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Probability theory is the study of uncertainty. Through this class, we will be relying on concepts
from probability theory for deriving machine learning algorithms. These notes attempt to cover the
basics of probability theory at a level appropriate for CS 229. The mathematical theory of probability
is very sophisticated, and delves into a branch of analysis known as measure theory. In these notes,
we provide a basic treatment of probability that does not address these finer details.

1 Elements of probability

In order to define a probability on a set we need a few basic elements,

• Sample space Ω: The set of all the outcomes of a random experiment. Here, each outcome
ω ∈ Ω can be thought of as a complete description of the state of the real world at the end
of the experiment.

• Set of events (or event space) F : A set whose elements A ∈ F (called events) are subsets
of Ω (i.e., A ⊆ Ω is a collection of possible outcomes of an experiment).1.

• Probability measure: A function P : F → R that satisfies the following properties,

- P (A) ≥ 0, for all A ∈ F
- P (Ω) = 1

- If A1, A2, . . . are disjoint events (i.e., Ai ∩Aj = ∅ whenever i 6= j), then

P (∪iAi) =
∑

i

P (Ai)

These three properties are called the Axioms of Probability.

Example: Consider the event of tossing a six-sided die. The sample space is Ω = {1, 2, 3, 4, 5, 6}.
We can define different event spaces on this sample space. For example, the simplest event space
is the trivial event space F = {∅,Ω}. Another event space is the set of all subsets of Ω. For the
first event space, the unique probability measure satisfying the requirements above is given by
P (∅) = 0, P (Ω) = 1. For the second event space, one valid probability measure is to assign the

probability of each set in the event space to be i
6 where i is the number of elements of that set; for

example, P ({1, 2, 3, 4}) = 4
6 and P ({1, 2, 3}) = 3

6 .

Properties:

- If A ⊆ B =⇒ P (A) ≤ P (B).

- P (A ∩B) ≤ min(P (A), P (B)).

- (Union Bound) P (A ∪B) ≤ P (A) + P (B).

- P (Ω \A) = 1− P (A).

- (Law of Total Probability) If A1, . . . , Ak are a set of disjoint events such that ∪k
i=1Ai = Ω, then

∑k
i=1 P (Ak) = 1.

1F should satisfy three properties: (1) ∅ ∈ F ; (2) A ∈ F =⇒ Ω \ A ∈ F ; and (3) A1, A2, . . . ∈ F =⇒
∪iAi ∈ F .
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1.1 Conditional probability and independence

Let B be an event with non-zero probability. The conditional probability of any event A given B is
defined as,

P (A|B) ,
P (A ∩B)

P (B)

In other words, P (A|B) is the probability measure of the event A after observing the occurrence of
event B. Two events are called independent if and only if P (A∩B) = P (A)P (B) (or equivalently,
P (A|B) = P (A)). Therefore, independence is equivalent to saying that observing B does not have
any effect on the probability of A.

2 Random variables

Consider an experiment in which we flip 10 coins, and we want to know the number of coins that
come up heads. Here, the elements of the sample space Ω are 10-length sequences of heads and
tails. For example, we might have w0 = 〈H,H, T,H, T,H,H, T, T, T 〉 ∈ Ω. However, in practice,
we usually do not care about the probability of obtaining any particular sequence of heads and tails.
Instead we usually care about real-valued functions of outcomes, such as the number of heads that
appear among our 10 tosses, or the length of the longest run of tails. These functions, under some
technical conditions, are known as random variables.

More formally, a random variable X is a function X : Ω −→ R.2 Typically, we will denote random
variables using upper case letters X(ω) or more simply X (where the dependence on the random
outcome ω is implied). We will denote the value that a random variable may take on using lower
case letters x.

Example: In our experiment above, suppose that X(ω) is the number of heads which occur in the
sequence of tosses ω. Given that only 10 coins are tossed, X(ω) can take only a finite number of
values, so it is known as a discrete random variable. Here, the probability of the set associated
with a random variable X taking on some specific value k is

P (X = k) := P ({ω : X(ω) = k}).

Example: Suppose that X(ω) is a random variable indicating the amount of time it takes for a
radioactive particle to decay. In this case, X(ω) takes on a infinite number of possible values, so it is
called a continuous random variable. We denote the probability that X takes on a value between
two real constants a and b (where a < b) as

P (a ≤ X ≤ b) := P ({ω : a ≤ X(ω) ≤ b}).

2.1 Cumulative distribution functions

In order to specify the probability measures used when dealing with random variables, it is often
convenient to specify alternative functions (CDFs, PDFs, and PMFs) from which the probability
measure governing an experiment immediately follows. In this section and the next two sections,
we describe each of these types of functions in turn.

A cumulative distribution function (CDF) is a function FX : R → [0, 1] which specifies a proba-
bility measure as,

FX(x) , P (X ≤ x). (1)

By using this function one can calculate the probability of any event in F .3 Figure ?? shows a
sample CDF function.

Properties:

2Technically speaking, not every function is not acceptable as a random variable. From a measure-theoretic
perspective, random variables must be Borel-measurable functions. Intuitively, this restriction ensures that
given a random variable and its underlying outcome space, one can implicitly define the each of the events
of the event space as being sets of outcomes ω ∈ Ω for which X(ω) satisfies some property (e.g., the event
{ω : X(ω) ≥ 3}).

3This is a remarkable fact and is actually a theorem that is proved in more advanced courses.
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Figure 1: A cumulative distribution function (CDF).

- 0 ≤ FX(x) ≤ 1.

- limx→−∞ FX(x) = 0.

- limx→∞ FX(x) = 1.

- x ≤ y =⇒ FX(x) ≤ FX(y).

