Bernoulli(φi) distribution. Moreover,
the Xij ’s (for all i, j) are all mutually independent.

After the survey, the fraction of democrat votes in state i is estimated as:

φ̂i =
1

m

m
∑

j=1

Xij

Also, let Zi = 1{|φ̂i − φi| > γ} be a binary random variable that indicates whether the
prediction in state i was highly inaccurate.

(a) Let ψi be the probability that Zi = 1. Using the Hoeffding inequality, find an upper
bound on ψi.

(b) In this part, we prove a general result which will be useful for this problem. Let Vi
and Wi (1 ≤ i ≤ k) be Bernoulli random variables, and suppose

E[Vi] = P (Vi = 1) ≤ P (Wi = 1) = E[Wi] ∀i ∈ {1, 2, . . . k}

Let the Vi’s be mutually independent, and similarly let the Wi’s also be mutually
independent. Prove that, for any value of t, the following holds:

P

(

k
∑

i=1

Vi > t

)

≤ P

(

k
∑

i=1

Wi > t

)

[Hint: One way to do this is via induction on k. If you use a proof by induction, for
the base case (k = 1), you must show that the inequality holds for t < 0, 0 ≤ t < 1,
and t ≥ 1.]

(c) The fraction of states on which our predictions are highly inaccurate is given by
Z = 1

n

∑n

i=1 Zi. Prove a reasonable closed form upper bound on the probability

P (Z > τ) of being highly inaccurate on more than a fraction τ of the states.

[Note: There are many possible answers, but to be considered reasonable, your bound
must decrease to zero as m → ∞ (for fixed n and τ > 0). Also, your bound should
either remain constant or decrease as n → ∞ (for fixed m and τ > 0). It is also fine
if, for some values of τ , m and n, your bound just tells us that P (Z > τ) ≤ 1 (the
trivial bound).]

2. [15 points] More VC dimension

Let the domain of the inputs for a learning problem be X = R. Consider using hypotheses
of the following form:

hθ(x) = 1{θ0 + θ1x+ θ2x
2 + · · ·+ θdx

d ≥ 0},

and let H = {hθ : θ ∈ R
d+1} be the corresponding hypothesis class. What is the VC

dimension of H? Justify your answer.

[Hint: You may use the fact that a polynomial of degree d has at most d real roots. When
doing this problem, you should not assume any other non-trivial result (such as that the
VC dimension of linear classifiers in d-dimensions is d + 1) that was not formally proved
in class.]
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3. [12 points] MAP estimates and weight decay

Consider using a logistic regression model hθ(x) = g(θTx) where g is the sigmoid function,
and let a training set {(x(i), y(i)); i = 1, . . . ,m} be given as usual. The maximum likelihood
estimate of the parameters θ is given by

θML = argmax
θ

m
∏

i=1

p(y(i)|x(i); θ).

If we wanted to regularize logistic regression, then we might put a Bayesian prior on the
parameters. Suppose we chose the prior θ ∼ N (0, τ2I) (here, τ > 0, and I is the n+1-by-
n+ 1 identity matrix), and then found the MAP estimate of θ as:

θMAP = argmax
θ
p(θ)

m
∏

i=1

p(y(i)|x(i), θ)

Prove that
||θMAP||2 ≤ ||θML||2

[Hint: Consider using a proof by contradiction.]
Remark. For this reason, this form of regularization is sometimes also called weight
decay, since it encourages the weights (meaning parameters) to take on generally smaller
values.

4. [15 points] KL divergence and Maximum Likelihood

The Kullback-Leibler (KL) divergence between two discrete-valued distributions P (X), Q(X)
is defined as follows:1

KL(P‖Q) =
∑

x

P (x) log
P (x)

Q(x)

For notational convenience, we assume P (x) > 0, ∀x. (Otherwise, one standard thing to do
is to adopt the convention that “0 log 0 = 0.”) Sometimes, we also write the KL divergence
as KL(P ||Q) = KL(P (X)||Q(X)).

The KL divergence is an assymmetric measure of the distance between 2 probability dis-
tributions. In this problem we will prove some basic properties of KL divergence, and
work out a relationship between minimizing KL divergence and the maximum likelihood
estimation that we’re familiar with.

(a) Nonnegativity. Prove the following:

∀P,Q KL(P‖Q) ≥ 0

and

KL(P‖Q) = 0 if and only if P = Q.

1If P and Q are densities for continuous-valued random variables, then the sum is replaced by an integral,
and everything stated in this problem works fine as well. But for the sake of simplicity, in this problem we’ll just
work with this form of KL divergence for probability mass functions/discrete-valued distributions.
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[Hint: You may use the following result, called Jensen’s inequality. If f is a convex
function, and X is a random variable, then E[f(X)] ≥ f(E[X]). Moreover, if f is
strictly convex (f is convex if its Hessian satisfies H ≥ 0; it is strictly convex if H > 0;
for instance f(x) = − log x is strictly convex), then E[f(X)] = f(E[X]) implies that
X = E[X] with probability 1; i.e., X is actually a constant.]

(b) Chain rule for KL divergence. The KL divergence between 2 conditional distri-
butions P (X|Y ), Q(X|Y ) is defined as follows:

KL(P (X|Y )‖Q(X|Y )) =
∑

y

P (y)

(

∑

x

P (x|y) log
P (x|y)

Q(x|y)

)

This can be thought of as the expected KL divergence between the corresponding
conditional distributions on x (that is, between P (X|Y = y) and Q(X|Y = y)),
where the expectation is taken over the random y.

Prove the following chain rule for KL divergence:

KL(P (X,Y )‖Q(X,Y )) = KL(P (X)‖Q(X)) +KL(P (Y |X)‖Q(Y |X)).

(c) KL and maximum likelihood.

Consider a density estimation problem, and suppose we are given a training set
{x(i); i = 1, . . . ,m}. Let the empirical distribution be P̂ (x) = 1

m

∑m

i=1 1{x
(i) = x}.

(P̂ is just the uniform distribution over the training set; i.e., sampling from the em-
pirical distribution is the same as picking a random example from the training set.)

Suppose we have some family of distributions Pθ parameterized by θ. (If you like,
think of Pθ(x) as an alternative notation for P (x; θ).) Prove that finding the maximum
likelihood estimate for the parameter θ is equivalent to finding Pθ with minimal KL
divergence from P̂ . I.e. prove:

argmin
θ

KL(P̂‖Pθ) = argmax
θ

m
∑

i=1

logPθ(x
(i))

Remark. Consider the relationship between parts (b-c) and multi-variate Bernoulli
Naive Bayes parameter estimation. In the Naive Bayes model we assumed Pθ is of the
following form: Pθ(x, y) = p(y)

∏n

i=1 p(xi|y). By the chain rule for KL divergence, we
therefore have:

KL(P̂‖Pθ) = KL(P̂ (y)‖p(y)) +
n
∑

i=1

KL(P̂ (xi|y)‖p(xi|y)).

This shows that finding the maximum likelihood/minimum KL-divergence estimate
of the parameters decomposes into 2n + 1 independent optimization problems: One
for the class priors p(y), and one for each of the conditional distributions p(xi|y)
for each feature xi given each of the two possible labels for y. Specifically, finding
the maximum likelihood estimates for each of these problems individually results in
also maximizing the likelihood of the joint distribution. (If you know what Bayesian
networks are, a similar remark applies to parameter estimation for them.)
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5. [20 points] K-means for compression

In this problem, we will apply the K-means algorithm to lossy image compression, by
reducing the number of colors used in an image.

We will be using the following files:

• http://cs229.stanford.edu/ps/ps3/mandrill-small.tiff

• http://cs229.stanford.edu/ps/ps3/mandrill-large.tiff

The mandrill-large.tiff file contains a 512x512 image of a mandrill represented in 24-
bit color. This means that, for each of the 262144 pixels in the image, there are three 8-bit
numbers (each ranging from 0 to 255) that represent the red, green, and blue intensity
values for that pixel. The straightforward representation of this image therefore takes
about 262144×3 = 786432 bytes (a byte being 8 bits). To compress the image, we will use
K-means to reduce the image to k = 16 colors. More specifically, each pixel in the image is
considered a point in the three-dimensional (r, g, b)-space. To compress the image, we will
cluster these points in color-space into 16 clusters, and replace each pixel with the closest
cluster centroid.

Follow the instructions below. Be warned that some of these operations can take a while
(several minutes even on a fast computer)!2

(a) Start up MATLAB, and type A = double(imread(’mandrill-large.tiff’)); to
read in the image. Now, A is a “three dimensional matrix,” and A(:,:,1), A(:,:,2)
and A(:,:,3) are 512x512 arrays that respectively contain the red, green, and blue
values for each pixel. Enter imshow(uint8(round(A))); to display the image.

(b) Since the large image has 262144 pixels and would take a while to cluster, we will in-
stead run vector quantization on a smaller image. Repeat (a) with mandrill-small.tiff.
Treating each pixel’s (r, g, b) values as an element of R3, run K-means3 with 16 clus-
ters on the pixel data from this smaller image, iterating (preferably) to convergence,
but in no case for less than 30 iterations. For initialization, set each cluster centroid
to the (r, g, b)-values of a randomly chosen pixel in the image.

(c) Take the matrix A from mandrill-large.tiff, and replace each pixel’s (r, g, b) values
with the value of the closest cluster centroid. Display the new image, and compare it
visually to the original image. Hand in all your code and a printout of your compressed
image (printing on a black-and-white printer is fine).

(d) If we represent the image with these reduced (16) colors, by (approximately) what
factor have we compressed the image?

2In order to use the imread and imshow commands in octave, you have to install the Image package from
octave-forge. This package and installation instructions are available at: http://octave.sourceforge.net

3Please implement K-means yourself, rather than using built-in functions from, e.g., MATLAB or octave.
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CS 229 Autumn 2016
Problem Set #3 Solutions: Theory & Unsuper-
vised learning

Due Wednesday, May 18 at 11:00 pm on Gradescope.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/autumn2016/cs229. (3)
If you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4) For
problems that require programming, please include in your submission a printout of your code
(with comments) and any figures that you are asked to plot.

If you are skipping a question, please include it on your PDF/photo, but leave the question
blank and tag it appropriately on Gradescope. This includes extra credit problems. If you are
scanning your document by cellphone, please check the Piazza forum for recommended cellphone
scanning apps and best practices.

1. [23 points] Uniform convergence

You are hired by CNN to help design the sampling procedure for making their electoral
predictions for the next presidential election in the (fictitious) country of Elbania.

The country of Elbania is organized into states, and there are only two candidates running
in this election: One from the Elbanian Democratic party, and another from the Labor
Party of Elbania. The plan for making our electorial predictions is as follows: We’ll sample
m voters from each state, and ask whether they’re voting democrat. We’ll then publish,
for each state, the estimated fraction of democrat voters. In this problem, we’ll work out
how many voters we need to sample in order to ensure that we get good predictions with
high probability.

One reasonable goal might be to set m large enough that, with high probability, we obtain
uniformly accurate estimates of the fraction of democrat voters in every state. But this
might require surveying very many people, which would be prohibitively expensive. So,
we’re instead going to demand only a slightly lower degree of accuracy.

Specifically, we’ll say that our prediction for a state is “highly inaccurate” if the estimated
fraction of democrat voters differs from the actual fraction of democrat voters within that
state by more than a tolerance factor γ. CNN knows that their viewers will tolerate some
small number of states’ estimates being highly inaccurate; however, their credibility would
be damaged if they reported highly inaccurate estimates for too many states. So, rather
than trying to ensure that all states’ estimates are within γ of the true values (which
would correspond to no state’s estimate being highly inaccurate), we will instead try only
to ensure that the number of states with highly inaccurate estimates is small.

To formalize the problem, let there be n states, and let m voters be drawn IID from each
state. Let the actual fraction of voters in state i that voted democrat be φi. Also let Xij

(1 ≤ i ≤ n, 1 ≤ j ≤ m) be a binary random variable indicating whether the j-th randomly
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chosen voter from state i voted democrat:

Xij =

{

1 if the jth example from the ith state voted democrat
0 otherwise

We assume that the voters correctly disclose their vote during the survey. Thus, for each
value of i, we have that Xij are drawn IID from a Bernoulli(φi) distribution. Moreover,
the Xij ’s (for all i, j) are all mutually independent.

After the survey, the fraction of democrat votes in state i is estimated as:

φ̂i =
1

m

m
∑

j=1

Xij

Also, let Zi = 1{|φ̂i − φi| > γ} be a binary random variable that indicates whether the
prediction in state i was highly inaccurate.

(a) Let ψi be the probability that Zi = 1. Using the Hoeffding inequality, find an upper
bound on ψi.

Answer: A direct application of the Hoeffding inequality yields

ψi ≤ 2e−2γ2m

(b) In this part, we prove a general result which will be useful for this problem. Let Vi
and Wi (1 ≤ i ≤ k) be Bernoulli random variables, and suppose

E[Vi] = P (Vi = 1) ≤ P (Wi = 1) = E[Wi] ∀i ∈ {1, 2, . . . k}

Let the Vi’s be mutually independent, and similarly let the Wi’s also be mutually
independent. Prove that, for any value of t, the following holds:

P

(

k
∑

i=1

Vi > t

)

≤ P

(

k
∑

i=1

Wi > t

)

[Hint: One way to do this is via induction on k. If you use a proof by induction, for
the base case (k = 1), you must show that the inequality holds for t < 0, 0 ≤ t < 1,
and t ≥ 1.]

Answer: Prove it by induction.

Base case: Show

P (V1 > t) ≤ P (W1 > t)

If t < 0, then both probalities are 1. If t ≥ 1, then both probabilities are 0. Otherwise,
the equation reduces to

P (V1 = 1) ≤ P (W1 = 1)

which holds by our original assumptions.

Inductive step: Assume
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P

(

l
∑

i=1

Vi > t

)

≤ P

(

l
∑

i=1

Wi > t

)

, ∀t

Then,

P

(

l+1
∑

i=1

Vi > t

)

= P (Vl+1 = 1)P

(

l+1
∑

i=1

Vi > t
∣

∣

∣
Vl+1 = 1

)

+ P (Vl+1 = 0)P

(

l+1
∑

i=1

Vi > t
∣

∣

∣
Vl+1 = 0

)

= P (Vl+1 = 1)P

(

l
∑

i=1

Vi > t− 1
∣

∣

∣
Vl+1 = 1

)

+ P (Vl+1 = 0)P

(

l
∑

i=1

Vi > t
∣

∣

∣
Vl+1 = 0

)

= P (Vl+1 = 1)P

(

l
∑

i=1

Vi > t− 1

)

+ P (Vl+1 = 0)P

(

l
∑

i=1

Vi > t

)

= P (Vl+1 = 1)P

(

l
∑

i=1

Vi > t− 1

)

+ (1− P (Vl+1 = 1))P

(

l
∑

i=1

Vi > t

)

= P (Vl+1 = 1)

(

P

(

l
∑

i=1

Vi > t− 1

)

− P

(

l
∑

i=1

Vi > t

))

+ P

(

l
∑

i=1

Vi > t

)

≤ P (Wl+1 = 1)

(

P

(

l
∑

i=1

Vi > t− 1

)

− P

(

l
∑

i=1

Vi > t

))

+ P

(

l
∑

i=1

Vi > t

)

= P (Wl+1 = 1)P

(

l
∑

i=1

Vi > t− 1

)

+ (1− P (Wl+1 = 1)P

(

l
∑

i=1

Vi > t

)

= P (Wl+1 = 1)P

(

l
∑

i=1

Vi > t− 1

)

+ P (Wl+1 = 0)P

(

l
∑

i=1

Vi > t

)

≤ P (Wl+1 = 1)P

(

l
∑

i=1

Wi > t− 1

)

+ P (Wl+1 = 0)P

(

l
∑

i=1

Wi > t

)

= P

(

l+1
∑

i=1

Wi > t

)

.

And the result is proved.

A second, and completely different way to prove this result, is by what is known as
coupling. In particular, let ξ1, ξ2, . . . , ξk be i.i.d. random variables, each uniform on [0, 1].
Define the variables

V u
i =

{

0 if ξi > P (Vi = 1)

1 if ξi ≤ P (Vi = 1).
and Wu

i =

{

0 if ξi > P (Wi = 1)

1 if ξi ≤ P (Wi = 1).

Then E[V u
i ] = P (ξi ≤ P (Vi = 1)) = P (Vi = 1) = E[Vi] and similarly E[Wu

i ] = E[Wi].
But Wu

i ≥ V u
i always and the sequence {V u

1 , . . . , V
u
k } is i.i.d. (and similarly for Wu

i ).
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Consequently, we have

P

( k
∑

i=1

Vi > t

)

= P

( k
∑

i=1

V u
i > t

)

≤ P

( k
∑

i=1

Wu
i > t

)

= P

( k
∑

i=1

Wi > t

)

,

where the inequality follows because

k
∑

i=1

Wu
i ≥

k
∑

i=1

V u
i ,

so that
∑k

i=1 V
u
i > t implies

∑k
i=1W

u
i > t.

(c) The fraction of states on which our predictions are highly inaccurate is given by
Z = 1

n

∑n
i=1 Zi. Prove a reasonable closed form upper bound on the probability

P (Z > τ) of being highly inaccurate on more than a fraction τ of the states.

[Note: There are many possible answers, but to be considered reasonable, your bound
must decrease to zero as m → ∞ (for fixed n and τ > 0). Also, your bound should
either remain constant or decrease as n → ∞ (for fixed m and τ > 0). It is also fine
if, for some values of τ , m and n, your bound just tells us that P (Z > τ) ≤ 1 (the
trivial bound).]

Answer: There are multiple ways to do this problem. We list a couple of them below:

Using Chernoff’s inequality

Let Yi be new Bernoulli random variables with mean µ = 2e−2γ2m. Then we know from
part (a) that P (Zi = 1) ≤ µ = P (Yi = 1). Using the result from the previous part:

P (Z > τ) ≤ P

(

1

n

n
∑

i=0

Yi > τ

)

= P

(

1

n

n
∑

i=0

Yi − µ > τ − µ

)

≤ P

(∣

∣

∣

∣

∣

1

n

n
∑

i=0

Yi − µ

∣

∣

∣

∣

∣

> τ − µ

)

≤ 2 exp
(

−2(τ − µ)2n
)

,

where the last step follows provided that 0 < τ − µ = τ − 2e−2γ2m, or equivalently,
m > 1

2γ2 log
(

2
τ

)

. For fixed τ and m, this bound goes to zero as n → ∞. Alternatively,
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we can also just compute the right side directly, as in

P (Z > τ) ≤ P

(

1

n

n
∑

i=0

Yi > τ

)

= P

(

n
∑

i=0

Yi > nτ

)

=

n
∑

j=k

P

(

n
∑

i=0

Yi = j

)

=
n
∑

j=k

(

n

j

)

µj(1− µ)1−j

≤
n
∑

j=k

(

n

j

)

µj

where k is the smallest integer such that k > nτ . For fixed τ and n, observe that as
m→ ∞, µ→ 0, so this bound goes to zero. Therefore,

P (Z > τ) ≤ min







1, 2e−2(τ−µ)2n,

n
∑

j=k

(

n

j

)

µj







has the properties we want.

Using Markov’s inequality
Markov’s inequality states that for any nonnegative random variable X and τ > 0, then

P (X > τ) ≤ E[X]
τ

. From part (a), we have E[Zi] = P (Zi = 1) ≤ 2e−2γ2m, implying
that

P (Z > τ) = P

(

1

n

n
∑

i=0

Zi > τ

)

≤
E
[

1
n

∑n
i=0 Zi

]

τ

≤
2

τ
e−2γ2m.

This bound satisfies the given requirements: as m → ∞, the bound goes to zero; if
n→ ∞, the bound stays constant.

Using Chebyshev’s inequality
Chebyshev’s inequality states that for any random variable X with expected value µ and

finite variance σ2, then for any constant τ > 0, P (|X − µ| > τ) ≤ σ2

τ
. Let Yi be new

Bernoulli random variables with mean µ = 2e−2γ2m. Then we know from part (a) that
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P (Zi = 1) ≤ µ = P (Yi = 1). Using the result from the previous part:

P (Z > τ) ≤ P

(

1

n

n
∑

i=0

Yi > τ

)

= P

(

1

n

n
∑

i=0

Yi − µ > τ − µ

)

≤ P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=0

Yi − µ

∣

∣

∣

∣

∣

> τ − µ

)

≤
Var

[

1
n

∑n
i=0 Yi

]

(τ − µ)2

=
1
n2

∑n
i=0 Var [Yi]

(τ − µ)2

=
2e−2γ2m(1− 2e−2γ2m)

n(τ − µ)2

≤
2e−2γ2m

n(τ − µ)2
,

where we again require that m > 1
2γ2 log

(

2
τ

)

. This version of the bound goes to zero
both when m→ ∞ and when n→ ∞.

2. [15 points] More VC dimension

Let the domain of the inputs for a learning problem be X = R. Consider using hypotheses
of the following form:

hθ(x) = 1{θ0 + θ1x+ θ2x
2 + · · ·+ θdx

d ≥ 0},

and let H = {hθ : θ ∈ R
d+1} be the corresponding hypothesis class. What is the VC

dimension of H? Justify your answer.

[Hint: You may use the fact that a polynomial of degree d has at most d real roots. When
doing this problem, you should not assume any other non-trivial result (such as that the
VC dimension of linear classifiers in d-dimensions is d + 1) that was not formally proved
in class.]

Answer: The key insight is that if the polynomial does not cross the x-axis (i.e. have a
root) between two points, then it must give the two points the same label.

First, we need to show that there is a set of size d + 1 which H can shatter. We consider
polynomials with d real roots. A subset of the polynomials in H can be written as

±
d
∏

i=1

(x− ri)

where ri is the i
th real root. Consider any set of size d+1 which does not contain any duplicate

points. For any labelling of these points, construct a function as follows: If two consecutive
points are labelled differently, set one of the ri to the average of those points. If two consecutive
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points are labelled the same, don’t put a root between them. If we haven’t used up all of our
d roots, place them beyond the last point. Finally, choose ± to get the desired labelling.

A more constructive proof of the above is the following: consider any set of distinct points
x(1), . . . , x(d+1), and let y(1), . . . , y(d+1) ∈ {−1, 1} be any labeling of these points (where we
have used −1 for points which would normally be labeled zero). Then, consider the following
polynomial:

p(x) =

d+1
∑

k=1

y(k)
∏

j 6=k

(

x(j) − x

x(j) − x(k)

)

.

Here, observe that in the above expression, each term of the summation is a polynomial (in
x) of degree d, and hence the overall expression is a polynomial of degree d. Furthermore,
observe that when x = x(i), then the ith term of the summation evaluates to y(i), and all
other terms of the summation evaluate to 0 (since all other terms have a factor (x(i) − x)).
Therefore, p(x(i)) = y(i) for i = 1, . . . , d + 1. This construction is known as a “Lagrange
interpolating polynomial.” Therefore, any labeling of d + 1 points can be realized using a
degree d polynomial.

Second, we need to prove that H can’t shatter a set of size d+ 2. If two points are identical,
we can’t realize any labelling that labels them differently. If all points are unique, we can’t
achieve an alternating labelling because we would need d+ 1 roots.

3. [12 points] MAP estimates and weight decay

Consider using a logistic regression model hθ(x) = g(θTx) where g is the sigmoid function,
and let a training set {(x(i), y(i)); i = 1, . . . ,m} be given as usual. The maximum likelihood
estimate of the parameters θ is given by

θML = argmax
θ

m
∏

i=1

p(y(i)|x(i); θ).

If we wanted to regularize logistic regression, then we might put a Bayesian prior on the
parameters. Suppose we chose the prior θ ∼ N (0, τ2I) (here, τ > 0, and I is the n+1-by-
n+ 1 identity matrix), and then found the MAP estimate of θ as:

θMAP = argmax
θ
p(θ)

m
∏

i=1

p(y(i)|x(i), θ)

Prove that
||θMAP||2 ≤ ||θML||2

[Hint: Consider using a proof by contradiction.]
Remark. For this reason, this form of regularization is sometimes also called weight
decay, since it encourages the weights (meaning parameters) to take on generally smaller
values.

Answer: Assume that

||θMAP||2 > ||θML||2

Then, we have that
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p(θMAP) =
1

(2π)
n+1
2 |τ2I|

1
2

e−
1

2τ2 (||θMAP||2)
2

<
1

(2π)
n+1
2 |τ2I|

1
2

e−
1

2τ2 (||θML||2)
2

= p(θML)

This yields

p(θMAP)

m
∏

i=1

p(y(i)|x(i), θMAP) < p(θML)

m
∏

i=1

p(y(i)|x(i), θMAP)

≤ p(θML)

m
∏

i=1

p(y(i)|x(i), θML)

where the last inequality holds since θML was chosen to maximize
∏m

i=1 p(y
(i)|x(i); θ). However,

this result gives us a contradiction, since θMAP was chosen to maximize
∏m

i=1 p(y
(i)|x(i), θ)p(θ)

4. [15 points] KL divergence and Maximum Likelihood

The Kullback-Leibler (KL) divergence between two discrete-valued distributions P (X), Q(X)
is defined as follows:1

KL(P‖Q) =
∑

x

P (x) log
P (x)

Q(x)

For notational convenience, we assume P (x) > 0, ∀x. (Otherwise, one standard thing to do
is to adopt the convention that “0 log 0 = 0.”) Sometimes, we also write the KL divergence
as KL(P ||Q) = KL(P (X)||Q(X)).

The KL divergence is an assymmetric measure of the distance between 2 probability dis-
tributions. In this problem we will prove some basic properties of KL divergence, and
work out a relationship between minimizing KL divergence and the maximum likelihood
estimation that we’re familiar with.

(a) Nonnegativity. Prove the following:

∀P,Q KL(P‖Q) ≥ 0

and

KL(P‖Q) = 0 if and only if P = Q.

[Hint: You may use the following result, called Jensen’s inequality. If f is a convex
function, and X is a random variable, then E[f(X)] ≥ f(E[X]). Moreover, if f is

1If P and Q are densities for continuous-valued random variables, then the sum is replaced by an integral,
and everything stated in this problem works fine as well. But for the sake of simplicity, in this problem we’ll just
work with this form of KL divergence for probability mass functions/discrete-valued distributions.
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strictly convex (f is convex if its Hessian satisfies H ≥ 0; it is strictly convex if H > 0;
for instance f(x) = − log x is strictly convex), then E[f(X)] = f(E[X]) implies that
X = E[X] with probability 1; i.e., X is actually a constant.]

Answer:

−KL(P‖Q) = −
∑

x

P (x) log
P (x)

Q(x)
(1)

=
∑

x

P (x) log
Q(x)

P (x)
(2)

≤ log
∑

x

P (x)
Q(x)

P (x)
(3)

= log
∑

x

Q(x) (4)

= log 1 (5)

= 0 (6)

Where all equalities follow from straight forward algebraic manipulation. The inequality
follows from Jensen’s inequality.

To show the second part of the claim, note that log t is a strictly concave function of t.
Using the form of Jensen’s inequality given in the lecture notes, we have equality if and

only if Q(x)
P (x) = E[Q(x)

P (x) ] for all x. But since E[Q(x)
P (x) ] =

∑

x P (x)
Q(x)
P (x) =

∑

xQ(x) = 1, it

follows that P (x) = Q(x). Hence we have KL(P‖Q) = 0 if and only if P (x) = Q(x)
for all x.

(b) Chain rule for KL divergence. The KL divergence between 2 conditional distri-
butions P (X|Y ), Q(X|Y ) is defined as follows:

KL(P (X|Y )‖Q(X|Y )) =
∑

y

P (y)

(

∑

x

P (x|y) log
P (x|y)

Q(x|y)

)

This can be thought of as the expected KL divergence between the corresponding
conditional distributions on x (that is, between P (X|Y = y) and Q(X|Y = y)),
where the expectation is taken over the random y.

Prove the following chain rule for KL divergence:

KL(P (X,Y )‖Q(X,Y )) = KL(P (X)‖Q(X)) +KL(P (Y |X)‖Q(Y |X)).
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Answer:

KL(P (X,Y )‖Q(X,Y )) =
∑

x,y

P (x, y) log
P (x, y)

Q(x, y)
(7)

=
∑

x,y

P (x, y) log
P (x)P (y|x)

Q(x)Q(y|x)
(8)

=
∑

x,y

P (x, y) log
P (x)

Q(x)
+ P (x, y) log

P (y|x)

Q(y|x)
(9)

=
∑

x,y

P (x, y) log
P (x)

Q(x)
+
∑

x,y

P (x)P (y|x) log
P (y|x)

Q(y|x)
(10)

=
∑

x

P (x) log
P (x)

Q(x)
+
∑

x

P (x)
∑

y

P (y|x) log
P (y|x)

Q(y|x)
(11)

= KL(P (X)‖Q(X)) (12)

+KL(P (Y |X)‖Q(Y |X)). (13)

Where we applied (in order): definition of KL, definition of conditional probability, log of
product is sum of logs, splitting the summation,

∑

y P (x, y) = P (x), definition of KL.

(c) KL and maximum likelihood.

Consider a density estimation problem, and suppose we are given a training set
{x(i); i = 1, . . . ,m}. Let the empirical distribution be P̂ (x) = 1

m

∑m
i=1 1{x

(i) = x}.

(P̂ is just the uniform distribution over the training set; i.e., sampling from the em-
pirical distribution is the same as picking a random example from the training set.)

Suppose we have some family of distributions Pθ parameterized by θ. (If you like,
think of Pθ(x) as an alternative notation for P (x; θ).) Prove that finding the maximum
likelihood estimate for the parameter θ is equivalent to finding Pθ with minimal KL
divergence from P̂ . I.e. prove:

argmin
θ

KL(P̂‖Pθ) = argmax
θ

m
∑

i=1

logPθ(x
(i))

Remark. Consider the relationship between parts (b-c) and multi-variate Bernoulli
Naive Bayes parameter estimation. In the Naive Bayes model we assumed Pθ is of the
following form: Pθ(x, y) = p(y)

∏n
i=1 p(xi|y). By the chain rule for KL divergence, we

therefore have:

KL(P̂‖Pθ) = KL(P̂ (y)‖p(y)) +
n
∑

i=1

KL(P̂ (xi|y)‖p(xi|y)).

This shows that finding the maximum likelihood/minimum KL-divergence estimate
of the parameters decomposes into 2n + 1 independent optimization problems: One
for the class priors p(y), and one for each of the conditional distributions p(xi|y)
for each feature xi given each of the two possible labels for y. Specifically, finding
the maximum likelihood estimates for each of these problems individually results in
also maximizing the likelihood of the joint distribution. (If you know what Bayesian
networks are, a similar remark applies to parameter estimation for them.)
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Answer:

argmin
θ

KL(P̂‖Pθ) = argmin
θ

∑

x

P̂ (x) log P̂ (x)− P̂ (x) logPθ(x) (14)

= argmin
θ

∑

x

−P̂ (x) logPθ(x) (15)

= argmax
θ

∑

x

P̂ (x) logPθ(x) (16)

= argmax
θ

∑

x

1

m

m
∑

i=1

1{x(i) = x} logPθ(x) (17)

= argmax
θ

1

m

m
∑

i=1

∑

x

1{x(i) = x} logPθ(x) (18)

= argmax
θ

1

m

m
∑

i=1

logPθ(x
(i)) (19)

= argmax
θ

m
∑

i=1

logPθ(x
(i)) (20)

where we used in order: definition of KL, leaving out terms independent of θ, flip sign and
correspondingly flip min-max, definition of P̂ , switching order of summation, definition of
the indicator and simplification.
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5. [20 points] K-means for compression

In this problem, we will apply the K-means algorithm to lossy image compression, by
reducing the number of colors used in an image.

We will be using the following files:

• http://cs229.stanford.edu/ps/ps3/mandrill-small.tiff

• http://cs229.stanford.edu/ps/ps3/mandrill-large.tiff

The mandrill-large.tiff file contains a 512x512 image of a mandrill represented in 24-
bit color. This means that, for each of the 262144 pixels in the image, there are three 8-bit
numbers (each ranging from 0 to 255) that represent the red, green, and blue intensity
values for that pixel. The straightforward representation of this image therefore takes
about 262144×3 = 786432 bytes (a byte being 8 bits). To compress the image, we will use
K-means to reduce the image to k = 16 colors. More specifically, each pixel in the image is
considered a point in the three-dimensional (r, g, b)-space. To compress the image, we will
cluster these points in color-space into 16 clusters, and replace each pixel with the closest
cluster centroid.

Follow the instructions below. Be warned that some of these operations can take a while
(several minutes even on a fast computer)!2

(a) Start up MATLAB, and type A = double(imread(’mandrill-large.tiff’)); to
read in the image. Now, A is a “three dimensional matrix,” and A(:,:,1), A(:,:,2)
and A(:,:,3) are 512x512 arrays that respectively contain the red, green, and blue
values for each pixel. Enter imshow(uint8(round(A))); to display the image.

(b) Since the large image has 262144 pixels and would take a while to cluster, we will in-
stead run vector quantization on a smaller image. Repeat (a) with mandrill-small.tiff.
Treating each pixel’s (r, g, b) values as an element of R3, run K-means3 with 16 clus-
ters on the pixel data from this smaller image, iterating (preferably) to convergence,
but in no case for less than 30 iterations. For initialization, set each cluster centroid
to the (r, g, b)-values of a randomly chosen pixel in the image.

(c) Take the matrix A from mandrill-large.tiff, and replace each pixel’s (r, g, b) values
with the value of the closest cluster centroid. Display the new image, and compare it
visually to the original image. Hand in all your code and a printout of your compressed
image (printing on a black-and-white printer is fine).

(d) If we represent the image with these reduced (16) colors, by (approximately) what
factor have we compressed the image?

Answer: Figure ?? shows the original image of the mandrill. Figure ?? shows the image
compressed into 16 colors using K-means run to convergence, and shows the 16 colors used in
the compressed image. (These solutions are given in a color PostScript file. To see the colors
without a color printer, view them with a program that can display color PostScript, such as
ghostview.) The original image used 24 bits per pixel. To represent one of 16 colors requires
log216 = 4 bits per pixel. We have therefore achieved a compression factor of about 24/4 = 6
of the image. MATLAB code for this problem is given below.

2In order to use the imread and imshow commands in octave, you have to install the Image package from
octave-forge. This package and installation instructions are available at: http://octave.sourceforge.net

3Please implement K-means yourself, rather than using built-in functions from, e.g., MATLAB or octave.
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A = double(imread(’mandrill-small.tiff’));

imshow(uint8(round(A)));

% K-means initialization

k = 16;

initmu = zeros(k,3);

for l=1:k,

i = random(’unid’, size(A, 1), 1, 1);

j = random(’unid’, size(A, 2), 1, 1);

initmu(l,:) = double(permute(A(i,j,:), [3 2 1])’);

end;

% Run K-means

mu = initmu;

for iter = 1:200, % usually converges long before 200 iterations

newmu = zeros(k,3);

nassign = zeros(k,1);

for i=1:size(A,1),

for j=1:size(A,2),

dist = zeros(k,1);

for l=1:k,

d = mu(l,:)’-permute(A(i,j,:), [3 2 1]);

dist(l) = d’*d;

end;

[value, assignment] = min(dist);

nassign(assignment) = nassign(assignment) + 1;

newmu(assignment,:) = newmu(assignment,:) + ...

permute(A(i,j,:), [3 2 1])’;

end; end;

for l=1:k,

if (nassign(l) > 0)

newmu(l,:) = newmu(l,:) / nassign(l);

end;

end;

mu = newmu;

end;

% Assign new colors to large image

bigimage = double(imread(’mandrill-large.tiff’));

imshow(uint8(round(bigimage)));

qimage = bigimage;

for i=1:size(bigimage,1), for j=1:size(bigimage,2),

dist = zeros(k,1);

for l=1:k,

d = mu(l,:)’-permute(bigimage(i,j,:), [3 2 1]);

dist(l) = d’*d;

end;

[value, assignment] = min(dist);

qimage(i,j,:) = ipermute(mu(assignment,:), [3 2 1]);
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end; end;

imshow(uint8(round(qimage)));
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Figure 1: The original image of the mandrill.



CS229 Problem Set #3 Solutions 16

Figure 2: The compressed image of the mandrill.
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CS 229, Autumn 2016
Problem Set #4: Unsupervised learning & RL

Due Wednesday, December 7 at 11:00 am on Gradescope

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/autumn2016/cs229. (3)
If you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4) For
problems that require programming, please include in your submission a printout of your code
(with comments) and any figures that you are asked to plot.

If you are scanning your document by cellphone, please check the Piazza forum for recommended
cellphone scanning apps and best practices.

1. [11 points] EM for MAP estimation

The EM algorithm that we talked about in class was for solving a maximum likelihood
estimation problem in which we wished to maximize

m
∏

i=1

p(x(i); θ) =

m
∏

i=1

∑

z(i)

p(x(i), z(i); θ),

where the z(i)’s were latent random variables. Suppose we are working in a Bayesian
framework, and wanted to find the MAP estimate of the parameters θ by maximizing

(

m
∏

i=1

p(x(i)|θ)

)

p(θ) =

(

m
∏

i=1

∑

z(i)

p(x(i), z(i)|θ)

)

p(θ).

Here, p(θ) is our prior on the parameters. Generalize the EM algorithm to work for MAP
estimation. You may assume that log p(x, z|θ) and log p(θ) are both concave in θ, so
that the M-step is tractable if it requires only maximizing a linear combination of these
quantities. (This roughly corresponds to assuming that MAP estimation is tractable when
x, z is fully observed, just like in the frequentist case where we considered examples in
which maximum likelihood estimation was easy if x, z was fully observed.)

Make sure your M-step is tractable, and also prove that
∏m

i=1 p(x
(i)|θ)p(θ) (viewed as a

function of θ) monotonically increases with each iteration of your algorithm.

2. [22 points] EM application

Consider the following problem. There are P papers submitted to a machine learning
conference. Each of R reviewers reads each paper, and gives it a score indicating how good
he/she thought that paper was. We let x(pr) denote the score that reviewer r gave to paper
p. A high score means the reviewer liked the paper, and represents a recommendation from
that reviewer that it be accepted for the conference. A low score means the reviewer did
not like the paper.
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We imagine that each paper has some “intrinsic,” true value that we denote by µp, where a
large value means it’s a good paper. Each reviewer is trying to estimate, based on reading
the paper, what µp is; the score reported x(pr) is then reviewer r’s guess of µp.

However, some reviewers are just generally inclined to think all papers are good and tend
to give all papers high scores; other reviewers may be particularly nasty and tend to give
low scores to everything. (Similarly, different reviewers may have different amounts of
variance in the way they review papers, making some reviewers more consistent/reliable
than others.) We let νr denote the “bias” of reviewer r. A reviewer with bias νr is one
whose scores generally tend to be νr higher than they should be.

All sorts of different random factors influence the reviewing process, and hence we will use
a model that incorporates several sources of noise. Specifically, we assume that reviewers’
scores are generated by a random process given as follows:

y(pr) ∼ N (µp, σ
2
p),

z(pr) ∼ N (νr, τ
2
r ),

x(pr)|y(pr), z(pr) ∼ N (y(pr) + z(pr), σ2).

The variables y(pr) and z(pr) are independent; the variables (x, y, z) for different paper-
reviewer pairs are also jointly independent. Also, we only ever observe the x(pr)’s; thus,
the y(pr)’s and z(pr)’s are all latent random variables.

We would like to estimate the parameters µp, σ
2
p, νr, τ

2
r . If we obtain good estimates of

the papers’ “intrinsic values” µp, these can then be used to make acceptance/rejection
decisions for the conference.

We will estimate the parameters by maximizing the marginal likelihood of the data {x(pr); p =
1, . . . , P, r = 1, . . . , R}. This problem has latent variables y(pr) and z(pr), and the max-
imum likelihood problem cannot be solved in closed form. So, we will use EM. Your
task is to derive the EM update equations. Your final E and M step updates should
consist only of addition/subtraction/multiplication/division/log/exp/sqrt of scalars; and
addition/subtraction/multiplication/inverse/determinant of matrices. For simplicity, you
need to treat only {µp, σ

2
p; p = 1 . . . P} and {νr, τ

2
r ; r = 1 . . . R} as parameters. I.e. treat

σ2 (the conditional variance of x(pr) given y(pr) and z(pr)) as a fixed, known constant.

(a) In this part, we will derive the E-step:

(i) The joint distribution p(y(pr), z(pr), x(pr)) has the form of a multivariate Gaussian
density. Find its associated mean vector and covariance matrix in terms of the pa-
rameters µp, σ

2
p, νr, τ

2
r , and σ2.

[Hint: Recognize that x(pr) can be written as x(pr) = y(pr) + z(pr) + ǫ(pr), where
ǫ(pr) ∼ N (0, σ2) is independent Gaussian noise.]

(ii) Derive an expression for Qpr(y
(pr), z(pr)) = p(y(pr), z(pr)|x(pr)) (E-step), using the

rules for conditioning on subsets of jointly Gaussian random variables (see the notes
on Factor Analysis).

(b) Derive the M-step updates to the parameters {µp, νr, σ
2
p, τ

2
r }. [Hint: It may help to

express the lower bound on the likelihood in terms of an expectation with respect to
(y(pr), z(pr)) drawn from a distribution with density Qpr(y

(pr), z(pr)).]
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Remark. In a recent machine learning conference, John Platt (whose SMO algorithm
you’ve seen) implemented a method quite similar to this one to estimate the papers’ true
scores µp. (There, the problem was a bit more complicated because not all reviewers
reviewed every paper, but the essential ideas are the same.) Because the model tried to
estimate and correct for reviewers’ biases νr, its estimates of µp were significantly more
useful for making accept/reject decisions than the reviewers’ raw scores for a paper.

3. [14 points] PCA

In class, we showed that PCA finds the “variance maximizing” directions onto which to
project the data. In this problem, we find another interpretation of PCA.

Suppose we are given a set of points {x(1), . . . , x(m)}. Let us assume that we have as usual
preprocessed the data to have zero-mean and unit variance in each coordinate. For a given
unit-length vector u, let fu(x) be the projection of point x onto the direction given by u.
I.e., if V = {αu : α ∈ R}, then

fu(x) = argmin
v∈V

||x− v||2.

Show that the unit-length vector u that minimizes the mean squared error between pro-
jected points and original points corresponds to the first principal component for the data.
I.e., show that

arg min
u:uTu=1

m
∑

i=1

‖x(i) − fu(x
(i))‖22 .

gives the first principal component.

Remark. If we are asked to find a k-dimensional subspace onto which to project the
data so as to minimize the sum of squares distance between the original data and their
projections, then we should choose the k-dimensional subspace spanned by the first k

principal components of the data. This problem shows that this result holds for the case
of k = 1.

4. [12 points] Independent components analysis

For this question you will implement the Bell and Sejnowski ICA algorithm, as covered in
class. The files you’ll need for this problem are in /afs/ir/class/cs229/ps/ps4/q4. The
file mix.dat contains a matrix with 5 columns, with each column corresponding to one of
the mixed signals xi. The file bellsej.m contains starter code for your implementation.

Implement and run ICA, and report what was the W matrix you found. Please make your
code clean and very concise, and use symbol conventions as in class. To make sure your
code is correct, you should listen to the resulting unmixed sources. (Some overlap in the
sources may be present, but the different sources should be pretty clearly separated.)

Note: In our implementation, we annealed the learning rate α (slowly decreased it over
time) to speed up learning. We briefly describe in bellsej.m what we did, but you
should feel free to play with things to make it work best for you. In addition to using the
variable learning rate to speed up convergence, one thing that we also tried was choosing a
random permutation of the training data, and running stochastic gradient ascent visiting
the training data in that order (each of the specified learning rates was then used for one
full pass through the data); this is something that you could try, too.
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5. [16 points] Markov decision processes

Consider an MDP with finite state and action spaces, and discount factor γ < 1. Let B be
the Bellman update operator with V a vector of values for each state. I.e., if V ′ = B(V ),
then

V ′(s) = R(s) + γmax
a∈A

∑

s′∈S

Psa(s
′)V (s′).

(a) [12 points] Prove that, for any two finite-valued vectors V1, V2, it holds true that

||B(V1)−B(V2)||∞ ≤ γ||V1 − V2||∞.

where
||V ||∞ = max

s∈S
|V (s)|.

(This shows that the Bellman update operator is a “γ-contraction in the max-norm.”)

(b) [4 points] We say that V is a fixed point of B if B(V ) = V . Using the fact that
the Bellman update operator is a γ-contraction in the max-norm, prove that B has at
most one fixed point—i.e., that there is at most one solution to the Bellman equations.
You may assume that B has at least one fixed point.

6. [25 points] Reinforcement Learning: The inverted pendulum

In this problem, you will apply reinforcement learning to automatically design a policy for
a difficult control task, without ever using any explicit knowledge of the dynamics of the
underlying system.

The problem we will consider is the inverted pendulum or the pole-balancing problem.1

Consider the figure shown. A thin pole is connected via a free hinge to a cart, which can
move laterally on a smooth table surface. The controller is said to have failed if either the
angle of the pole deviates by more than a certain amount from the vertical position (i.e.,
if the pole falls over), or if the cart’s position goes out of bounds (i.e., if it falls off the
end of the table). Our objective is to develop a controller to balance the pole with these
constraints, by appropriately having the cart accelerate left and right.

We have written a simple Matlab simulator for this problem. The simulation proceeds
in discrete time cycles (steps). The state of the cart and pole at any time is completely
characterized by 4 parameters: the cart position x, the cart velocity ẋ, the angle of the

1The dynamics are adapted from http://www-anw.cs.umass.edu/rlr/domains.html
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pole θ measured as its deviation from the vertical position, and the angular velocity of the
pole θ̇. Since it’d be simpler to consider reinforcement learning in a discrete state space, we
have approximated the state space by a discretization that maps a state vector (x, ẋ, θ, θ̇)
into a number from 1 to NUM STATES. Your learning algorithm will need to deal only with
this discretized representation of the states.

At every time step, the controller must choose one of two actions - push (accelerate) the cart
right, or push the cart left. (To keep the problem simple, there is no do-nothing action.)
These are represented as actions 1 and 2 respectively in the code. When the action choice
is made, the simulator updates the state parameters according to the underlying dynamics,
and provides a new discretized state.

We will assume that the reward R(s) is a function of the current state only. When the
pole angle goes beyond a certain limit or when the cart goes too far out, a negative reward
is given, and the system is reinitialized randomly. At all other times, the reward is zero.
Your program must learn to balance the pole using only the state transitions and rewards
observed.

The files for this problem are in /afs/ir/class/cs229/ps/ps4/q6. Most of the the code
has already been written for you, and you need to make changes only to control.m in the
places specified. This file can be run in Matlab to show a display and to plot a learning
curve at the end. Read the comments at the top of the file for more details on the working
of the simulation.2

(a) To solve the inverted pendulum problem, you will estimate a model (i.e., transition
probabilities and rewards) for the underlying MDP, solve Bellman’s equations for this
estimated MDP to obtain a value function, and act greedily with respect to this value
function.

Briefly, you will maintain a current model of the MDP and a current estimate of the
value function. Initially, each state has estimated reward zero, and the estimated
transition probabilities are uniform (equally likely to end up in any other state).

During the simulation, you must choose actions at each time step according to some
current policy. As the program goes along taking actions, it will gather observations on
transitions and rewards, which it can use to get a better estimate of the MDP model.
Since it is inefficient to update the whole estimated MDP after every observation, we
will store the state transitions and reward observations each time, and update the
model and value function/policy only periodically. Thus, you must maintain counts
of the total number of times the transition from state si to state sj using action a

has been observed (similarly for the rewards). Note that the rewards at any state
are deterministic, but the state transitions are not because of the discretization of
the state space (several different but close configurations may map onto the same
discretized state).

Each time a failure occurs (such as if the pole falls over), you should re-estimate the
transition probabilities and rewards as the average of the observed values (if any).
Your program must then use value iteration to solve Bellman’s equations on the
estimated MDP, to get the value function and new optimal policy for the new model.
For value iteration, use a convergence criterion that checks if the maximum absolute
change in the value function on an iteration exceeds some specified tolerance.

2Note that the routine for drawing the cart does not work in Octave.
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Finally, assume that the whole learning procedure has converged once several consecu-
tive attempts (defined by the parameter NO LEARNING THRESHOLD) to solve Bellman’s
equation all converge in the first iteration. Intuitively, this indicates that the esti-
mated model has stopped changing significantly.

The code outline for this problem is already in control.m, and you need to write
code fragments only at the places specified in the file. There are several details
(convergence criteria etc.) that are also explained inside the code. Use a discount
factor of γ = 0.995.

Implement the reinforcement learning algorithm as specified, and run it. How many
trials (how many times did the pole fall over or the cart fall off) did it take before the
algorithm converged?

(b) Plot a learning curve showing the number of time-steps for which the pole was
balanced on each trial. You just need to execute plot learning curve.m after
control.m to get this plot.
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CS 229, Autumn 2016
Problem Set #4 Solutions: Unsupervised learning
& RL

Due Wednesday, December 7 at 11:00 am on Gradescope

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/autumn2016/cs229. (3)
If you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4) For
problems that require programming, please include in your submission a printout of your code
(with comments) and any figures that you are asked to plot.

If you are scanning your document by cellphone, please check the Piazza forum for recommended
cellphone scanning apps and best practices.

1. [11 points] EM for MAP estimation

The EM algorithm that we talked about in class was for solving a maximum likelihood
estimation problem in which we wished to maximize

m
∏

i=1

p(x(i); θ) =

m
∏

i=1

∑

z(i)

p(x(i), z(i); θ),

where the z(i)’s were latent random variables. Suppose we are working in a Bayesian
framework, and wanted to find the MAP estimate of the parameters θ by maximizing

(

m
∏

i=1

p(x(i)|θ)

)

p(θ) =

(

m
∏

i=1

∑

z(i)

p(x(i), z(i)|θ)

)

p(θ).

Here, p(θ) is our prior on the parameters. Generalize the EM algorithm to work for MAP
estimation. You may assume that log p(x, z|θ) and log p(θ) are both concave in θ, so
that the M-step is tractable if it requires only maximizing a linear combination of these
quantities. (This roughly corresponds to assuming that MAP estimation is tractable when
x, z is fully observed, just like in the frequentist case where we considered examples in
which maximum likelihood estimation was easy if x, z was fully observed.)

Make sure your M-step is tractable, and also prove that
∏m

i=1 p(x
(i)|θ)p(θ) (viewed as a

function of θ) monotonically increases with each iteration of your algorithm.

Answer: We will derive the EM updates the same way as done in class for maximum
likelihood estimation. Monotonic increase with every iteration is guaranteed because of the
same reason: in the E-step we compute a lower bound that is tight at the current estimate
of θ, in the M-step we optimize θ for this lower bound, so we are guaranteed to improve the
actual objective function.
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log

m
∏

i=1

p(x(i)|θ)p(θ) = log p(θ) +

m
∑

i=1

log p(x(i)|θ)

= log p(θ) +

m
∑

i=1

log
∑

z(i)

p(x(i), z(i)|θ)

= log p(θ) +

m
∑

i=1

log
∑

z(i)

Qi(z
(i))

p(x(i), z(i)|θ)

Qi(z(i))

≥ log p(θ) +

m
∑

i=1

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i)|θ)

Qi(z(i))
,

where we just did straightforward substitutions and rewritings, and the last step is given by
Jensen’s inequality. Requiring the inequality to be tight, gives us the E-step:

Qi(z
(i)) = p(z(i)|x(i); θ).

For the M-step we maximize the lower bound, i.e.

θ = argmax
θ

[

log p(θ) +
m
∑

i=1

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i)|θ)

Qi(z(i))

]

.

The M-step is tractable, since it only requires maximizing a linear combination of tractable
concave terms log p(x, z|θ) and log p(θ).

2. [22 points] EM application

Consider the following problem. There are P papers submitted to a machine learning
conference. Each of R reviewers reads each paper, and gives it a score indicating how good
he/she thought that paper was. We let x(pr) denote the score that reviewer r gave to paper
p. A high score means the reviewer liked the paper, and represents a recommendation from
that reviewer that it be accepted for the conference. A low score means the reviewer did
not like the paper.

We imagine that each paper has some “intrinsic,” true value that we denote by µp, where a
large value means it’s a good paper. Each reviewer is trying to estimate, based on reading
the paper, what µp is; the score reported x(pr) is then reviewer r’s guess of µp.

However, some reviewers are just generally inclined to think all papers are good and tend
to give all papers high scores; other reviewers may be particularly nasty and tend to give
low scores to everything. (Similarly, different reviewers may have different amounts of
variance in the way they review papers, making some reviewers more consistent/reliable
than others.) We let νr denote the “bias” of reviewer r. A reviewer with bias νr is one
whose scores generally tend to be νr higher than they should be.

All sorts of different random factors influence the reviewing process, and hence we will use
a model that incorporates several sources of noise. Specifically, we assume that reviewers’
scores are generated by a random process given as follows:

y(pr) ∼ N (µp, σ
2
p),

z(pr) ∼ N (νr, τ
2
r ),

x(pr)|y(pr), z(pr) ∼ N (y(pr) + z(pr), σ2).
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The variables y(pr) and z(pr) are independent; the variables (x, y, z) for different paper-
reviewer pairs are also jointly independent. Also, we only ever observe the x(pr)’s; thus,
the y(pr)’s and z(pr)’s are all latent random variables.

We would like to estimate the parameters µp, σ
2
p, νr, τ

2
r . If we obtain good estimates of

the papers’ “intrinsic values” µp, these can then be used to make acceptance/rejection
decisions for the conference.

We will estimate the parameters by maximizing the marginal likelihood of the data {x(pr); p =
1, . . . , P, r = 1, . . . , R}. This problem has latent variables y(pr) and z(pr), and the max-
imum likelihood problem cannot be solved in closed form. So, we will use EM. Your
task is to derive the EM update equations. Your final E and M step updates should
consist only of addition/subtraction/multiplication/division/log/exp/sqrt of scalars; and
addition/subtraction/multiplication/inverse/determinant of matrices. For simplicity, you
need to treat only {µp, σ

2
p; p = 1 . . . P} and {νr, τ

2
r ; r = 1 . . . R} as parameters. I.e. treat

σ2 (the conditional variance of x(pr) given y(pr) and z(pr)) as a fixed, known constant.

(a) In this part, we will derive the E-step:

(i) The joint distribution p(y(pr), z(pr), x(pr)) has the form of a multivariate Gaussian
density. Find its associated mean vector and covariance matrix in terms of the pa-
rameters µp, σ

2
p, νr, τ

2
r , and σ2.

[Hint: Recognize that x(pr) can be written as x(pr) = y(pr) + z(pr) + ǫ(pr), where
ǫ(pr) ∼ N (0, σ2) is independent Gaussian noise.]

(ii) Derive an expression for Qpr(y
(pr), z(pr)) = p(y(pr), z(pr)|x(pr)) (E-step), using the

rules for conditioning on subsets of jointly Gaussian random variables (see the notes
on Factor Analysis).

(b) Derive the M-step updates to the parameters {µp, νr, σ
2
p, τ

2
r }. [Hint: It may help to

express the lower bound on the likelihood in terms of an expectation with respect to
(y(pr), z(pr)) drawn from a distribution with density Qpr(y

(pr), z(pr)).]

Remark. In a recent machine learning conference, John Platt (whose SMO algorithm
you’ve seen) implemented a method quite similar to this one to estimate the papers’ true
scores µp. (There, the problem was a bit more complicated because not all reviewers
reviewed every paper, but the essential ideas are the same.) Because the model tried to
estimate and correct for reviewers’ biases νr, its estimates of µp were significantly more
useful for making accept/reject decisions than the reviewers’ raw scores for a paper.

Answer:

Let Θ denote the whole set of parameters we are estimating, then the EM steps for our problem
are (at a high level):

(a) (E-step) For each p, r, set Qpr(y
(pr), z(pr)) = p(y(pr), z(pr)|x(pr); θ).

(b) (M-step) Set Θ = argmaxΘ
∑P

p=1

∑R

r=1 EQpr(Y (pr),Z(pr)) log p(x
(pr), Y (pr), Z(pr); Θ).

Now it’s a matter of working out how these updates can actually be computed.

For the E-step, if we use Bayes’s Rule to compute p(y(pr), z(pr)|x(pr)), then we’ll get integrals
of Gaussians in the denominator, which are tough to compute. Instead, observe that

p(y(pr), z(pr), x(pr)) = p(y(pr), z(pr))p(x(pr)|y(pr), z(pr)) = p(y(pr))p(z(pr))p(x(pr)|y(pr), z(pr))



CS229 Problem Set #4 Solutions 4

is the product of three Gaussian densities, so it is itself a multivariate Gaussian density. There-
fore, the joint distribution p(y(pr), z(pr), x(pr)) is some type of normal distribution so we can
use the rules for conditioning Gaussians to compute the conditional. To get a form for the joint
density, we’ll exploit the fact that a multivariate Gaussian density is fully parameterized by its
mean vector and covariance matrix.

• To compute the mean vector, we’ll rewrite the x(pr) in the following way: x(pr) = y(pr)+
z(pr)+ǫ(pr), where ǫ(pr) ∼ N (0, σ2) is independent Gaussian noise.1 Then, E[y(pr)] = µp,
E[z(pr)] = νr and

E[x(pr)] = E[y(pr) + z(pr) + ǫ(pr)] = E[y(pr)] + E[z(pr)] + E[ǫ(pr)]

= µp + νr + 0 = µp + νr.

• To compute the covariance matrix, observe that Var(y(pr)) = σ2
p, Var(z

(pr)) = τ2r , and

Cov(y(pr), z(pr)) = Cov(z(pr), y(pr)) = 0 (since y(pr) and z(pr) are independent). Also,
since y(pr), z(pr), and ǫ(pr) are independent, we have

Var(x(pr)) = Var(y(pr) + z(pr) + ǫ(pr)) = Var(y(pr)) + Var(z(pr)) + Var(ǫ(pr))

= σ2
p + τ2r + σ2.

Finally,

Cov(y(pr), x(pr)) = Cov(x(pr), y(pr))

= Cov(y(pr) + z(pr) + ǫ(pr), y(pr))

= Cov(y(pr), y(pr)) + Cov(z(pr), y(pr)) + Cov(ǫ(pr), y(pr))

= σ2
p + 0 + 0 = σ2

p.

where the second to last equality follows from independence of y(pr), z(pr) and ǫ(pr).
Similarly, we can show that Cov(z(pr), x(pr)) = Cov(x(pr), z(pr)) = τ2r .

This allows us to write

y(pr), z(pr), x(pr) ∼ N









µp

νr
µp + νr



 ,





σ2
p 0 σ2

p

0 τ2r τ2r
σ2
p τ2r σ2

p + τ2r + σ2









Now we can use the standard results for conditioning on subsets of variables for Gaussians
(from the Factor Analysis notes) to obtain:

Qpr(y
(pr), z(pr)) = N

([

µpr,Y

µpr,Z

]

,

[

Σpr,Y Y Σpr,Y Z

Σpr,ZY Σpr,ZZ

])

1To see why this follows from the definition in the problem statement, observe that the probability that
ǫ(pr) = x(pr) − y(pr) − z(pr) takes on any specific value ǫ is p(ǫ(pr) = ǫ|y(pr), z(pr)) = p(x(pr) − y(pr) − z(pr) =
ǫ|y(pr), z(pr)) = p(x(pr) = ǫ + y(pr) + z(pr)|y(pr), z(pr)) = 1

√

2πσ
exp(− 1

2σ2 ǫ
2) which does not depend on either

y(pr) or z(pr); hence ǫ(pr) can be regarded as independent zero-mean Gaussian noise with σ2 variance.
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where

µpr =

[

µpr,Y

µpr,Z

]

=









µp +
σ2
p

σ2 + σ2
p + τ2r

(x(pr) − µp − νr)

νr +
τ2r

σ2 + σ2
p + τ2r

(x(pr) − µp − νr)









(1)

Σpr =

[

Σpr,Y Y Σpr,Y Z

Σpr,ZY Σpr,ZZ

]

=
1

σ2
p + τ2r + σ2

[

σ2
p(τ

2
r + σ2) −σ2

pτ
2
r

−σ2
pτ

2
r τ2r (σ

2
p + σ2)

]

. (2)

For the M-step, an important realization is that the Qpr distribution is defined in terms of
Θt, while we want to choose the parameters for the next time step, Θt+1. This means that
the parameters of the Qpr distributions are constant in terms of the parameters we wish to
maximize. Maximizing the expected log-likelihood, we have (letting EQ[·] denote expectations

with respect to Qpr(y
(pr), z(pr)) for each p and r, respectively),

Θ = argmax
Θ

P
∑

p=1

R
∑

r=1

EQ log p(x(pr)
, y

(pr)
, z

(pr); Θ)

= argmax
Θ

P
∑

p=1

R
∑

r=1

EQ log

[

1
√
2πσ

e
−

1
2σ2 (x(pr)

−y(pr)
−z(pr))2 1

√
2πσp

e
−

1
2σ2

p

(y(pr)
−µp)

2 1
√
2πτr

e
−

1
2τ2

r

(z(pr)−νr)
2
]

= argmax
Θ

P
∑

p=1

R
∑

r=1

EQ

[

log
1

(2π)3/2σσpτr
−

1

2σ2
(x(pr) − y

(pr) − z
(pr))2 −

1

2σ2
p

(y(pr) − µp)
2 −

1

2τ2
r

(y(pr) − νr)
2

]

= argmax
Θ

P
∑

p=1

R
∑

r=1

EQ

[

log
1

σpτr
−

1

2σ2
p

(y(pr) − µp)
2 −

1

2τ2
r

(z(pr) − νr)
2

]

= argmax
Θ

P
∑

p=1

R
∑

r=1

EQ

[

log
1

σpτr
−

1

2σ2
p

((y(pr))2 − 2y(pr)
µp + µ

2
p)−

1

2τ2
r

((z(pr))2 − 2z(pr)νr + ν
2
r )

]

= argmax
Θ

P
∑

p=1

R
∑

r=1

[

log
1

σpτr
−

1

2σ2
p

(EQ[(y
(pr))2]− 2EQ[y

(pr)]µp + µ
2
p)−

1

2τ2
r

(EQ[(z
(pr))2]− 2EQ[z

(pr)]νr + ν
2
r )

]

= argmax
Θ

P
∑

p=1

R
∑

r=1

[

log
1

σpτr
−

1

2σ2
p

(Σpr,Y Y + µ
2
pr,Y − 2µpr,Y µp + µ

2
p)−

1

2τ2
r

(Σpr,ZZ + µ
2
pr,Z − 2µpr,Zνr + ν

2
r )

]

.

where the equality in the last line follows from EQ[y
(pr)] = µpr,Y and EQ[(y

(pr))2] =

(EQ[(y
(pr))2] − EQ[y

(pr)]2) + EQ[y
(pr)]2 = Σpr,Y Y + µ2

pr,Y (and similarly for EQ[z
(pr)] and
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EQ[(z
(pr))2]). Setting derivatives w.r.t. parameters µp, νr, σp, τr to 0,

−
1

2σ2
p

R
∑

r=1

(2µp − 2µpr,Y ) = 0 =⇒ µp =
1

R

R
∑

r=1

µpr,Y (3)

−
1

2τ2
r

P
∑

p=1

(2νr − 2µpr,Z) = 0 =⇒ νr =
1

P

P
∑

p=1

µpr,Z (4)

R
∑

r=1

[

−
1

σp
+

1

σ3
p

(Σpr,Y Y + µ
2
pr,Y − 2µpr,Y µp + µ

2
p)

]

= 0 =⇒ σ
2
p =

1

R

R
∑

r=1

(Σpr,Y Y + µ
2
pr,Y − 2µpr,Y µp + µ

2
p)

(5)

P
∑

p=1

[

−
1

τr
+

1

τ3
r

(Σpr,ZZ + µ
2
pr,Z − 2µpr,Zνr + ν

2
r )

]

= 0 =⇒ τ
2
r =

1

P

P
∑

p=1

(Σpr,ZZ + µ
2
pr,Z − 2µpr,Zνr + ν

2
r )

(6)

Using the above results, we can restate our E and M steps in terms of actual computations:

(a) (E-step) For each p, r, compute µpr,Σpr using equations (1),(2)

(b) (M-step) Compute µp, νr, σ
2
p, τ

2
r using equations (3), (4), (5), (6).

3. [14 points] PCA

In class, we showed that PCA finds the “variance maximizing” directions onto which to
project the data. In this problem, we find another interpretation of PCA.

Suppose we are given a set of points {x(1), . . . , x(m)}. Let us assume that we have as usual
preprocessed the data to have zero-mean and unit variance in each coordinate. For a given
unit-length vector u, let fu(x) be the projection of point x onto the direction given by u.
I.e., if V = {αu : α ∈ R}, then

fu(x) = argmin
v∈V

||x− v||2.

Show that the unit-length vector u that minimizes the mean squared error between pro-
jected points and original points corresponds to the first principal component for the data.
I.e., show that

arg min
u:uTu=1

m
∑

i=1

‖x(i) − fu(x
(i))‖22 .

gives the first principal component.

Remark. If we are asked to find a k-dimensional subspace onto which to project the
data so as to minimize the sum of squares distance between the original data and their
projections, then we should choose the k-dimensional subspace spanned by the first k

principal components of the data. This problem shows that this result holds for the case
of k = 1.
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Answer: First note we have fu(x
(i)) = uTxu.2 So we have to solve the following problem:

arg min
u:uTu=1

m
∑

i=1

‖x(i) − fu(x
(i))‖22 = arg min

u:uTu=1

m
∑

i=1

‖x(i) − uTx(i)u‖22

= arg min
u:uTu=1

m
∑

i=1

(x(i) − uTx(i)u)T (x(i) − uTx(i)u)

= arg min
u:uTu=1

m
∑

i=1

(x(i)Tx(i) − 2(uTx(i))2 + uTu(uTx(i))2)

= arg min
u:uTu=1

m
∑

i=1

(x(i)Tx(i) − 2(uTx(i))2 + (uTx(i))2)

= arg min
u:uTu=1

m
∑

i=1

−(uTx(i))2

= arg max
u:uTu=1

uT

(

m
∑

i=1

x(i)x(i)T

)

u

And the last line corresponds to the optimization problem that defines the first principal com-
ponent.

4. [12 points] Independent components analysis

For this question you will implement the Bell and Sejnowski ICA algorithm, as covered in
class. The files you’ll need for this problem are in /afs/ir/class/cs229/ps/ps4/q4. The
file mix.dat contains a matrix with 5 columns, with each column corresponding to one of
the mixed signals xi. The file bellsej.m contains starter code for your implementation.

Implement and run ICA, and report what was the W matrix you found. Please make your
code clean and very concise, and use symbol conventions as in class. To make sure your
code is correct, you should listen to the resulting unmixed sources. (Some overlap in the
sources may be present, but the different sources should be pretty clearly separated.)

Note: In our implementation, we annealed the learning rate α (slowly decreased it over
time) to speed up learning. We briefly describe in bellsej.m what we did, but you
should feel free to play with things to make it work best for you. In addition to using the
variable learning rate to speed up convergence, one thing that we also tried was choosing a
random permutation of the training data, and running stochastic gradient ascent visiting
the training data in that order (each of the specified learning rates was then used for one
full pass through the data); this is something that you could try, too.

Answer:

%------------------------------------------------------------

% ICA

2To see why, observe that

fu(x) = u ·
(

argmin
α

||x− αu||2
)

= u ·
(

argmin
α

(xT x− 2αxTu+ α2uTu)
)

= u ·

(

2xTu

2uTu

)

= uxTu

where the third equality follows from the fact that the minimum of a convex quadratic function ax2 + bx + c is
given by x = − b

2a
, and the last equality follows from the fact that u is a unit-length vector.
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load mix.dat % load mixed sources

Fs = 11025; %sampling frequency being used

% listen to the mixed sources

normalizedMix = 0.99 * mix ./ (ones(size(mix,1),1)*max(abs(mix)));

% handle writing in both matlab and octave

v = version;

if (v(1) <= ’3’) % assume this is octave

wavwrite(’mix1.wav’, normalizedMix(:, 1), Fs, 16);

wavwrite(’mix2.wav’, normalizedMix(:, 2), Fs, 16);

wavwrite(’mix3.wav’, normalizedMix(:, 3), Fs, 16);

wavwrite(’mix4.wav’, normalizedMix(:, 4), Fs, 16);

wavwrite(’mix5.wav’, normalizedMix(:, 5), Fs, 16);

else

wavwrite(normalizedMix(:, 1), Fs, 16, ’mix1.wav’);

wavwrite(normalizedMix(:, 2), Fs, 16, ’mix2.wav’);

wavwrite(normalizedMix(:, 3), Fs, 16, ’mix3.wav’);

wavwrite(normalizedMix(:, 4), Fs, 16, ’mix4.wav’);

wavwrite(normalizedMix(:, 5), Fs, 16, ’mix5.wav’);

end

W=eye(5); % initialize unmixing matrix

% this is the annealing schedule I used for the learning rate.

% (We used stochastic gradient descent, where each value in the

% array was used as the learning rate for one pass through the data.)

% Note: If this doesn’t work for you, feel free to fiddle with learning

% rates, etc. to make it work.

anneal = [0.1 0.1 0.1 0.05 0.05 0.05 0.02 0.02 0.01 0.01 ...

0.005 0.005 0.002 0.002 0.001 0.001];

for iter=1:length(anneal)

%%%% here comes your code part

m = size(mix, 1);

order = randperm(m);

for i = 1:m

x = mix(order(i), :)’;

g = 1 ./ (1 + exp(-W * x));

W = W + anneal(iter) * ((1 - 2 * g) * x’ + inv(W’));

end

end;

%%%% After finding W, use it to unmix the sources. Place the unmixed sources

%%%% in the matrix S (one source per column). (Your code.)
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S = mix * W’;

S=0.99 * S./(ones(size(mix,1),1)*max(abs(S))); % rescale each column to have maximum absolute

% now have a listen --- You should have the following five samples:

% * Godfather

% * Southpark

% * Beethoven 5th

% * Austin Powers

% * Matrix (the movie, not the linear algebra construct :-)

v = version;

if (v(1) <= ’3’) % assume this is octave

wavwrite(’unmix1.wav’, S(:, 1), Fs, 16);

wavwrite(’unmix2.wav’, S(:, 2), Fs, 16);

wavwrite(’unmix3.wav’, S(:, 3), Fs, 16);

wavwrite(’unmix4.wav’, S(:, 4), Fs, 16);

wavwrite(’unmix5.wav’, S(:, 5), Fs, 16);

else

wavwrite(S(:, 1), Fs, 16, ’unmix1.wav’);

wavwrite(S(:, 2), Fs, 16, ’unmix2.wav’);

wavwrite(S(:, 3), Fs, 16, ’unmix3.wav’);

wavwrite(S(:, 4), Fs, 16, ’unmix4.wav’);

wavwrite(S(:, 5), Fs, 16, ’unmix5.wav’);

end

5. [16 points] Markov decision processes

Consider an MDP with finite state and action spaces, and discount factor γ < 1. Let B be
the Bellman update operator with V a vector of values for each state. I.e., if V ′ = B(V ),
then

V ′(s) = R(s) + γmax
a∈A

∑

s′∈S

Psa(s
′)V (s′).

(a) [12 points] Prove that, for any two finite-valued vectors V1, V2, it holds true that

||B(V1)−B(V2)||∞ ≤ γ||V1 − V2||∞.

where
||V ||∞ = max

s∈S
|V (s)|.

(This shows that the Bellman update operator is a “γ-contraction in the max-norm.”)

Answer: First we observe that |maxa f(a) −maxa g(a)| ≤ maxa |f(a) − g(a)|. To
see why, define af = argmaxa f(a) and ag = argmaxa g(a), respectively. Then,

f(af )− g(ag) ≤ f(af )− g(af ) ≤ |f(af )− g(af )| ≤ max
a

|f(a)− g(a)|

g(ag)− f(af ) ≤ g(ag)− f(ag) ≤ |g(ag)− f(ag)| ≤ max
a

|g(a)− f(a)|,

where the first inequality in each line follows from the fact that ag and af are the max-
imizers of g and f , respectively. Combining the results from the two lines, it follows
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that |f(af ) − g(ag)| ≤ maxa |f(a) − g(a)|, which is the equivalent to |maxa f(a) −
maxa g(a)| ≤ maxa |f(a)− g(a)|.

Then, we have

‖B(V1)−B(V2)‖∞ = max
s∈S

∣

∣

∣

∣

∣

γmax
a∈A

∑

s′∈S

Psa(s
′)V1(s

′)− γmax
a∈A

∑

s′′∈S

Psa(s
′′)V2(s

′′)

∣

∣

∣

∣

∣

≤ γmax
s∈S

max
a∈A

∣

∣

∣

∣

∣

∑

s′∈S

Psa(s
′)(V1(s

′)− V2(s
′))

∣

∣

∣

∣

∣

≤ γmax
s∈S

max
a∈A

∑

s′∈S

|Psa(s
′)(V1(s

′)− V2(s
′))|

= γmax
s∈S

max
a∈A

∑

s′∈S

Psa(s
′) |(V1(s

′)− V2(s
′))|

≤ γmax
s∈S

max
a∈A

max
s′∈S

|(V1(s
′)− V2(s

′))|

= γmax
s′∈S

|V1(s
′)− V2(s

′)|

= γ‖V1 − V2‖∞.

The first equality uses the definition of the Bellman operator (after noticing that R(s)
cancels). The second inequality comes from the fact that |maxa f(a) − maxa g(a)| ≤
maxa |f(a)−g(a)| (and some simplification). The third inequality comes from the triangle
inequality. The fourth equality comes from the fact that probabilities are nonnegative. The
fifth equality follows from the fact that an expectation of a random variable is necessarily
less than its maximum value. The sixth equality involves removing maximizations which
play no role, and the final equality uses the definition of the max-norm.

(b) [4 points] We say that V is a fixed point of B if B(V ) = V . Using the fact that
the Bellman update operator is a γ-contraction in the max-norm, prove that B has at
most one fixed point—i.e., that there is at most one solution to the Bellman equations.
You may assume that B has at least one fixed point.

Answer: Suppose that V1 and V2 are 2 fixed points of B. We proved that ‖B(V1)−
B(V2)‖∞ ≤ γ‖V1 − V2‖∞, but B(V1) = V1 and B(V2) = V2 so

‖V1 − V2‖∞ ≤ γ‖V1 − V2‖∞ =⇒ (1− γ)‖V1 − V2‖∞ ≤ 0.

Since 0 ≤ γ < 1, then the coefficient 1 − γ is positive. Dividing through by 1 − γ, and
observing that the max-norm is always nonnegative, it follows that ‖V1 − V2‖∞ = 0, i.e.
V1 = V2.

6. [25 points] Reinforcement Learning: The inverted pendulum

In this problem, you will apply reinforcement learning to automatically design a policy for
a difficult control task, without ever using any explicit knowledge of the dynamics of the
underlying system.

The problem we will consider is the inverted pendulum or the pole-balancing problem.3

Consider the figure shown. A thin pole is connected via a free hinge to a cart, which can
move laterally on a smooth table surface. The controller is said to have failed if either the

3The dynamics are adapted from http://www-anw.cs.umass.edu/rlr/domains.html
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angle of the pole deviates by more than a certain amount from the vertical position (i.e.,
if the pole falls over), or if the cart’s position goes out of bounds (i.e., if it falls off the
end of the table). Our objective is to develop a controller to balance the pole with these
constraints, by appropriately having the cart accelerate left and right.

We have written a simple Matlab simulator for this problem. The simulation proceeds
in discrete time cycles (steps). The state of the cart and pole at any time is completely
characterized by 4 parameters: the cart position x, the cart velocity ẋ, the angle of the
pole θ measured as its deviation from the vertical position, and the angular velocity of the
pole θ̇. Since it’d be simpler to consider reinforcement learning in a discrete state space, we
have approximated the state space by a discretization that maps a state vector (x, ẋ, θ, θ̇)
into a number from 1 to NUM STATES. Your learning algorithm will need to deal only with
this discretized representation of the states.

At every time step, the controller must choose one of two actions - push (accelerate) the cart
right, or push the cart left. (To keep the problem simple, there is no do-nothing action.)
These are represented as actions 1 and 2 respectively in the code. When the action choice
is made, the simulator updates the state parameters according to the underlying dynamics,
and provides a new discretized state.

We will assume that the reward R(s) is a function of the current state only. When the
pole angle goes beyond a certain limit or when the cart goes too far out, a negative reward
is given, and the system is reinitialized randomly. At all other times, the reward is zero.
Your program must learn to balance the pole using only the state transitions and rewards
observed.

The files for this problem are in /afs/ir/class/cs229/ps/ps4/q6. Most of the the code
has already been written for you, and you need to make changes only to control.m in the
places specified. This file can be run in Matlab to show a display and to plot a learning
curve at the end. Read the comments at the top of the file for more details on the working
of the simulation.4

(a) To solve the inverted pendulum problem, you will estimate a model (i.e., transition
probabilities and rewards) for the underlying MDP, solve Bellman’s equations for this
estimated MDP to obtain a value function, and act greedily with respect to this value
function.

4Note that the routine for drawing the cart does not work in Octave.
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Briefly, you will maintain a current model of the MDP and a current estimate of the
value function. Initially, each state has estimated reward zero, and the estimated
transition probabilities are uniform (equally likely to end up in any other state).

During the simulation, you must choose actions at each time step according to some
current policy. As the program goes along taking actions, it will gather observations on
transitions and rewards, which it can use to get a better estimate of the MDP model.
Since it is inefficient to update the whole estimated MDP after every observation, we
will store the state transitions and reward observations each time, and update the
model and value function/policy only periodically. Thus, you must maintain counts
of the total number of times the transition from state si to state sj using action a

has been observed (similarly for the rewards). Note that the rewards at any state
are deterministic, but the state transitions are not because of the discretization of
the state space (several different but close configurations may map onto the same
discretized state).

Each time a failure occurs (such as if the pole falls over), you should re-estimate the
transition probabilities and rewards as the average of the observed values (if any).
Your program must then use value iteration to solve Bellman’s equations on the
estimated MDP, to get the value function and new optimal policy for the new model.
For value iteration, use a convergence criterion that checks if the maximum absolute
change in the value function on an iteration exceeds some specified tolerance.

Finally, assume that the whole learning procedure has converged once several consecu-
tive attempts (defined by the parameter NO LEARNING THRESHOLD) to solve Bellman’s
equation all converge in the first iteration. Intuitively, this indicates that the esti-
mated model has stopped changing significantly.

The code outline for this problem is already in control.m, and you need to write
code fragments only at the places specified in the file. There are several details
(convergence criteria etc.) that are also explained inside the code. Use a discount
factor of γ = 0.995.

Implement the reinforcement learning algorithm as specified, and run it. How many
trials (how many times did the pole fall over or the cart fall off) did it take before the
algorithm converged?

Answer: The number of trials needed varies a good deal, but in the example run
shown in the reference solution answer to part (b), 160 trials were needed.

%%%%%%% CS 229 Machine Learning %%%%%%%%%%%

%%%%%%% Programming Assignment 4 %%%%%%%%%%

%%%

%%% Parts of the code (cart and pole dynamics, and the state

%%% discretization) are adapted from code available at the RL repository

%%% http://www-anw.cs.umass.edu/rlr/domains.html

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This file controls the pole-balancing simulation. You need to write

% code in places marked "CODE HERE" only.
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% Briefly, the main simulation loop in this file calls cart_pole.m for

% simulating the pole dynamics, get_state.m for discretizing the

% otherwise continuous state space in discrete states, and show_cart.m

% for display.

% Some useful parameters are listed below.

% NUM_STATES: Number of states in the discretized state space

% You must assume that states are numbered 1 through NUM_STATES. The

% state numbered NUM_STATES (the last one) is a special state that marks

% the state when the pole has been judged to have fallen (or when the

% cart is out of bounds). However, you should NOT treat this state any

% differently in your code. Any distinctions you need to make between

% states should come automatically from your learning algorithm.

% After each simulation cycle, you are supposed to update the transition

% counts and rewards observed. However, you should not change either

% your value function or the transition probability matrix at each

% cycle.

% Whenever the pole falls, a section of your code below will be

% executed. At this point, you must use the transition counts and reward

% observations that you have gathered to generate a new model for the MDP

% (i.e., transition probabilities and state rewards). After that, you

% must use value iteration to get the optimal value function for this MDP

% model.

% TOLERANCE: Controls the convergence criteria for each value iteration

% run

% In the value iteration, you can assume convergence when the maximum

% absolute change in the value function at any state in an iteration

% becomes lower than TOLERANCE.

% You need to write code that chooses the best action according

% to your current value function, and the current model of the MDP. The

% action must be either 1 or 2 (corresponding to possible directions of

% pushing the cart).

% Finally, we assume that the simulation has converged when

% ’NO_LEARNING_THRESHOLD’ consecutive value function computations all

% converged within one value function iteration. Intuitively, it seems

% like there will be little learning after this, so we end the simulation

% here, and say the overall algorithm has converged.

% Learning curves can be generated by calling plot_learning_curve.m (it

% assumes that the learning was just executed, and the array

% time_steps_to_failure that records the time for which the pole was

% balanced before each failure are in memory). num_failures is a variable



CS229 Problem Set #4 Solutions 14

% that stores the number of failures (pole drops / cart out of bounds)

% till now.

% Other parameters in the code are described below:

% GAMMA: Discount factor to be used

% The following parameters control the simulation display; you dont

% really need to know about them:

% pause_time: Controls the pause between successive frames of the

% display. Higher values make your simulation slower.

% min_trial_length_to_start_display: Allows you to start the display only

% after the pole has been successfully balanced for at least this many

% trials. Setting this to zero starts the display immediately. Choosing a

% reasonably high value (around 100) can allow you to rush through the

% initial learning quickly, and start the display only after the

% performance is reasonable.

%%%%%%%%%% Simulation parameters %%%%%%%%%%

pause_time = 0.001;

min_trial_length_to_start_display = 0;

display_started = min_trial_length_to_start_display == 0;

NUM_STATES = 163;

GAMMA=0.995;

TOLERANCE=0.01;

NO_LEARNING_THRESHOLD = 20;

%%%%%%%%%% End parameter list %%%%%%%%%%

% Time cycle of the simulation

time=0;

% These variables perform bookkeeping (how many cycles was the pole

% balanced for before it fell). Useful for plotting learning curves.

time_steps_to_failure=[];

num_failures=0;

time_at_start_of_current_trial=0;

max_failures=500; % You should reach convergence well before this.

% Starting state is (0 0 0 0)

% x, x_dot, theta, theta_dot represents the actual continuous state vector

x = 0.0; x_dot = 0.0; theta = 0.0; theta_dot = 0.0;
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% state is the number given to this state - you only need to consider

% this representation of the state

state = get_state(x, x_dot, theta, theta_dot);

if display_started==1

show_cart(x, x_dot, theta, theta_dot, pause_time);

end

%%% CODE HERE: Perform all your initializations here %%%

% Assume no transitions or rewards have been observed

% Initialize the value function array to small random values (0 to 0.10,

% say)

% Initialize the transition probabilities uniformly (ie, probability of

% transitioning for state x to state y using action a is exactly

% 1/NUM_STATES). Initialize all state rewards to zero.

transition_counts = zeros(NUM_STATES, NUM_STATES, 2);

transition_probs = ones(NUM_STATES, NUM_STATES, 2) / NUM_STATES;

reward_counts = zeros(NUM_STATES, 2);

reward = zeros(NUM_STATES, 1);

value = rand(NUM_STATES, 1) * 0.1;

%%%% END YOUR CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% CODE HERE (while loop condition) %%%

% This is the criterion to end the simulation

% You should change it to terminate when the previous

% ’NO_LEARNING_THRESHOLD’ consecutive value function computations all

% converged within one value function iteration. Intuitively, it seems

% like there will be little learning after this, so end the simulation

% here, and say the overall algorithm has converged.

consecutive_no_learning_trials = 0;

while (consecutive_no_learning_trials < NO_LEARNING_THRESHOLD)

%%% CODE HERE: Write code to choose action (1 or 2) %%%

% This action choice algorithm is just for illustration. It may

% convince you that reinforcement learning is nice for control

% problems! Replace it with your code to choose an action that is

% optimal according to the current value function, and the current MDP

% model.
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score1 = transition_probs(state, :, 1) * value;

score2 = transition_probs(state, :, 2) * value;

if (score1 > score2)

action = 1;

elseif (score2 > score1)

action = 2;

else

if (rand < 0.5)

action = 1;

else

action = 2;

end

end

%%% END YOUR CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Get the next state by simulating the dynamics

[x, x_dot, theta, theta_dot] = cart_pole(action, x, x_dot, theta, theta_dot);

% Increment simulation time

time = time + 1;

% Get the state number corresponding to new state vector

new_state = get_state(x, x_dot, theta, theta_dot);

if display_started==1

show_cart(x, x_dot, theta, theta_dot, pause_time);

end

% Reward function to use - do not change this!

if (new_state==NUM_STATES)

R=-1;

else

%R=-abs(theta)/2.0;

R=0;

end

%%% CODE HERE: Perform updates %%%%%%%%%

% A transition from ’state’ to ’new_state’ has just been made using

% ’action’. The reward observed in ’new_state’ (note) is ’R’.

% Write code to update your statistics about the MDP - i.e., the

% information you are storing on the transitions and on the rewards

% observed. Do not change the actual MDP parameters, except when the

% pole falls (the next if block)!

transition_counts(state, new_state, action) = ...
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transition_counts(state, new_state, action) + 1;

reward_counts(new_state, 1) = reward_counts(new_state, 1) + R;

reward_counts(new_state, 2) = reward_counts(new_state, 2) + 1;

% Recompute MDP model whenever pole falls

% Compute the value function V for the new model

if (new_state==NUM_STATES)

% Update MDP model using the current accumulated statistics about the

% MDP - transitions and rewards.

% Make sure you account for the case when total_count is 0, i.e., a

% state-action pair has never been tried before, or the state has

% never been visited before. In that case, you must not change that

% component (and thus keep it at the initialized uniform distribution).

for a = 1:2

for s = 1:NUM_STATES

den = sum(transition_counts(s, :, a));

if (den > 0)

transition_probs(s, :, a) = transition_counts(s, :, a) / den;

end

end

end

for s = 1:NUM_STATES

if (reward_counts(s, 2) > 0)

reward(s) = reward_counts(s, 1) / reward_counts(s, 2);

end

end

% Perform value iteration using the new estimated model for the MDP

% The convergence criterion should be based on TOLERANCE as described

% at the top of the file.

% If it converges within one iteration, you may want to update your

% variable that checks when the whole simulation must end

iterations = 0;

new_value = zeros(NUM_STATES, 1);

while true

iterations = iterations + 1;

for s = 1:NUM_STATES

value1 = transition_probs(s, :, 1) * value;

value2 = transition_probs(s, :, 2) * value;

new_value(s) = max(value1, value2);

end

new_value = reward + GAMMA * new_value;

diff = max(abs(value - new_value));

value = new_value;

if (diff < TOLERANCE)
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break;

end

end

if (iterations == 1)

consecutive_no_learning_trials = consecutive_no_learning_trials + 1;

else

consecutive_no_learning_trials = 0;

end

% pause(0.2); % You can use this to stop for a while!

end

%%% END YOUR CODE %%%%%%%%%%%%%%%%%%%

% Dont change this code: Controls the simulation, and handles the case

% when the pole fell and the state must be reinitialized

if (new_state == NUM_STATES)

num_failures = num_failures+1

time_steps_to_failure(num_failures) = time - time_at_start_of_current_trial;

time_at_start_of_current_trial = time;

time_steps_to_failure(num_failures)

if (time_steps_to_failure(num_failures) > ...

min_trial_length_to_start_display)

display_started=1;

end

% Reinitialize state

x = -1.1 + rand(1)*2.2

%x=0.0;

x_dot = 0.0; theta = 0.0; theta_dot = 0.0;

state = get_state(x, x_dot, theta, theta_dot);

else

state=new_state;

end

end

% Plot the learning curve (time balanced vs trial)

plot_learning_curve

(b) Plot a learning curve showing the number of time-steps for which the pole was
balanced on each trial. You just need to execute plot learning curve.m after
control.m to get this plot.
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1. [16 points] Least Squares

As described in class, in least squares regression we have a cost function:

J(θ) =
m∑

i=1

(hθ(x
(i))− y(i))2 = (Xθ − ~y)T (Xθ − ~y)

The goal of least squares regression is to find θ such that we minimize J(θ) given the
training data.

Let’s say that we had an original set of n features, so that the training inputs were
represented by the design matrix X ∈ R

m×(n+1). However, we now gain access to one
additional feature for every example. As a result, we now have an additional vector
of features ~v ∈ R

m×1 for our training set that we wish to include in our regression.
We can do this by creating a new design matrix: X̃ = [X ~v] ∈ R

m×(n+2).

Therefore the new parameter vector is θnew =

(
θ

p

)
where p ∈ R is the parameter

corresponding to the new feature vector ~v.

Note: For mathematical simplicity, throughout this problem you can assume that
XTX = I ∈ R

(n+1)×(n+1) and X̃T X̃ = I ∈ R
(n+2)×(n+2), ~vT~v = 1. This is called an

orthonormality assumption – specifically, the columns of X̃ are orthonormal. The
conclusions of the problem hold even if we do not make this assumption, but this will
make your derivations easier.

(a) [2 points] Let θ̂ = argminθ J(θ) be the minimizer of the original least squares
objective (using the original design matrix X). Using the orthornormality as-
sumption, show that J(θ̂) = (XXT~y − ~y)T (XXT~y − ~y). I.e., show that this is
the value of minθ J(θ) (the value of the objective at the minimum).
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(b) [5 points] Now let θ̂new be the minimizer for J̃(θnew) = (X̃θnew−~y)T (X̃θnew−~y).

Find the new minimized objective J̃(θ̂new) and write this expression in the form:

J̃(θ̂new) = J(θ̂) + f(X,~v, ~y) where J(θ̂) is as derived in part (a) and f is some
function of X,~v, and ~y.
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(c) [6 points] Prove that the optimal objective value does not increase upon adding

a feature to the design matrix. That is, show J̃(θ̂new) ≤ J(θ̂).

(d) [3 points] Does the above result show that if we keep increasing the number of
features, we can always get a model that generalizes better than a model with
fewer features? Explain why or why not.
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2. [16 points] Decision Boundaries for Generative Models

(a) [8 points] Consider the multinomial event model of Naive Bayes. Our goal in
this problem is to show that this is a linear classifier.

For a given text document x, let c1, ..., cV indicate the number of times each
word (out of V words) appears in the document. Thus, ci ∈ {0, 1, 2, . . .} counts
the occurrences of word i. Recall that the Naive Bayes model uses parameters
φy = p(y = 1), φi|y=1 = p(word i appears in a specific document position | y =
1) and φi|y=0 = p(word i appears in a specific document position | y = 0).

We say a classifier is linear if it assigns a label y = 1 using a decision rule of the
form

V∑

i=1

wici + b ≥ 0

I.e., the classifier predicts “y = 1” if
∑V

i=1 wici + b ≥ 0, and predicts y = 0
otherwise.

Show that Naive Bayes is a linear classifier, and clearly state the values of wi

and b in terms of the Naive Bayes parameters. (Don’t worry about whether the
decision rule uses “≥” or “>.”) Hint: consider using log-probabilities.
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[extra space for 2 (a)]
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(b) [8 points] In Problem Set 1, you showed that Gaussian Discriminant Analysis
(GDA) is a linear classifier. In this problem, we will show that a modified version
of GDA has a quadratic decision boundary.

Recall that GDA models p(x|y) using a multivariate normal distribution, where
(x|y = 0) ∼ N (µ0,Σ) and (x|y = 1) ∼ N (µ1,Σ), where we used the same Σ for
both Gaussians. For this question, we will instead use two covariance matrices
Σ0,Σ1 for the two labels. So, (x|y = 0) ∼ N (µ0,Σ0) and (x|y = 1) ∼ N (µ1,Σ1).

The model distributions can now be written as:

p(y) = φy(1− φ)1−y

p(x|y = 0) =
1

(2π)n/2|Σ0|1/2
exp

(
− 1

2
(x− µ0)

TΣ−1
0 (x− µ0)

)

p(x|y = 1) =
1

(2π)n/2|Σ1|1/2
exp

(
− 1

2
(x− µ1)

TΣ−1
1 (x− µ1)

)

Let’s follow a binary decision rule, where we predict y = 1 if p(y = 1|x) ≥ p(y =
0|x), and y = 0 otherwise. Show that if Σ0 6= Σ1, then the separating hyperplane
is quadratic in x.

That is, simplify the decision rule “p(y = 1|x) ≥ p(y = 0|x)” to the form
“xTAx+ BTx+ C ≥ 0” (supposing that x ∈ R

n+1), for some A ∈ R
(n+1)×(n+1),

B ∈ R
n+1, C ∈ R and A 6= 0. Please clearly state your values for A, B and C.
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[extra space for 2 (b)]
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3. [18 points] Generalized Linear Models
In this problem you will build a Generalized Linear Model (GLM) for a response
variable y, whose distribution (parameterized by φ) is modeled as:

p(y;φ) = (1− φ)y−1φ

This distribution is known as the geometric distribution, and is used to model network
connections and many other problems.

(a) i. [5 points] Show that the geometric distribution is an exponential family
distribution. You should explicitly specify b(y), η, T (y), α(η). Also specify
what φ is in terms of η.
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ii. [5 points] Suppose that we have an IID training set {(x(i), y(i)), i = 1, ...,m}
and we wish to model this using a GLM based on a geometric distribution.
Find the log-likelihood log

∏m
i=1 p(y

(i)|x(i); θ) defined with respect to the
entire training set.
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(b) [6 points] Derive the Hessian H and the gradient vector of the log likelihood,
and state what one step of Newton’s method for maximizing the log likelihood
would be.
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(c) [2 points] Show that the Hessian is negative semi-definite. This shows the op-
timization objective is concave, and hence Newton’s method is maximizing log-
likelihood.
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4. [16 points] Support Vector Regression

In class, we showed how the SVM can be used for classification. In this problem, we
will develop a modified algorithm, called the Support Vector Regression algorithm,
which can instead be used for regression, with continuous valued labels y ∈ R.

Suppose we are given a training set {(x(1), y(1)), . . . , (x(m), y(m))}, where x(i) ∈ R
(n+1)

and y(i) ∈ R. We would like to find a hypothesis of the form hw,b(x) = wTx+ b with
a small value of w. Our (convex) optimization problem is:

minw,b
1
2
‖w‖2

s.t. y(i) − wTx(i) − b ≤ ǫ i = 1, . . . ,m (1)
wTx(i) + b− y(i) ≤ ǫ i = 1, . . . ,m (2)

where ǫ > 0 is a given, fixed value. Notice how the original functional margin
constraint has been modified to now represent the distance between the continuous
y and our hypothesis’ output.

(a) [3 points] Write down the Lagrangian for the optimization problem above. We
suggest you use two sets of Lagrange multipliers αi and α∗

i , corresponding to the
two inequality constraints (labeled (1) and (2) above), so that the Lagrangian
would be written L(w, b, α, α∗).
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(b) [9 points] Derive the dual optimization problem. You will have to take derivatives
of the Lagrangian with respect to w and b.
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[more space for problem 4 (b)]

(c) [4 points] Show that this algorithm can be kernelized. For this, you have to show
that (i) the dual optimization objective can be written in terms of inner-products
of training examples; and (ii) at test time, given a new x the hypothesis hw,b(x)
can also be computed in terms of inner products.
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5. [20 points] Learning Theory

Suppose you are given a hypothesis h0 ∈ H, and your goal is to determine whether
h0 has generalization error within η > 0 of the best hypothesis, h∗ = argminh∈H ε(h).
More specifically, we say that a hypothesis h is η-optimal if ε(h) ≤ ε(h∗) + η. Here,
we wish to answer the following question:

Given a hypothesis h0, is h0 η-optimal?

Let δ > 0 be some fixed constant, and consider a finite hypothesis class H of size
|H| = k. For each h ∈ H, let ε̂(h) denote the training error of h with respect to some
training set of m IID examples, and let ĥ = argminh∈H ε̂(h) denote the hypothesis
that minimizes training error.

Now, consider the following algorithm:

1. Set

γ :=

√
1

2m
log

2k

δ
.

2. If ε̂(h0) > ε̂(ĥ) + η + 2γ, then return NO.

3. If ε̂(h0) < ε̂(ĥ) + η − 2γ, then return YES.

4. Otherwise, return UNSURE.

Intuitively, the algorithm works by comparing the training error of h0 to the training
error of the hypothesis ĥ with the minimum training error, and returns NO or YES
only when ε̂(h0) is either significantly larger than or significantly smaller than ε̂(ĥ)+η.

(a) [6 points] First, show that if ε(h0) ≤ ε(h∗) + η (i.e., h0 is η-optimal), then the
probability that the algorithm returns NO is at most δ.
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[extra space for 5 (a) ]
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(b) [6 points] Second, show that if ε(h0) > ε(h∗) + η (i.e., h0 is not η-optimal), then
the probability that the algorithm returns YES is at most δ.
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(c) [8 points] Finally, suppose that h0 = h∗, and let η > 0 and δ > 0 be fixed. Show
that if m is sufficiently large, then the probability that the algorithm returns
YES is at least 1− δ.

Hint: observe that for fixed η and δ, as m → ∞, we have

γ =

√
1

2m
log

2k

δ
→ 0.

This means that there are values of m for which 2γ < η − 2γ.
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6. [24 points] Short answers

The following questions require a reasonably short answer (usually at most 2-3 sen-
tences or a figure, though some questions may require longer or shorter explanations).

To discourage random guessing, one point will be deducted for a wrong
answer on true/false or multiple choice questions! Also, no credit will be
given for answers without a correct explanation.

(a) [3 points] You have an implementation of Newton’s method and gradient de-
scent. Suppose that one iteration of Newton’s method takes twice as long as
one iteration of gradient descent. Then, this implies that gradient descent will
converge to the optimal objective faster. True/False?

(b) [3 points] A stochastic gradient descent algorithm for training logistic regression
with a fixed learning rate will always converge to exactly the optimal setting of
the parameters θ∗ = argmaxθ

∏m
i=1 p(y

(i)|x(i); θ), assuming a reasonable choice
of the learning rate. True/False?
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(c) [3 points] Given a valid kernel K(x, y) over Rm, is Knorm(x, y) =
K(x,y)√

K(x,x)K(y,y)
a

valid kernel?

(d) [3 points] Consider a 2 class classification problem with a dataset of inputs
{x(1) = (−1,−1), x(2) = (−1,+1), x(3) = (+1,−1), x(4) = (+1,+1)}. Can a lin-
ear SVM (with no kernel trick) shatter this set of 4 points?
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(e) [3 points] For linear hypotheses (i.e. of the form h(x) = wTx + b), the vec-
tor of learned weights w is always perpendicular to the separating hyperplane.
True/False? Provide a counterexample if False, or a brief explanation if True.

(f) [3 points] Let H be a set of classifiers whose VC-dimension is 5. Suppose we
have four training examples and labels, {(x(1), y(1)), ..., (x(4), y(4))}, and we select
a classifier h from H by minimizing the classification error on the training set.
In the absence of any other information about the set of classifiers H, can we
say that

i. x(5) will certainly be classified correctly?

ii. x(5) will certainly be classified incorrectly?

iii. we cannot tell?

Briefly justify your answer.
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(g) [6 points] Suppose you would like to use a linear regression model in order
to predict the price of houses. In your model, you use the features x0 = 1,
x1 = size in square meters, x2 = height of roof in meters. Now, suppose a friend
repeats the same analysis using exactly the same training set, only he represents
the data instead using features x′

0 = 1, x′
1 = x1, and x′

2 = height in cm (so
x′
2 = 100x2).

i. [3 points] Suppose both of you run linear regression, solving for the pa-
rameters via the Normal equations. (Assume there are no degeneracies, so
this gives a unique solution to the parameters.) You get parameters θ0, θ1,
θ2; your friend gets θ′0, θ

′
1, θ

′
2. Then θ′0 = θ0, θ

′
1 = θ1, θ

′
2 =

1
100

θ2. True/False?

ii. [3 points] Suppose both of you run linear regression, initializing the parame-
ters to 0, and compare your results after running just one iteration of batch
gradient descent. You get parameters θ0, θ1, θ2; your friend gets θ′0, θ

′
1, θ

′
2.

Then θ′0 = θ0, θ
′
1 = θ1, θ

′
2 =

1
100

θ2. True/False?
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1. [16 points] Least Squares

As described in class, in least squares regression we have a cost function:

J(θ) =
m∑

i=1

(hθ(x
(i))− y(i))2 = (Xθ − ~y)T (Xθ − ~y)

The goal of least squares regression is to find θ such that we minimize J(θ) given the
training data.

Let’s say that we had an original set of n features, so that the training inputs were
represented by the design matrix X ∈ R

m×(n+1). However, we now gain access to one
additional feature for every example. As a result, we now have an additional vector
of features ~v ∈ R

m×1 for our training set that we wish to include in our regression.
We can do this by creating a new design matrix: X̃ = [X ~v] ∈ R

m×(n+2).

Therefore the new parameter vector is θnew =

(
θ

p

)
where p ∈ R is the parameter

corresponding to the new feature vector ~v.

Note: For mathematical simplicity, throughout this problem you can assume that
XTX = I ∈ R

(n+1)×(n+1) and X̃T X̃ = I ∈ R
(n+2)×(n+2), ~vT~v = 1. This is called an

orthonormality assumption – specifically, the columns of X̃ are orthonormal. The
conclusions of the problem hold even if we do not make this assumption, but this will
make your derivations easier.

(a) [2 points] Let θ̂ = argminθ J(θ) be the minimizer of the original least squares
objective (using the original design matrix X). Using the orthornormality as-
sumption, show that J(θ̂) = (XXT~y − ~y)T (XXT~y − ~y). I.e., show that this is
the value of minθ J(θ) (the value of the objective at the minimum).

Answer: We know from lecture that the least squares minimizer is θ̂ =
(XTX)−1XT~y but because of the orthonormality assumption, this simplifies to
θ̂ = XT~y. Substituting this expression into the normal equation for J(θ) gives
the final expression J(θ̂) = (XXT~y − ~y)T (XXT~y − ~y).
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(b) [5 points] Now let θ̂new be the minimizer for J̃(θnew) = (X̃θnew−~y)T (X̃θnew−~y).

Find the new minimized objective J̃(θ̂new) and write this expression in the form:

J̃(θ̂new) = J(θ̂) + f(X,~v, ~y) where J(θ̂) is as derived in part (a) and f is some
function of X,~v, and ~y.

Answer: Just like we had in part (a), the minimizer for the new objective is

θ̂new = X̃T~y. Now we solve for the new minimized objective:

J̃(θ̂new) = (X̃θ̂new − ~y)T (X̃θ̂new − ~y)

= (X̃X̃T~y − ~y)T (X̃X̃T~y − ~y)

= ((XXT + ~v~vT )~y − ~y)T ((XXT + ~v~vT )~y − ~y)

= ((XXT~y − ~y) + ~v~vT~y)T ((XXT~y − ~y) + ~v~vT~y)

= (XXT~y − ~y)T (XXT~y − ~y) + 2(XXT~y − ~y)T (~v~vT~y) + (~v~vT~y)T (~v~vT~y)

= J(θ̂) + 2(XXT~y − ~y)T (~v~vT~y) + (~v~vT~y)T (~v~vT~y)

(1)
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(c) [6 points] Prove that the optimal objective value does not increase upon adding

a feature to the design matrix. That is, show J̃(θ̂new) ≤ J(θ̂).

Answer: Using the final result of part (b), we can continue simplifying the
expression for J(θ̂new) as follows:

J̃(θ̂new) = J(θ̂) + 2(XXT~y − ~y)T (vvT~y) + (vvT~y)T (vvT~y)

= J(θ̂) + 2(XXT~y)T (vvT~y)− 2~yT (vvT~y) + (vvT~y)T (vvT~y)

= J(θ̂) + 2(~yTXXTvvT~y)− 2(~yTvvT~y) + (~yTvvTvvT~y)

= J(θ̂)− ~yTvvT~y

= J(θ̂)− (vT~y)2

≤ J(θ̂)

(2)

From the third to last equality to the second to last equality, we use the two facts
that XTv = 0 and vTv = 1.

The proof is complete.

(d) [3 points] Does the above result show that if we keep increasing the number of
features, we can always get a model that generalizes better than a model with
fewer features? Explain why or why not.

Answer: The result shows that we can either maintain or decrease the minimized
square error objective by adding more features. However, remember that the error
objective is computed only on the training samples and not the true data distribution.
As a result, reducing training error does not guarantee a reduction in error on the
true distribution. In fact, after a certain point adding features will likely lead to
overfitting, increasing our generalization error. Therefore, adding features does not
actually always result in a model that generalizes better.
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2. [16 points] Decision Boundaries for Generative Models

(a) [8 points] Consider the multinomial event model of Naive Bayes. Our goal in
this problem is to show that this is a linear classifier.

For a given text document x, let c1, ..., cV indicate the number of times each
word (out of V words) appears in the document. Thus, ci ∈ {0, 1, 2, . . .} counts
the occurrences of word i. Recall that the Naive Bayes model uses parameters
φy = p(y = 1), φi|y=1 = p(word i appears in a specific document position | y =
1) and φi|y=0 = p(word i appears in a specific document position | y = 0).

We say a classifier is linear if it assigns a label y = 1 using a decision rule of the
form

V∑

i=1

wici + b ≥ 0

I.e., the classifier predicts “y = 1” if
∑V

i=1 wici + b ≥ 0, and predicts y = 0
otherwise.

Show that Naive Bayes is a linear classifier, and clearly state the values of wi

and b in terms of the Naive Bayes parameters. (Don’t worry about whether the
decision rule uses “≥” or “>.”) Hint: consider using log-probabilities.

Answer: The decision boundary for Naive Bayes can be stated as

P (y = 1|c; Φ) > P (y = 0|c; Φ)
log p(y = 1|c; Φ) > log p(y = 0|c; Φ)

log p(y = 1|c; Φ)− log p(y = 0|c; Φ) > 0

log
p(y = 1|c; Φ)
p(y = 0|c; Φ) > 0

log
p(y = 1)

∏V
i=1 p(Ei|y = 1)ci

p(y = 0)
∏V

i=1 p(Ei|y = 0)ci
> 0

log
p(y = 1)

p(y = 0)
+

V∑

i=1

log
p(Ei|y = 1)ci

p(Ei|y = 0)ci
> 0

log
φy

1− φy

+
V∑

i=1

ci log
φi|y=1

φi|y=0

> 0

Thus, Naive Bayes is a linear classifier with

wi = log
φi|y=1

φi|y=0

b = log
φy

1− φy
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[extra space for 2 (a)]
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(b) [8 points] In Problem Set 1, you showed that Gaussian Discriminant Analysis
(GDA) is a linear classifier. In this problem, we will show that a modified version
of GDA has a quadratic decision boundary.

Recall that GDA models p(x|y) using a multivariate normal distribution, where
(x|y = 0) ∼ N (µ0,Σ) and (x|y = 1) ∼ N (µ1,Σ), where we used the same Σ for
both Gaussians. For this question, we will instead use two covariance matrices
Σ0,Σ1 for the two labels. So, (x|y = 0) ∼ N (µ0,Σ0) and (x|y = 1) ∼ N (µ1,Σ1).

The model distributions can now be written as:

p(y) = φy(1− φ)1−y

p(x|y = 0) =
1

(2π)n/2|Σ0|1/2
exp

(
− 1

2
(x− µ0)

TΣ−1
0 (x− µ0)

)

p(x|y = 1) =
1

(2π)n/2|Σ1|1/2
exp

(
− 1

2
(x− µ1)

TΣ−1
1 (x− µ1)

)

Let’s follow a binary decision rule, where we predict y = 1 if p(y = 1|x) ≥ p(y =
0|x), and y = 0 otherwise. Show that if Σ0 6= Σ1, then the separating hyperplane
is quadratic in x.

That is, simplify the decision rule “p(y = 1|x) ≥ p(y = 0|x)” to the form
“xTAx+ BTx+ C ≥ 0” (supposing that x ∈ R

n+1), for some A ∈ R
(n+1)×(n+1),

B ∈ R
n+1, C ∈ R and A 6= 0. Please clearly state your values for A, B and C.
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[extra space for 2 (b)]

Answer: Examining the log-probabilities yields

log p(y = 1|x) ≥ log p(y = 0|x)

0 ≤ log
(p(y = 1|x)
p(y = 0|x)

)

0 ≤ log
(p(y = 1)p(x|y = 1)

p(y = 0)p(x|y = 0)

)

0 ≤ log
( φ

1− φ

)
− log

( |Σ1|1/2
|Σ0|1/2

)

− 1

2

(
(x− µ1)

TΣ−1
1 (x− µ1)− (x− µ0)

TΣ−1
0 (x− µ0)

)

0 ≤− 1

2

(
xT (Σ−1

1 − Σ−1
0 )x− 2(µT

1Σ
−1
1 − µT

0Σ
−1
0 )x

+ µT
1Σ

−1
1 µ1 − µT

0Σ
−1
0 µ0

)
+ log

( φ

1− φ

)
− log

( |Σ1|1/2
|Σ0|1/2

)

0 ≤xT
(1
2
(Σ−1

0 − Σ−1
1 )

)
x+

(
µT
1Σ

−1
1 − µT

0Σ
−1
0

)
x

+ log
( φ

1− φ

)
+ log

( |Σ0|1/2
|Σ1|1/2

)
+

1

2

(
µT
0Σ

−1
0 µ0 − µT

1Σ
−1
1 µ1

)

From the above, we see that A = 1
2
(Σ−1

0 − Σ−1
1 ), B = µT

1Σ
−1
1 − µT

0Σ
−1
0 , and

C = log( φ
1−φ

) + log( |Σ0|1/2

|Σ1|1/2
) + 1

2
(µT

0Σ
−1
0 µ0 − µT

1Σ
−1
1 µ1). Furthermore, A 6= 0

since Σ0 6= Σ1 implies that Σ−1
0 − Σ−1

1 6= 0. Therefore, the decision boundary
is quadratic.
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3. [18 points] Generalized Linear Models
In this problem you will build a Generalized Linear Model (GLM) for a response
variable y, whose distribution (parameterized by φ) is modeled as:

p(y;φ) = (1− φ)y−1φ

This distribution is known as the geometric distribution, and is used to model network
connections and many other problems.

(a) i. [5 points] Show that the geometric distribution is an exponential family
distribution. You should explicitly specify b(y), η, T (y), α(η). Also specify
what φ is in terms of η.
Answer:

p(y;φ) = (1− φ)y−1φ

= exp
(
(y − 1) log (1− φ) + log φ

)

= exp
(
(log (1− φ))y + log φ− log (1− φ)

)

= exp
(
(log (1− φ))y − log

1− φ

φ

)

b(y) = 1,

η = log (1− φ),

T (y) = y,

α(η) = log
1− φ

φ
,

φ = 1− eη
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ii. [5 points] Suppose that we have an IID training set {(x(i), y(i)), i = 1, ...,m}
and we wish to model this using a GLM based on a geometric distribution.
Find the log-likelihood log

∏m
i=1 p(y

(i)|x(i); θ) defined with respect to the
entire training set.
Answer: We calculate the log-likelihood for 1 sample as well as for the
entire training set:

log p(y(i)|x(i); θ) = log
(
(1− φ)y

(i)−1φ
)

= (y(i) − 1) log (1− φ) + log φ

= (log (1− φ))y(i) − log
1− φ

φ

= y(i) log eη − log
eη

1− eη

= ηy(i) − η + log (1− eη)

= θTx(i)y(i) − θTx(i) + log (1− exp (θTx(i)))

= θTx(i)(y(i) − 1) + log (1− exp (θTx(i)))

l(θ) = log p(y|x; θ)

= log
( m∏

i=1

p(y(i)|x(i); θ)
)

=
m∑

i=1

log
(
p(y(i)|x(i); θ)

)

=
m∑

i=1

(
θTx(i)(y(i) − 1) + log (1− exp (θTx(i)))

)
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(b) [6 points] Derive the Hessian H and the gradient vector of the log likelihood,
and state what one step of Newton’s method for maximizing the log likelihood
would be.

Answer: To apply Newton’s method, we need to find the gradient and Hessian
of the log-likelihood:

∇θl(θ) = ∇θ

m∑

i=1

(
θTx(i)y(i) − θTx(i) + log (1− exp (θTx(i)))

)

=
m∑

i=1

(
x(i)(y(i) − 1)− x(i) exp (θTx(i))

(1− exp (θTx(i)))

)

=
m∑

i=1

(
y(i) − 1

(1− exp (θTx(i)))

)
x(i)

H = ∇θ

(
∇θ(l(θ))

T
)

= −∇θ

m∑

i=1

1

(1− exp (θTx(i)))
x(i)T

= −
m∑

i=1

exp (θTx(i))

(1− exp (θTx(i)))2
x(i)x(i)T

The Newton’s method update rule is then: θ := θ −H−1∇θl(θ)
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(c) [2 points] Show that the Hessian is negative semi-definite. This shows the op-
timization objective is concave, and hence Newton’s method is maximizing log-
likelihood.

Answer:

zTHz = −
m∑

i=1

exp (θTx(i))

(1− exp (θTx(i)))2
zTx(i)x(i)T z

= −
m∑

i=1

exp (θTx(i))

(1− exp (θTx(i)))2
‖zTx(i)‖2 ≤ 0

Therefore, H is negative semidefinite, which means l(θ) is concave. So we are
maximizing it.



CS229 Midterm 13

4. [16 points] Support Vector Regression

In class, we showed how the SVM can be used for classification. In this problem, we
will develop a modified algorithm, called the Support Vector Regression algorithm,
which can instead be used for regression, with continuous valued labels y ∈ R.

Suppose we are given a training set {(x(1), y(1)), . . . , (x(m), y(m))}, where x(i) ∈ R
(n+1)

and y(i) ∈ R. We would like to find a hypothesis of the form hw,b(x) = wTx+ b with
a small value of w. Our (convex) optimization problem is:

minw,b
1
2
‖w‖2

s.t. y(i) − wTx(i) − b ≤ ǫ i = 1, . . . ,m (1)
wTx(i) + b− y(i) ≤ ǫ i = 1, . . . ,m (2)

where ǫ > 0 is a given, fixed value. Notice how the original functional margin
constraint has been modified to now represent the distance between the continuous
y and our hypothesis’ output.

(a) [3 points] Write down the Lagrangian for the optimization problem above. We
suggest you use two sets of Lagrange multipliers αi and α∗

i , corresponding to the
two inequality constraints (labeled (1) and (2) above), so that the Lagrangian
would be written L(w, b, α, α∗).
Answer:

minw,b
1
2
‖w‖2

s.t. y(i) − wTx(i) − b ≤ ǫ i = 1, . . . ,m (1)
wTx(i) + b− y(i) ≤ ǫ i = 1, . . . ,m (2)

Let αi, α
∗
i ≥ 0 (i = 1, . . . ,m) be the Lagrange multiplier for (1)-(4) respectively.

Then, the Lagrangian can be written as:

L(w, b, α, α∗)
= 1

2
‖w‖2

−
m∑

i=1

αi(ǫ− y(i) + wTx(i) + b)

−
m∑

i=1

α∗
i (ǫ+ y(i) − wTx(i) − b)
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(b) [9 points] Derive the dual optimization problem. You will have to take derivatives
of the Lagrangian with respect to w and b.

Answer:

First, the dual objective function can be written as:

θD(α, α
∗) = minw,b L(w, b, α, α

∗)

Now, taking the derivatives of Lagrangian with respect to all primal variables, we
have:

∂wL = w −
m∑

i=1

(αi − α∗
i )x

(i) = 0

∂bL =
m∑

i=1

(α∗
i − αi) = 0

Substituting the above four relations back into the Lagrangian, we have:

θD(α, α
∗) = 1

2
‖w‖2 − ǫ

m∑

i=1

(αi + α∗
i ) +

m∑

i=1

y(i)(αi − α∗
i )

+b

m∑

i=1

(α∗
i − αi) +

m∑

i=1

(α∗
i − αi)w

Tx(i)

θD(α, α
∗) = 1

2
‖w‖2 − ǫ

m∑

i=1

(αi + α∗
i ) +

m∑

i=1

y(i)(αi − α∗
i ) +

m∑

i=1

(α∗
i − αi)w

Tx(i)

= 1
2
‖

m∑

i=1

(αi − α∗
i )x

(i)‖2 −
m∑

i=1

(αi − α∗
i )
( m∑

j=1

(αj − α∗
j )x

(j)Tx(i)
)

−ǫ

m∑

i=1

(αi + α∗
i ) +

m∑

i=1

y(i)(αi − α∗
i )

= −1
2

m∑

i=1,j=1

(αi − α∗
i )(αj − α∗

j )x
(i)Tx(j) − ǫ

m∑

i=1

(αi + α∗
i ) +

m∑

i=1

y(i)(αi − α∗
i )

Now the dual problem can be formulated as:

maxαi,α∗

i
−1

2

m∑

i=1,j=1

(αi − α∗
i )(αj − α∗

j )x
(i)Tx(j) − ǫ

m∑

i=1

(αi + α∗
i ) +

m∑

i=1

y(i)(αi − α∗
i )

s.t.
m∑

i=1

(α∗
i − αi) = 0

αi, α
∗
i ≥ 0
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[more space for problem 4 (b)]

(c) [4 points] Show that this algorithm can be kernelized. For this, you have to show
that (i) the dual optimization objective can be written in terms of inner-products
of training examples; and (ii) at test time, given a new x the hypothesis hw,b(x)
can also be computed in terms of inner products.

Answer:

This algorithm can be kernelized because when making prediction at x, we have:

f(w, x) = wTx+ b =
m∑

i=1

(αi − α∗
i )x

(i)Tx+ b =
m∑

i=1

(αi − α∗
i )k(x

(i), x) + b

This shows that predicting function can be written in a kernel form.
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5. [20 points] Learning Theory

Suppose you are given a hypothesis h0 ∈ H, and your goal is to determine whether
h0 has generalization error within η > 0 of the best hypothesis, h∗ = argminh∈H ε(h).
More specifically, we say that a hypothesis h is η-optimal if ε(h) ≤ ε(h∗) + η. Here,
we wish to answer the following question:

Given a hypothesis h0, is h0 η-optimal?

Let δ > 0 be some fixed constant, and consider a finite hypothesis class H of size
|H| = k. For each h ∈ H, let ε̂(h) denote the training error of h with respect to some
training set of m IID examples, and let ĥ = argminh∈H ε̂(h) denote the hypothesis
that minimizes training error.

Now, consider the following algorithm:

1. Set

γ :=

√
1

2m
log

2k

δ
.

2. If ε̂(h0) > ε̂(ĥ) + η + 2γ, then return NO.

3. If ε̂(h0) < ε̂(ĥ) + η − 2γ, then return YES.

4. Otherwise, return UNSURE.

Intuitively, the algorithm works by comparing the training error of h0 to the training
error of the hypothesis ĥ with the minimum training error, and returns NO or YES
only when ε̂(h0) is either significantly larger than or significantly smaller than ε̂(ĥ)+η.

(a) [6 points] First, show that if ε(h0) ≤ ε(h∗) + η (i.e., h0 is η-optimal), then the
probability that the algorithm returns NO is at most δ.
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[extra space for 5 (a) ]

Answer:
Suppose that ε(h0) ≤ ε(h∗) + η. Using the Hoeffding inequality, we have that for

γ =

√
1

2m
log

2k

δ

then with probability at least 1− δ,

ε̂(h0) ≤ ε(h0) + γ

≤ ε(h∗) + η + γ

≤ ε(ĥ) + η + γ

≤ ε̂(ĥ) + η + 2γ.

Here, the first and last inequalities follow from the fact that under the stated uniform
convergence conditions, all hypotheses in H have empirical errors within γ of their
true generalization errors. The second inequality follows from our assumption, and
the third inequality follows from the fact that h∗ minimizes the true generalization
error. Therefore, the reverse condition, ε̂(h0) > ε̂(ĥ)+η+2γ, occurs with probability
at most δ.
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(b) [6 points] Second, show that if ε(h0) > ε(h∗) + η (i.e., h0 is not η-optimal), then
the probability that the algorithm returns YES is at most δ.

Answer:
Suppose that ε(h0) > ε(h∗) + η. Using the Hoeffding inequality, we have that for

γ =

√
1

2m
log

2k

δ

then with probability at least 1− δ,

ε̂(h0) ≥ ε(h0)− γ

> ε(h∗) + η − γ

≥ ε̂(h∗) + η − 2γ

≥ ε̂(ĥ) + η − 2γ.

Here, the first and third inequalities follow from the fact that under the stated
uniform convergence conditions, all hypotheses inH have empirical errors within γ of
their true generalization errors. The second inequality follows from our assumption,
and the last inequality follows from the fact that ĥ minimizes the empirical error.
Therefore, the reverse condition, ε̂(h0) < ε̂(ĥ) + η − 2γ occurs with probability at
most δ.
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(c) [8 points] Finally, suppose that h0 = h∗, and let η > 0 and δ > 0 be fixed. Show
that if m is sufficiently large, then the probability that the algorithm returns
YES is at least 1− δ.

Hint: observe that for fixed η and δ, as m → ∞, we have

γ =

√
1

2m
log

2k

δ
→ 0.

This means that there are values of m for which 2γ < η − 2γ.

Answer:
Suppose that h0 = h∗. Using the Hoeffding inequality, we have that for

γ =

√
1

2m
log

2k

δ

then with probability at least 1− δ,

ε̂(h0) ≤ ε(h0) + γ

= ε(h∗) + γ

≤ ε(ĥ) + γ

≤ ε̂(ĥ) + 2γ.

Here, the first and last inequalities follow from the fact that under the stated uniform
convergence conditions, all hypotheses in H have empirical errors within γ of their
true generalization errors. The equality in the second step follows from our assump-
tion, and the inequality in the third step follows from the fact that h∗ minimizes the
true generalization error. But, observe that for fixed η and δ, as m → ∞, we have

γ =

√
1

2m
log

2k

δ
→ 0.

This implies that for m sufficiently large, 4γ < η, or equivalently, 2γ < η − 2γ. It
follows that with probability at least 1− δ, if m is sufficiently large, then

ε̂(h0) ≤ ε̂(ĥ) + η − 2γ,

so the algorithm returns YES.
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6. [24 points] Short answers

The following questions require a reasonably short answer (usually at most 2-3 sen-
tences or a figure, though some questions may require longer or shorter explanations).

To discourage random guessing, one point will be deducted for a wrong
answer on true/false or multiple choice questions! Also, no credit will be
given for answers without a correct explanation.

(a) [3 points] You have an implementation of Newton’s method and gradient de-
scent. Suppose that one iteration of Newton’s method takes twice as long as
one iteration of gradient descent. Then, this implies that gradient descent will
converge to the optimal objective faster. True/False?

Answer: False. Newton’s method may take fewer steps.

(b) [3 points] A stochastic gradient descent algorithm for training logistic regression
with a fixed learning rate will always converge to exactly the optimal setting of
the parameters θ∗ = argmaxθ

∏m
i=1 p(y

(i)|x(i); θ), assuming a reasonable choice
of the learning rate. True/False?

Answer: False. A fixed learning rate means that we are always taking a finite step
towards improving the log-probability of any single training example in the update
equation. Unless the examples are somehow aligned, we will continue jumping from
side to side of the optimal solution, and will not be able to get arbitrarily close to
it. The learning rate has to approach to zero in the course of the updates for the
weights to converge robustly.
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(c) [3 points] Given a valid kernel K(x, y) over Rm, is Knorm(x, y) =
K(x,y)√

K(x,x)K(y,y)
a

valid kernel?

Answer: Yes. If we write K(x, y) = Φ(x)TΦ(y), then we have:

Knorm(x, y) =
Φ(x)TΦ(y)√

(Φ(x)TΦ(x))(Φ(y)TΦ(y))
= Ψ(x)TΨ(y)

with

Ψ(x) =
Φ(x)√

Φ(x)TΦ(x)

So Knorm (as normalized) is a valid kernel.

(d) [3 points] Consider a 2 class classification problem with a dataset of inputs
{x(1) = (−1,−1), x(2) = (−1,+1), x(3) = (+1,−1), x(4) = (+1,+1)}. Can a lin-
ear SVM (with no kernel trick) shatter this set of 4 points?

Answer: No we cannot, since the decision boundary is linear. Let the labels be
represented by y. See that we cannot classify in the case y(1) = +1, y(2) = y(3) =
−1, y(4) = +1.
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(e) [3 points] For linear hypotheses (i.e. of the form h(x) = wTx + b), the vec-
tor of learned weights w is always perpendicular to the separating hyperplane.
True/False? Provide a counterexample if False, or a brief explanation if True.

Answer: True. For a linear separating boundary, the hyperplane is defined by the
set {x|wTx = −b}. The inner product wTx geometrically represents the projection
of x onto w. The set of all points whose projection onto w is constant (−b) forms
a line that must be perpendicular to w. So h is perpendicular to w. This fact is
necessary in the formulation of geometric margins for the linear SVM.

(f) [3 points] Let H be a set of classifiers whose VC-dimension is 5. Suppose we
have four training examples and labels, {(x(1), y(1)), ..., (x(4), y(4))}, and we select
a classifier h from H by minimizing the classification error on the training set.
In the absence of any other information about the set of classifiers H, can we
say that

i. x(5) will certainly be classified correctly?

ii. x(5) will certainly be classified incorrectly?

iii. we cannot tell?

Briefly justify your answer.

Answer: We cannot tell. Since the VC-dimension is 5, F can shatter (some) five
points. These points could be x(1), . . . , x(5). Thus we can find f1 ∈ F consistent
with the four training examples and f1(x

(5)) = 1, as well as another classifier f2 ∈ F
also consistent with the training examples for which f2(x

(5)) = −1. The training
set therefore does not constrain the prediction at x(5).
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(g) [6 points] Suppose you would like to use a linear regression model in order
to predict the price of houses. In your model, you use the features x0 = 1,
x1 = size in square meters, x2 = height of roof in meters. Now, suppose a friend
repeats the same analysis using exactly the same training set, only he represents
the data instead using features x′

0 = 1, x′
1 = x1, and x′

2 = height in cm (so
x′
2 = 100x2).

i. [3 points] Suppose both of you run linear regression, solving for the pa-
rameters via the Normal equations. (Assume there are no degeneracies, so
this gives a unique solution to the parameters.) You get parameters θ0, θ1,
θ2; your friend gets θ′0, θ

′
1, θ

′
2. Then θ′0 = θ0, θ

′
1 = θ1, θ

′
2 =

1
100

θ2. True/False?

Answer: True. Observe that running a single step of Newton’s method, for
a linear regression problem, is equivalent to solving the Normal equations. The
result then follows from the invariance of Newton’s method to linear reparam-
eterizations.

ii. [3 points] Suppose both of you run linear regression, initializing the parame-
ters to 0, and compare your results after running just one iteration of batch
gradient descent. You get parameters θ0, θ1, θ2; your friend gets θ′0, θ

′
1, θ

′
2.

Then θ′0 = θ0, θ
′
1 = θ1, θ

′
2 =

1
100

θ2. True/False?

Answer: False. Recall that gradient descent is not invariant to linear repa-
rameterizations.
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1. [26 points] Short answers

The following questions require a reasonably short answer (usually at most 2-3 sen-
tences or a figure, though some questions may require longer or shorter explanations).

To discourage random guessing, one point will be deducted for a wrong
answer on true/false or multiple choice questions! Also, no credit will be
given for answers without a correct explanation.

(a) [6 points] Suppose you are fitting a fixed dataset with m training examples using
linear regression, hθ(x) = θTx, where θ, x ∈ R

n+1. After training, you realize
that the variance of your model is relatively high (i.e. you are overfitting). For
the following methods, indicate true if the method can mitigate your overfitting
problem and false otherwise. Briefly explain why.

i. [3 points] Add additional features to your feature vector.

ii. [3 points] Impose a prior distribution on θ, where the distribution of θ is of
the form N (0, τ 2I), and we derive θ via maximum a posteriori estimation.
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(b) [3 points] Choosing the parameter C is often a challenge when using SVMs.
Suppose we choose C as follows: First, train a model for a wide range of values
of C. Then, evaluate each model on the test set. Choose the C whose model has
the best performance on the test set. Is the performance of the chosen model
on the test set a good estimate of the model’s generalization error?

(c) [11 points] For the following, provide the VC-dimension of the described hypoth-
esis classes and briefly explain your answer.

i. [3 points] Assume X = R
2. H is a hypothesis class containing a single

hypothesis h1 (i.e. H = {h1})
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ii. [4 points] Assume X = R
2. Consider A to be the set of all convex polygons

in X . H is the class of all hypotheses hP (x) (for P ∈ A) such that

hP (x) =

{

1 if x is contained within polygon P

0 otherwise

Hint: Points on the edges or vertices of P are included in P

iii. [4 points] H is the class of hypotheses h(a,b)(x) such that each hypothesis is
represented by a single open interval in X = R as follows:

h(a,b)(x) =

{

1 if a < x < b

0 otherwise
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(d) [3 points] Consider a sine function f(x) = sin(x) such that x ∈ [−π, π]. We use
two different hypothesis classes such that H0 contains all constant hypotheses
of the form, h(x) = b and H1 contains all linear hypotheses of the form h(x) =
ax + b. Consider taking a very large number of training sets, Si, i = 1, ..., N
such that each Si contains only two points {(x1, y1), (x2, y2)} sampled iid from
f(x). In other words, each (x, y) pair is drawn from a distribution such that
y = f(x) = sin(x) is satisfied. We train a model from each hypothesis class using
each training set such that we have a collection of N models from each class.
We then compute a mean-squared error between each model and the function
f(x).
It turns out that the average expected error of all models from H0 is significantly
lower than the average expected error of models from H1 even though H1 is a
more complex hypothesis class. Using the concepts of bias and variance, provide
an explanation for why this is the case.
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(e) [3 points] In class when we discussed the decision boundary for logistic regression
hθ(x) = g(θTx), we did not require an explicit intercept term because we could
define x0 = 1 and let θ0 be the intercept. When discussing SVMs, we dropped
this convention and had hw,b(x) = g(wTx+b) with b as an explicit intercept term.
Consider an SVM where we now write hw(x) = g(wTx) and define x0 = 1 such
that w0 is the intercept. If the primal optimization objective remains 1

2
||w||2,

can we change the intercept in this way without changing the decision boundary
found by the SVM? Justify your answer.
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2. [10 + 3 Extra Credit points] More Linear Regression
In our homework, we saw a variant of linear regression called locally-weighted linear
regression. In the problem below, we consider a regularized form of locally-weighted
linear regression where we favor smaller parameter vectors by adding a complexity
penalty term to the cost function. Additionally, we consider the case where we are
trying to predict multiple outputs for each training example. Our dataset is:

S = {(x(i), y(i)), i = 1, ...,m}, x(i) ∈ R
n, y(i) ∈ R

p

Thus for each training example, y(i) is a real-valued vector with p entries. We wish
to use a linear model to predict the outputs by specifying the parameter matrix θ,
where θ ∈ R

n×p. You can assume x(i) contains the intercept term (i.e. x0 = 1). The
cost function for this model is:

J(θ) =
1

2

m
∑

i=1

p
∑

j=1

w(i)
(

(θTx(i))j − y
(i)
j

)2

+
1

2

n
∑

i=1

p
∑

j=1

(θij)
2 (1)

As before, w(i) is the “weight” for a specific training example i.

(a) [2 points] Show that J(θ) can be written as

J(θ) =
1

2
tr
(

(Xθ − Y )TW (Xθ − Y )
)

+
1

2
tr(θT θ)
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(b) [5 points] Derive a closed form expression for the minimizer θ∗ that minimizes
J(θ) from part (a).
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(c) [3 points] Given the dataset S above, which of the following cost functions will
lead to higher accuracy on the training set? Briefly explain why this is the case.
If there is insufficient information, explain what details are needed to make a
decision.

i. J1(θ) =
1
2

m
∑

i=1

p
∑

j=1

(

(θTx(i))j − y
(i)
j

)2

ii. J2(θ) =
1
2

m
∑

i=1

p
∑

j=1

(

(θTx(i))j − y
(i)
j

)2

+ 1
2

n
∑

i=1

p
∑

j=1

(θij)
2

iii. J3(θ) =
1
2

m
∑

i=1

p
∑

j=1

(

(θTx(i))j − y
(i)
j

)2

+ 100
n
∑

i=1

p
∑

j=1

(θij)
2



CS229 Midterm 10

(d) [3 Extra Credit points] Suppose we want to weight the regularization penalty
on a per element basis. For this problem, we use the following cost function:

J(θ) =
1

2

m
∑

i=1

p
∑

j=1

w(i)
(

(θTx(i))j − y
(i)
j

)2

+
1

2

n
∑

i=1

p
∑

j=1

((Γθ)ij)
2 (2)

Here, Γ ∈ R
n×n where Γij > 0 for all i, j. Derive a closed form solution for J(θ)

and θ∗ using this new cost function.
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3. [17 points] Generalized Linear Models

In class we showed that the Gaussian distribution is in the Exponential Family. How-
ever, a simplification we made to make the derivation easier was to set the variance
term σ2 = 1. This problem will investigate a more general form for the Exponential
Family. First, recall that the Gaussian distribution can be written as follows:

p(y|µ, σ2) =
1√
2πσ

exp

{

− 1

2σ2
(y − µ)2

}

(3)

(a) [6 points] Show that the Gaussian distribution (without assuming unit variance)
is an exponential family distribution. In particular, please specify b(y), η, T (y),
a(η). Recall that the standard form for the exponential family is given by

p(y; η) = b(y)exp{η⊤T (y)− a(η)} (4)

Hint: since σ2 is now a variable, η and T (y) will now be two dimensional vec-

tors; for consistent notation denote η =
[

η1 η2
]⊤

. For full credit, please ensure

a(η) is expressed in terms of η1 and η2.
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(b) [4 points] Suppose you are given an IID training set {(x(i), y(i)), i = 1, ...,m}.
Starting with the expression in (4) for p(y; η), derive the general expression
for the Hessian of the log-likelihood ℓ(θ) =

∑m

i=1 log p(y
(i)|x(i); θ). Your answer

should be in terms of x, η1 and η2.
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(c) [5 points] Using your result from the part (b), show that the Hessian is negative
semi-definite, i.e., z⊤Hz ≤ 0.
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(d) [2 points] It turns out there is a more general definition for the exponential
family given by

p(y; η, τ) = b(a, τ)exp

{

η⊤T (y)− a(η)

c(τ)

}

In particular c(τ) is the dispersion function, where τ is called the dispersion

parameter. Show that the Gaussian distribution can be written in this more
general form with c(τ) = σ2.
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4. [17 points] Naive Bayes and Logistic Regression
For this entire problem assume that the input features xj, j = 1, ..., n are discrete
binary-valued variables such that xj ∈ {0, 1} and x = [x1 x2 ... xn]. For each training
example x(i), assume that the output target variable y(i) ∈ {0, 1}.

(a) [2 points] Consider the Naive Bayes model, given the above context. This model
can be parameterized by φj|y=0 = p(xj = 1|y = 0), φj|y=1 = p(xj = 1|y = 1)
and φy = p(y = 1). Write down the expression for p(y = 1|x) in terms of
φj|y=0, φj|y=1, and φy.
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(b) [7 points] Show that the conditional likelihood expression you obtained in part
(a) can be simplified to the same form as the hypothesis for logistic regression:

p(y = 1|x) = 1

1 + e−θT x
. (5)

Hint: Modify the definition of x to include the intercept term x0 = 1
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[More space for (b)]

(c) [6 points] In part (b) you showed that the discrete Naive Bayes decision boundary
has the same form as that of the logistic regression. Now consider a dataset
S1 with m training examples of the form: {(x(i), y(i)), i = 1, ...,m} with each
x(i) ∈ R

n+1. Note that for this problem, S1 satisfies the Naive Bayes assumption:
p(x1, . . . , xn|y) =

∏n

j=1 p(xj|y).
Suppose a second dataset, S2, is given to you again with m training examples
{(x(i), y(i)), i = 1, · · · ,m}, but now each x(i) ∈ R

n+2 because each x(i) contains
the same n conditionally-independent features and an additional feature xn+1

such that xn+1 = xn. Each x(i) contains the intercept term x0 = 1.

i. [2 points] You train two Naive Bayes classifiers independently on S1 and S2.
Test data is generated according to the true distribution (i.e. p(x1, ..., xn, y) =
p(x1, ..., xn, xn+1, y) = p(y)p(x1, ..., xn|y), where xn+1 = xn). Would you ex-
pect the test error of the classifier trained on S1 to be larger or smaller than
that trained on S2? You may assume that m is very large. Briefly justify
your answer.
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ii. [4 points] Now we will look at a similar situation regarding how logistic
regression is affected by copies of features. In order to simplify the math,
let’s assume a more basic case where S1 still has m training examples, but
now has one feature x1. S2 has m training examples but has two features
x1 and x2 where x2 = x1. The logistic regression model trained on S1

therefore has associated parameters {θ0, θ1} and the model trained on S2

has parameters {θ0, θ1, θ2}. Here, θ0 is associated with the intercept term
x0 = 1. Testing data is generated the same way (from the original true
distribution). How will the error of the classifier trained on S1 compare to
that of the classifier trained on S2? For this question you need to prove
your result mathematically. (Hint: compare the forms of the log-likelihood
for each classifier)
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(d) [2 points] In general, if we assume that the number of training examples m is
very large, which classifier will have a lower generalization error? Briefly justify
why.
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5. [15 points] Anomaly Detection

Consider the following optimization problem:

minimize
r,z,ξ

r2 + C

m
∑

i=1

ξi

s.t.
∣

∣

∣

∣x(i) − z
∣

∣

∣

∣

2

2
≤ r2 + ξi i = 1, . . . ,m.

ξi ≥ 0, i = 1, . . . ,m.

(6)

where ξi are the slack variables.

(a) [2 points] Write down the Lagrangian for the optimization problem above. We
suggest using two sets of Lagrange multipliers αi and ηi corresponding to the two
inequality constraints so that the Lagrangian would be written as L(r, z, ξ, α, η).
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(b) [7 points] Assuming a non-trivial solution (r > 0), derive the dual optimization
problem using the Lagrangian from part (a).
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(c) [3 points] Show that the dual problem from (b) can be kernelized.
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(d) [3 points] Now consider the following dual optimization problem

max
α

− 1

2

m
∑

i=1

m
∑

j=1

αiαj〈x(i), x(j)〉

s.t
m
∑

i=1

αi = 1, i = 1, . . . ,m.

(7)

Assume that we choose K such that it is a Gaussian Kernel. How does this dual
compare with the dual you derived in part (c)?.
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6. [15 points] Learning Theory

Consider a finite hypothesis class H with size k = |H| and h⋆ = argmin
h∈H

ǫ(h).

(a) [7 points] Assume that the best hypothesis h⋆ has generalization error ǫ(h⋆) = B
such that B is a constant with 0 ≤ B ≤ 1. Prove that the joint probability of
the expected risk minimizer ĥ having large generalization error and the best
hypothesis h∗ having small training error can be bounded as:

P (ǫ(ĥ) > B + 2γ, ǫ̂(h⋆) ≤ B + γ) ≤
∑

h∈H

P (ǫ(h) > B + 2γ, ǫ̂(h) ≤ B + γ) (8)
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For any hypothesis h′ ∈ H with high generalization error (i.e. ǫ(h′) > B′ + τ),
the probability that it has low training error (i.e. ǫ̂(h′) ≤ B′) is bounded by:

P (ǫ̂(h′) ≤ B′ | ǫ(h′) > B′ + τ) ≤ exp

{ −mτ 2

2(B′ + 4τ/3)

}

(9)

for any B′ ∈ (0, 1) and τ > 0.

(b) [8 points] Using (9) and the result from part (a), show that:

P (ǫ(ĥ) > B + 2γ, ǫ̂(h⋆) ≤ B + γ) ≤ k exp

{ −mγ2

2(B + 7γ/3)

}

. (10)
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1. [26 points] Short answers

The following questions require a reasonably short answer (usually at most 2-3 sen-
tences or a figure, though some questions may require longer or shorter explanations).

To discourage random guessing, one point will be deducted for a wrong
answer on true/false or multiple choice questions! Also, no credit will be
given for answers without a correct explanation.

(a) [6 points] Suppose you are fitting a fixed dataset with m training examples using
linear regression, hθ(x) = θTx, where θ, x ∈ R

n+1. After training, you realize
that the variance of your model is relatively high (i.e. you are overfitting). For
the following methods, indicate true if the method can mitigate your overfitting
problem and false otherwise. Briefly explain why.

i. [3 points] Add additional features to your feature vector.
Answer: False. More features will make our model more complex, which
will capture more outliers in the training set and overfit more.

ii. [3 points] Impose a prior distribution on θ, where the distribution of θ is of
the form N (0, τ 2I), and we derive θ via maximum a posteriori estimation.
Answer: True. By imposing a prior belief on the distribution of θ, we are
effectively limiting the norm of θ, since larger norm will have a lower probability.
Thus, it makes our model less susceptible to overfitting.
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(b) [3 points] Choosing the parameter C is often a challenge when using SVMs.
Suppose we choose C as follows: First, train a model for a wide range of values
of C. Then, evaluate each model on the test set. Choose the C whose model has
the best performance on the test set. Is the performance of the chosen model
on the test set a good estimate of the model’s generalization error?
Answer: No it is not because C will be selected using the test set, meaning that
the test set is no longer separate from model development. As a result, the choice
of C might be over-fit to the test set and therefore might not generalize well on a
new example, but there will be no way to figure this out because the test set was
used to choose C.

(c) [11 points] For the following, provide the VC-dimension of the described hypoth-
esis classes and briefly explain your answer.

i. [3 points] Assume X = R
2. H is a hypothesis class containing a single

hypothesis h1 (i.e. H = {h1})
Answer: V C(H) = 0. The VC dimension of a single hypothesis is always
zero because a single hypothesis can only assign one labeling to a set of points.
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ii. [4 points] Assume X = R
2. Consider A to be the set of all convex polygons

in X . H is the class of all hypotheses hP (x) (for P ∈ A) such that

hP (x) =

{

1 if x is contained within polygon P

0 otherwise

Hint: Points on the edges or vertices of P are included in P

Answer: V C(H) = ∞. For any positive integer n, take n points from
A. Suppose we place the n points {x1, x2, ..., xn} uniformly spaced on the unit
circle. Then for each of the 2n subsets of this data set, there is a convex polygon
with vertices at these n points. For each subset, the convex polygon contains
the set and excludes its complement. Therefore, ∀n, the shattering coefficient
is 2n and thus the VC dimension is infinite.

iii. [4 points] H is the class of hypotheses h(a,b)(x) such that each hypothesis is
represented by a single open interval in X = R as follows:

h(a,b)(x) =

{

1 if a < x < b

0 otherwise

Answer: V C(H) = 2. Take for example two points {0, 2}. We can
shatter these two points by choosing the following set of intervals for our hy-
potheses {(3, 5), (−1, 1), (1, 3), (−1, 3)}. These correspond to the labellings:
{(0, 0), (1, 0), (0, 1), (1, 1)}. We cannot shatter any set of three points {x1, x2, x3}
such that x1 < x2 < x3 because the labelling x1 = x3 = 1, x2 = 0 cannot be
realized. More generally, alternate labellings of consecutive points cannot be
realized.
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(d) [3 points] Consider a sine function f(x) = sin(x) such that x ∈ [−π, π]. We use
two different hypothesis classes such that H0 contains all constant hypotheses
of the form, h(x) = b and H1 contains all linear hypotheses of the form h(x) =
ax + b. Consider taking a very large number of training sets, Si, i = 1, ..., N
such that each Si contains only two points {(x1, y1), (x2, y2)} sampled iid from
f(x). In other words, each (x, y) pair is drawn from a distribution such that
y = f(x) = sin(x) is satisfied. We train a model from each hypothesis class using
each training set such that we have a collection of N models from each class.
We then compute a mean-squared error between each model and the function
f(x).
It turns out that the average expected error of all models from H0 is significantly
lower than the average expected error of models from H1 even though H1 is a
more complex hypothesis class. Using the concepts of bias and variance, provide
an explanation for why this is the case.
Answer: Consider what happens when we plot all of the possible hypotheses on
top of the function f(x). This can be seen in Figure 1. We can see that because our
training set only consists of two points, the variance in linear hypotheses is far greater
than that of the constant hypotheses. Even though the constant hypotheses have
higher bias, the overall average expected error is less than for the linear hypotheses
because of the huge difference in variance.

Figure 1: Many hypotheses from H0 and H1 plotted on top of f(x)
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(e) [3 points] In class when we discussed the decision boundary for logistic regres-
sion hθ(x) = g(θTx), we did not require an explicit intercept term because we
could define x0 = 1 and let θ0 be the intercept. When discussing SVMs, we
dropped this convention and had hw,b(x) = g(wTx + b) with b as an explicit
intercept term. Consider an SVM where we now write hw(x) = g(wTx) and
define x0 = 1 such that w0 is the intercept. If the primal optimization objective
remains 1

2
||w||2, can we change the intercept in this way without changing the

decision boundary found by the SVM? Justify your answer.
Answer: We cannot make this change, because it will change the decision bound-
ary. In the original SVM, the 1

2
||w||2 term did not penalize the intercept, so b could

be chosen as large as possible to satisfy the constraints. If we treat, w0 as the
intercept, it will be regularized, thus changing the optimal solution.
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2. [10 + 3 Extra Credit points] More Linear Regression
In our homework, we saw a variant of linear regression called locally-weighted linear
regression. In the problem below, we consider a regularized form of locally-weighted
linear regression where we favor smaller parameter vectors by adding a complexity
penalty term to the cost function. Additionally, we consider the case where we are
trying to predict multiple outputs for each training example. Our dataset is:

S = {(x(i), y(i)), i = 1, ...,m}, x(i) ∈ R
n, y(i) ∈ R

p

Thus for each training example, y(i) is a real-valued vector with p entries. We wish
to use a linear model to predict the outputs by specifying the parameter matrix θ,
where θ ∈ R

n×p. You can assume x(i) contains the intercept term (i.e. x0 = 1). The
cost function for this model is:

J(θ) =
1

2

m
∑

i=1

p
∑

j=1

w(i)
(

(θTx(i))j − y
(i)
j

)2

+
1

2

n
∑

i=1

p
∑

j=1

(θij)
2 (1)

As before, w(i) is the “weight” for a specific training example i.

(a) [2 points] Show that J(θ) can be written as

J(θ) =
1

2
tr
(

(Xθ − Y )TW (Xθ − Y )
)

+
1

2
tr(θT θ)

Answer:

J(θ) =
1

2

m
∑

i=1

p
∑

j=1

w(i)
(

(θTx(i))j − y
(i)
j

)2

+
1

2

n
∑

i=1

p
∑

j=1

(θij)
2 (2)

=
1

2

m
∑

i=1

p
∑

j=1

w(i)(Xθ − Y )2ij +
1

2

n
∑

i=1

p
∑

j=1

(θij)
2 (3)

=
1

2

m
∑

i=1

w(i)
(

(Xθ − Y )T (Xθ − Y )
)

ii
+

1

2

n
∑

i=1

(θT θ)ii (4)

=
1

2
tr
(

(Xθ − Y )TW (Xθ − Y )
)

+
1

2
tr(θT θ) (5)
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(b) [5 points] Derive a closed form expression for the minimizer θ∗ that minimizes
J(θ) from part (a).

Answer: We compute the gradient of the first and second term separately. We
start with the first term, J1(θ) =

1
2
tr
(

(Xθ − Y )TW (Xθ − Y )
)

.

∇θJ1(θ) = ∇θ

1

2
tr
(

(Xθ − Y )TW (Xθ − Y )
)

(6)

=
1

2
∇θtr

(

θTXTWXθ − θTXTWY − Y TWXθ − Y TWY
)

(7)

=
1

2
∇θ

[

tr(θTXTWXθ)− tr(θTXTWY )− tr(Y TWXθ)− tr(Y TWY )
]

(8)

=
1

2
∇θ

[

tr(θTXTWXθ)− 2tr(Y TWXθ)− tr(Y TWY )
]

(9)

=
1

2
(XTWXθ − 2XTWY +XTWXθ) (10)

= XTWXθ −XTWY (11)

Now we find the gradient of the second term, J2(θ) =
1
2
tr(θT θ):

∇θJ2(θ) = ∇θ

1

2
tr(θT θ) =

1

2
∇θtr(θ

T θ) =
1

2
(2θ) = θ (12)

Combining the gradient of both terms gives us the final gradient:

∇θJ(θ) = ∇θJ1(θ) +∇θJ2(θ)

= XTWXθ −XTWY + θ
(13)

We can then set this equal to zero and find the optimal θ which optimizes J(θ).

0 = XTWXθ −XTWY + θ

XTWY = XTWXθ + θ

XTWY = (XTWX + I)θ

θ∗ = (XTWX + I)−1XTWY

(14)

where I is the n× n identity matrix.
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(c) [3 points] Given the dataset S above, which of the following cost functions will
lead to higher accuracy on the training set? Briefly explain why this is the case.
If there is insufficient information, explain what details are needed to make a
decision.

i. J1(θ) =
1
2

m
∑

i=1

p
∑

j=1

(

(θTx(i))j − y
(i)
j

)2

ii. J2(θ) =
1
2

m
∑

i=1

p
∑

j=1

(

(θTx(i))j − y
(i)
j

)2

+ 1
2

n
∑

i=1

p
∑

j=1

(θij)
2

iii. J3(θ) =
1
2

m
∑

i=1

p
∑

j=1

(

(θTx(i))j − y
(i)
j

)2

+ 100
n
∑

i=1

p
∑

j=1

(θij)
2

Answer: (i) The regularization terms prevents overfitting by penalizing high
weights. Excluding the regularization terms will allow the model to overfit on the
training set and achieve a higher training accuracy.
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(d) [3 Extra Credit points] Suppose we want to weight the regularization penalty
on a per element basis. For this problem, we use the following cost function:

J(θ) =
1

2

m
∑

i=1

p
∑

j=1

w(i)
(

(θTx(i))j − y
(i)
j

)2

+
1

2

n
∑

i=1

p
∑

j=1

((Γθ)ij)
2 (15)

Here, Γ ∈ R
n×n where Γij > 0 for all i, j. Derive a closed form solution for J(θ)

and θ∗ using this new cost function.

Answer: We first write J(θ) in matrix-vector notation to make the gradient
derivation easier.

J(θ) =
1

2

m
∑

i=1

p
∑

j=1

w(i)
(

(θTx(i))j − y
(i)
j

)2

+
1

2

n
∑

i=1

p
∑

j=1

((Γθ)ij)
2 (16)

=
1

2

m
∑

i=1

p
∑

j=1

w(i)(Xθ − Y )2ij +
1

2

n
∑

i=1

p
∑

j=1

((Γθ)ij)
2 (17)

=
1

2

m
∑

i=1

w(i)
(

(Xθ − Y )T (Xθ − Y )
)

ii
+

1

2

n
∑

i=1

(

(Γθ)T (Γθ)
)

ii
(18)

=
1

2
tr
(

(Xθ − Y )TW (Xθ − Y )
)

+
1

2
tr
(

(Γθ)T (Γθ)
)

(19)

The gradient of the first term is the same as part (a):

∇θJ1(θ) = ∇θ

1

2
tr
(

(Xθ − Y )TW (Xθ − Y )
)

(20)

= XTWXθ −XTWY (21)

Now we find the gradient of the second term, denoted as J2(θ):

∇θJ2(θ) = ∇θ

1

2
tr
(

(Γθ)T (Γθ)
)

(22)

=
1

2
∇θtr

(

θTΓTΓθ
)

(23)

=
1

2

(

(ΓTΓ)T θ + ΓTΓθ
)

(24)

=
1

2

(

2ΓTΓθ
)

(25)

= ΓTΓθ (26)

The jump from (23) to (24) can be made using Equation 5 from lecture notes 1,
where AT = θ, A = θT , B = ΓTΓ and C be the identity matrix. Combining the
gradient of both terms gives us the final gradient:

∇θJ(θ) = XTWXθ −XTWY + ΓTΓθ (27)
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We can then set this equal to zero and find the optimal θ which optimizes J(θ).

0 = XTWXθ −XTWY + ΓTΓθ

XTWY = XTWXθ + ΓTΓθ

XTWY = (XTWX + ΓTΓ)θ

θ∗ = (XTWX + ΓTΓ)−1XTWY

(28)
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3. [17 points] Generalized Linear Models

In class we showed that the Gaussian distribution is in the Exponential Family. How-
ever, a simplification we made to make the derivation easier was to set the variance
term σ2 = 1. This problem will investigate a more general form for the Exponential
Family. First, recall that the Gaussian distribution can be written as follows:

p(y|µ, σ2) =
1√
2πσ

exp

{

− 1

2σ2
(y − µ)2

}

(29)

(a) [6 points] Show that the Gaussian distribution (without assuming unit variance)
is an exponential family distribution. In particular, please specify b(y), η, T (y),
a(η). Recall that the standard form for the exponential family is given by

p(y; η) = b(y)exp{η⊤T (y)− a(η)} (30)

Hint: since σ2 is now a variable, η and T (y) will now be two dimensional vec-

tors; for consistent notation denote η =
[

η1 η2
]⊤

. For full credit, please ensure

a(η) is expressed in terms of η1 and η2.

Answer: We can rearrange the Gaussian distribution as follows:

p(y|µ, σ2) =
1√
2πσ

exp

{

− 1

2σ2
(y − µ)2

}

=
1√
2π

exp

{

µ

σ2
y − 1

2σ2
y2 − 1

2σ2
µ2 − ln σ

}

This is now in the exponential family form, and we can note that:

η =

[

η1
η2

]

=

[

µ/σ2

−1/2σ2

]

T (y) =

[

y
y2

]

a(η) =
µ2

2σ2
+ ln σ = − η21

4η2
− 1

2
ln(−2η2)

b(y) =
1√
2π
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(b) [4 points] Suppose you are given an IID training set {(x(i), y(i)), i = 1, ...,m}.
Starting with the expression in (30) for p(y; η), derive the general expression
for the Hessian of the log-likelihood ℓ(θ) =

∑m

i=1 log p(y
(i)|x(i); θ). Your answer

should be in terms of x, η1 and η2.

Answer: The log-likelihood is given by

ℓ(θ) =
m
∑

i=1

log p(y(i)|x(i); θ)

=
m
∑

i=1

log(b(y)) + η(i)T (y)− a(η(i))

We now take partials with respect to θi and θj as follows. Recall that our standard
GLM assumption is that η = θ⊤x.

∂

∂θj
ℓ(θ) =

M
∑

i=1

T (y)x
(i)
j − ∂

∂η
a(η(i))x

(i)
j

∂2

∂θj∂θk
ℓ(θ) =

M
∑

i=1

− ∂2

∂η2
a(η(i))x

(i)
j x

(j)
k

= Hjk

Thus the Hessian is described by each element Hjk which is itself a 2x2 symmetric
matrix obtained by expanding the partial derivative with respect to η as follows:

∂2

∂η21
a(η(i)) =

∂

∂η1

(

−2η1
4η2

)

= − 1

2η2
∂2

∂η22
a(η(i)) =

∂

∂η2

(−2η2 + η21
4η22

)

=
η2 − η21
2η32

∂2

∂η1∂η2
a(η(i)) =

∂

∂η2

(

−2η1
4η2

)

=
η1
2η22

∂2

∂η2∂η1
a(η(i)) =

∂

∂η1

(−2η2 + η21
4η22

)

=
η1
2η22
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(c) [5 points] Using your result from the part (b), show that the Hessian is negative
semi-definite, i.e., z⊤Hz ≤ 0.
Answer: 5 points given to everyone because difficulty was harder than originally
anticipated.
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(d) [2 points] It turns out there is a more general definition for the exponential
family given by

p(y; η, τ) = b(a, τ)exp

{

η⊤T (y)− a(η)

c(τ)

}

In particular c(τ) is the dispersion function, where τ is called the dispersion

parameter. Show that the Gaussian distribution can be written in this more
general form with c(τ) = σ2.

Answer: In part a, we wrote the Gaussian distribution in the exponential family
form as:

p(y|µ, σ2) =
1√
2π

exp

{

µ

σ2
y − 1

2σ2
y2 − 1

2σ2
µ2 − ln σ

}

We can manipulate this slightly to get it into the general exponential family form,
as follows:

p(y|µ, σ2) =
1√
2π

exp

{

µ

σ2
y − 1/2

σ2
y2 − 1/2

σ2
µ2 − σ2

σ2
ln σ

}

Thus we have that the dispersion function c(τ) = σ2, as desired.
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4. [17 points] Naive Bayes and Logistic Regression
For this entire problem assume that the input features xj, j = 1, ..., n are discrete
binary-valued variables such that xj ∈ {0, 1} and x = [x1 x2 ... xn]. For each training
example x(i), assume that the output target variable y(i) ∈ {0, 1}.

(a) [2 points] Consider the Naive Bayes model, given the above context. This model
can be parameterized by φj|y=0 = p(xj = 1|y = 0), φj|y=1 = p(xj = 1|y = 1)
and φy = p(y = 1). Write down the expression for p(y = 1|x) in terms of
φj|y=0, φj|y=1, and φy.
Answer:
We first use the fact that each xj has a binomial distribution:

p(x|y = 0) =
n
∏

j=1

p(xj|y = 0)

=
n
∏

j=1

(φj|y=0)
xj(1− φj|y=0)

1−xj

(31)

p(x|y = 1) can be written the same way with y = 0 replaced by y = 1. Now we
can derive p(y = 1|x) using Bayes rule:

p(y = 1|x) =
φy(
∏n

j=1(φj|y=1)
xj(1− φj|y=1)

1−xj)

φy(
∏n

j=1(φj|y=1)xj(1− φj|y=1)1−xj) + (1− φy)(
∏n

j=1(φj|y=0)xj(1− φj|y=0)1−xj)

(32)

Points are given for this or any equivalent solution.
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(b) [7 points] Show that the conditional likelihood expression you obtained in part
(a) can be simplified to the same form as the hypothesis for logistic regression:

p(y = 1|x) = 1

1 + e−θT x
. (33)

Hint: Modify the definition of x to include the intercept term x0 = 1
Answer:
We begin by dividing the numerator and denominator in the expression from part
(a) by the numerator:

p(y = 1|x) =
φy(
∏n

j=1(φj|y=1)
xj(1− φj|y=1)

1−xj)

φy(
∏n

j=1(φj|y=1)xj(1− φj|y=1)1−xj) + (1− φy)(
∏n

j=1(φj|y=0)xj(1− φj|y=0)1−xj)

=
1

1 +
(1−φy)(

∏n
j=1

(φj|y=0)
xj (1−φj|y=0)

1−xj )

φy(
∏n

j=1
(φj|y=1)

xj (1−φj|y=1)
1−xj )

=
1

1 + exp(log 1−φy

φy
+
∑n

j=1 xj(log
φj|y=0

φj|y=1

) + (1− xj)(log
1−φj|y=0

1−φj|y=1

))

=
1

1 + exp(log (1−φy

φy
+

1−φj|y=0

1−φj|y=1

) +
∑n

j=1 xj(log
φj|y=0

φj|y=1

− log
1−φj|y=0

1−φj|y=1

))

(34)

Now we remember that x0 = 1, so if we set:

θ0 = −log
1− φy

φy

−
n
∑

j=1

log
1− φj|y=0

1− φj|y=1

θj = −log
φj|y=0

φj|y=1

+ log
1− φj|y=0

1− φj|y=1

∀j = 1...n

(35)

.
we arrive at the final form:

p(y = 1|x) = 1

1 + e−θT x
(36)
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[More space for (b)]

(c) [6 points] In part (b) you showed that the discrete Naive Bayes decision boundary
has the same form as that of the logistic regression. Now consider a dataset
S1 with m training examples of the form: {(x(i), y(i)), i = 1, ...,m} with each
x(i) ∈ R

n+1. Note that for this problem, S1 satisfies the Naive Bayes assumption:
p(x1, . . . , xn|y) =

∏n

j=1 p(xj|y).
Suppose a second dataset, S2, is given to you again with m training examples
{(x(i), y(i)), i = 1, · · · ,m}, but now each x(i) ∈ R

n+2 because each x(i) contains
the same n conditionally-independent features and an additional feature xn+1

such that xn+1 = xn. Each x(i) contains the intercept term x0 = 1.

i. [2 points] You train two Naive Bayes classifiers independently on S1 and S2.
Test data is generated according to the true distribution (i.e. p(x1, ..., xn, y) =
p(x1, ..., xn, xn+1, y) = p(y)p(x1, ..., xn|y), where xn+1 = xn). Would you ex-
pect the test error of the classifier trained on S1 to be larger or smaller than
that trained on S2? You may assume that m is very large. Briefly justify
your answer.
Answer: The expected testing error of the classifier trained on S1 will be
less than the error of the classifier trained on S2. This is because S2 violates the
conditional independence assumption made by Naive Bayes between features xn

and xn+1, so the model will learn an incorrect joint distribution.
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ii. [4 points] Now we will look at a similar situation regarding how logistic
regression is affected by copies of features. In order to simplify the math,
let’s assume a more basic case where S1 still has m training examples, but
now has one feature x1. S2 has m training examples but has two features
x1 and x2 where x2 = x1. The logistic regression model trained on S1

therefore has associated parameters {θ0, θ1} and the model trained on S2

has parameters {θ0, θ1, θ2}. Here, θ0 is associated with the intercept term
x0 = 1. Testing data is generated the same way (from the original true
distribution). How will the error of the classifier trained on S1 compare to
that of the classifier trained on S2? For this question you need to prove
your result mathematically. (Hint: compare the forms of the log-likelihood
for each classifier)
Answer: The log-likelihood for the model trained on D1 can be written as
follows: (for simplicity we substitute g(θTx) for hθ(x):

L1(θ) =
∑

i

y(i)log g(θ0 + θ1x
(i)
1 ) + (1− y(i))(log (1− g(θ0 + θ1x

(i)
1 ))) (37)

The log-likelihood for the model trained on D2 can be similarly written as:

L2(θ) =
∑

i

y(i)log g(θ′0+θ′1x
(i)
1 +θ′2x

(i)
2 )+(1−y(i))(log (1−g(θ′0+θ′1x

(i)
1 +θ′2x

(i)
2 )))

(38)
But we know that x2 is a duplication of x1, so when we maximize L2(θ). It is
equivalent to maximizing:

L2(θ) =
∑

i

y(i)log g(θ′0 + θ′1x
(i)
1 + θ′2x

(i)
1 ) + (1− y(i))(log (1− g(θ′0 + θ′1x

(i)
1 + θ′2x

(i)
1 )))

=
∑

i

y(i)log g(θ′0 + (θ′1 + θ′2)x
(i)
1 ) + (1− y(i))(log (1− g(θ′0 + (θ′1 + θ′2)x

(i)
1 )))

(39)

Looking at this, we see that L2(θ) = L1(θ) if we choose θ0 = θ′0 and θ1 =
θ′1+θ′2. This basically means that the logistic regression trained on D2 will split
the weight of θ1 between θ′1 and θ′2, but the decision boundary will be the same.
Therefore, the accuracies of both classifiers will be the same.
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(d) [2 points] In general, if we assume that the number of training examples m is
very large, which classifier will have a lower generalization error? Briefly justify
why.
Answer: The logistic regression will in general have a lower asymptotic error rate
because the Naive Bayes classifier makes the conditional independence assumption
about the data. Therefore, the logistic regression can learn the Naive Bayes decision
boundary; however, the reverse is not true. It turns out that this generalization error
relationship is true for any generative-discriminative pair because of the fact that
the generative model makes stronger modeling assumptions.

In lecture we showed that if we make assumptions about the distribution of p(x|y)
(specifically that this follows a multivariate gaussian), then we can either perform
classification using Gaussian Discriminant Analysis or Logistic Regression, and still ar-
rive at a logistic form for the conditional distribution p(y|x). Therefore, we can think
of GDA and Logistic Regression as being a generative-discriminative pair where the
discriminative model directly estimates the boundary between the class-conditionals
that is learned by the generative classifier through Bayes’ rule. In this problem,
you have shown that a similar generative-discriminative pair property can be derived
between Naive Bayes and Logistic Regression for binary classification. This kind
of case analysis can provide a lot of insights into the intricate differences between
generative and discriminative models.
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5. [15 points] Anomaly Detection

Consider the following optimization problem:

minimize
r,z,ξ

r2 + C

m
∑

i=1

ξi

s.t.
∣

∣

∣

∣x(i) − z
∣

∣

∣

∣

2

2
≤ r2 + ξi i = 1, . . . ,m.

ξi ≥ 0, i = 1, . . . ,m.

(40)

where ξi are the slack variables.

(a) [2 points] Write down the Lagrangian for the optimization problem above. We
suggest using two sets of Lagrange multipliers αi and ηi corresponding to the two
inequality constraints so that the Lagrangian would be written as L(r, z, ξ, α, η).
Answer: Using the definition of the Lagrangian, we obtain:

L(r, z, ξ, α, η) = r2 + C

m
∑

i=1

ξi −
m
∑

i=1

αi(r
2 −

∣

∣

∣

∣x(i) − z
∣

∣

∣

∣

2

2
+ ξi)−

m
∑

i=1

ηiξi (41)

with α, η ≥ 0.
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(b) [7 points] Assuming a non-trivial solution (r > 0), derive the dual optimization
problem using the Lagrangian from part (a).
Answer: We start by taking derivatives of the Lagrangian with respect to r, z,
and ξ and set them to 0:

∂rL = 2r − 2
m
∑

i=1

αir = 0 =⇒
m
∑

i=1

αi = 1 (42)

∂zL =
m
∑

i=1

αi2(x
(i) − z) = 0 =⇒ z =

∑m

i=1 αix
(i)

∑m

i=1 αi

=
m
∑

i=1

αix
(i) (43)

∂ξL = C − αi − ηi = 0 =⇒ ηi = C − αi (44)

The result in (43) was obtained by using the result from (42). The last equality (44)
shows that we can eliminate ηi by substituting for αi and instead add the constraint
0 ≤ αi ≤ C, ∀i. We now substitute these values back into the Lagrangian and
simplify as follows:

L(r, z, ξ, α, η) = r2 −
m
∑

i=1

αir
2 + C

m
∑

i=1

ξi −
m
∑

i=1

αiξi −
m
∑

i=1

(C − αi)ξi

+
m
∑

i=1

αi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x(i) −
m
∑

j=1

αjxj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

(45)

Using (42), we see that the first two terms cancel, and because of our substitution
from (44), all of the next 3 terms cancel leaving us with the dual problem:

maximize
α

m
∑

i=1

αi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x(i) −
m
∑

j=1

αjxj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

,

s.t. 0 ≤ αi ≤ C, i = 1 . . .m.
m
∑

i=1

αi = 1, i = 1 . . .m.

(46)

Points are given for this or any simplified version of this.
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(c) [3 points] Show that the dual problem from (b) can be kernelized.
Answer: If we look at the dual from (b) we can simplify the objective further as
follows:

m
∑

i=1

αi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x(i) −
m
∑

j=1

αjx
(j)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=
m
∑

i=1

(

αi〈x(i), x(i)〉 − 2αi〈x(i),
m
∑

j=1

αjx
(j)〉+ αi〈

m
∑

j=1

αjx
(j),

m
∑

j=1

αjx
(j)〉
)

(47)

=
m
∑

i=1

αi〈x(i), x(i)〉 −
m
∑

i=1

m
∑

j=1

αiαj〈x(i), x(j)〉 (48)

The last equality was simplified by using (42). Now we can see that the dual objective
can be written in terms of inner products of the training data, so the problem can be
kernelized by mapping the input data into a higher dimensional feature space using
a function φ(x) and computing the kernel sas K(x(i), x(j)) = 〈φ(x(i)), φ(x(j))〉.
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(d) [3 points] Now consider the following dual optimization problem

max
α

− 1

2

m
∑

i=1

m
∑

j=1

αiαj〈x(i), x(j)〉

s.t
m
∑

i=1

αi = 1, i = 1, . . . ,m.

(49)

Assume that we choose K such that it is a Gaussian Kernel. How does this dual
compare with the dual you derived in part (c)?.
Answer: The objective in (48) only differs from the dual in this part by a constant
1
2
in front of the second term and the first term

∑m

i=1 αi〈x(i)x(i)〉 term. However,
this inner product is a constant because for a gaussian kernel, K(x, x) = κ (a con-
stant), and by the constraint (42) this first term is just a constant. Therefore, the
two optimization problems only differ by constant factors and are actually equivalent
optimization problems.

The optimization problem defined in part (a) is known as the minimum enclosing
ball (MEB) problem, which is commonly used for anomaly detection. The optimiza-
tion is used to learn a minimum enclosing “ball” defined by a radius r which packs
most of the training data close to its center defined by z. A new data point will be
considered anomalous if it is outside this ball. The dual in part (d) is actually the
dual of the much less intuitive but much more commonly used one-class SVM which
is also used for anomaly detection. As you have shown in part (d), it turns out that
these optimization problems are actually equivalent when using an isotropic kernel
like the Gaussian Kernel.
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6. [15 points] Learning Theory

Consider a finite hypothesis class H with size k = |H| and h⋆ = argmin
h∈H

ǫ(h).

(a) [7 points] Assume that the best hypothesis h⋆ has generalization error ǫ(h⋆) = B
such that B is a constant with 0 ≤ B ≤ 1. Prove that the joint probability of
the expected risk minimizer ĥ having large generalization error and the best
hypothesis h∗ having small training error can be bounded as:

P (ǫ(ĥ) > B + 2γ, ǫ̂(h⋆) ≤ B + γ) ≤
∑

h∈H

P (ǫ(h) > B + 2γ, ǫ̂(h) ≤ B + γ) (50)

Answer: By the definition of ERM, we know that ǫ̂(h⋆) ≥ ǫ̂(ĥ), so that

P (ǫ(ĥ) > B + 2γ, ǫ̂(h⋆) ≤ B + γ) ≤ P (ǫ(ĥ) > B + 2γ, ǫ̂(ĥ) ≤ B + γ).

Using union bound, we can bound the RHS of last expression as

P (ǫ(ĥ) > B + 2γ, ǫ̂(ĥ) ≤ B + γ) ≤ P (∃h s.t. ǫ(h) > B + 2γ, ǫ̂(h) ≤ B + γ)

≤
∑

h∈H

P (ǫ(h) > B + 2γ, ǫ̂(h) ≤ B + γ).
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For any hypothesis h′ ∈ H with high generalization error (i.e. ǫ(h′) > B′ + τ),
the probability that it has low training error (i.e. ǫ̂(h′) ≤ B′) is bounded by:

P (ǫ̂(h′) ≤ B′ | ǫ(h′) > B′ + τ) ≤ exp

{ −mτ 2

2(B′ + 4τ/3)

}

(51)

for any B′ ∈ (0, 1) and τ > 0.

(b) [8 points] Using (51) and the result from part (a), show that:

P (ǫ(ĥ) > B + 2γ, ǫ̂(h⋆) ≤ B + γ) ≤ k exp

{ −mγ2

2(B + 7γ/3)

}

. (52)

Answer: Using the definition of conditional probability and applying (51) with
B′ = B + γ and τ = γ, we get

P (ǫ(h) > B + 2γ, ǫ̂(h) ≤ B + γ) = P (ǫ̂(h) ≤ B + γ|ǫ(h) > B + 2γ)P (ǫ(h) > B + 2γ)

≤ P (ǫ̂(h) ≤ B + γ|ǫ(h) > B + 2γ)

≤ exp

{ −mτ 2

2(B + 7τ/3)

}

.

We can then use the fact that the summation over all hypotheses in H is from 1 to
k to show that

P (ǫ(ĥ) > B + 2γ, ǫ̂(h⋆) ≤ B + γ) ≤ k exp

{ −mγ2

2(B + 7γ/3)

}

.