2.2 Probability mass functions

When a random variable X takes on a finite set of possible values (i.e., X is a discrete random
variable), a simpler way to represent the probability measure associated with a random variable is
to directly specify the probability of each value that the random variable can assume. In particular,
a probability mass function (PMF) is a function pX : Ω → R such that

pX(x) , P (X = x).

In the case of discrete random variable, we use the notation V al(X) for the set of possible values
that the random variable X may assume. For example, if X(ω) is a random variable indicating the
number of heads out of ten tosses of coin, then V al(X) = {0, 1, 2, . . . , 10}.

Properties:

- 0 ≤ pX(x) ≤ 1.

-
∑

x∈V al(X) pX(x) = 1.

-
∑

x∈A pX(x) = P (X ∈ A).

2.3 Probability density functions

For some continuous random variables, the cumulative distribution function FX(x) is differentiable
everywhere. In these cases, we define the Probability Density Function or PDF as the derivative
of the CDF, i.e.,

fX(x) ,
dFX(x)

dx
. (2)

Note here, that the PDF for a continuous random variable may not always exist (i.e., if FX(x) is not
differentiable everywhere).

According to the properties of differentiation, for very small ∆x,

P (x ≤ X ≤ x+∆x) ≈ fX(x)∆x. (3)

Both CDFs and PDFs (when they exist!) can be used for calculating the probabilities of different
events. But it should be emphasized that the value of PDF at any given point x is not the probability
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of that event, i.e., fX(x) 6= P (X = x). For example, fX(x) can take on values larger than one (but
the integral of fX(x) over any subset of R will be at most one).

Properties:

- fX(x) ≥ 0 .

-
∫∞
−∞ fX(x) = 1.

-
∫

x∈A
fX(x)dx = P (X ∈ A).

2.4 Expectation

Suppose that X is a discrete random variable with PMF pX(x) and g : R −→ R is an arbitrary
function. In this case, g(X) can be considered a random variable, and we define the expectation or
expected value of g(X) as

E[g(X)] ,
∑

x∈V al(X)

g(x)pX(x).

If X is a continuous random variable with PDF fX(x), then the expected value of g(X) is defined
as,

E[g(X)] ,

∫ ∞

−∞
g(x)fX(x)dx.

Intuitively, the expectation of g(X) can be thought of as a “weighted average” of the values that
g(x) can taken on for different values of x, where the weights are given by pX(x) or fX(x). As
a special case of the above, note that the expectation, E[X] of a random variable itself is found by
letting g(x) = x; this is also known as the mean of the random variable X .

Properties:

- E[a] = a for any constant a ∈ R.

- E[af(X)] = aE[f(X)] for any constant a ∈ R.

- (Linearity of Expectation) E[f(X) + g(X)] = E[f(X)] + E[g(X)].

- For a discrete random variable X , E[1{X = k}] = P (X = k).

2.5 Variance

The variance of a random variable X is a measure of how concentrated the distribution of a random
variable X is around its mean. Formally, the variance of a random variable X is defined as

V ar[X] , E[(X − E(X))2]

Using the properties in the previous section, we can derive an alternate expression for the variance:

E[(X − E[X])2] = E[X2 − 2E[X]X + E[X]2]

= E[X2]− 2E[X]E[X] + E[X]2

= E[X2]− E[X]2,

where the second equality follows from linearity of expectations and the fact that E[X] is actually a
constant with respect to the outer expectation.

Properties:

- V ar[a] = 0 for any constant a ∈ R.

- V ar[af(X)] = a2V ar[f(X)] for any constant a ∈ R.

Example Calculate the mean and the variance of the uniform random variable X with PDF fX(x) =
1, ∀x ∈ [0, 1], 0 elsewhere.

E[X] =

∫ ∞

−∞
xfX(x)dx =

∫ 1

0

xdx =
1

2
.
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E[X2] =

∫ ∞

−∞
x2fX(x)dx =

∫ 1

0

x2dx =
1

3
.

V ar[X] = E[X2]− E[X]2 =
1

3
− 1

4
=

1

12
.

Example: Suppose that g(x) = 1{x ∈ A} for some subset A ⊆ Ω. What is E[g(X)]?

Discrete case:

E[g(X)] =
∑

x∈V al(X)

1{x ∈ A}PX(x)dx =
∑

x∈A

PX(x)dx = P (x ∈ A).

Continuous case:

E[g(X)] =

∫ ∞

−∞
1{x ∈ A}fX(x)dx =

∫

x∈A

fX(x)dx = P (x ∈ A).

2.6 Some common random variables

Discrete random variables

• X ∼ Bernoulli(p) (where 0 ≤ p ≤ 1): one if a coin with heads probability p comes up
heads, zero otherwise.

p(x) =

{

p if p = 1

1− p if p = 0

• X ∼ Binomial(n, p) (where 0 ≤ p ≤ 1): the number of heads in n independent flips of a
coin with heads probability p.

p(x) =

(

n

x

)

px(1− p)n−x

• X ∼ Geometric(p) (where p > 0): the number of flips of a coin with heads probability p
until the first heads.

p(x) = p(1− p)x−1

• X ∼ Poisson(λ) (where λ > 0): a probability distribution over the nonnegative integers
used for modeling the frequency of rare events.

p(x) = e−λλ
x

x!

Continuous random variables

• X ∼ Uniform(a, b) (where a < b): equal probability density to every value between a
and b on the real line.

f(x) =

{

1
b−a if a ≤ x ≤ b

0 otherwise

• X ∼ Exponential(λ) (where λ > 0): decaying probability density over the nonnegative
reals.

f(x) =

{

λe−λx if x ≥ 0

0 otherwise

• X ∼ Normal(µ, σ2): also known as the Gaussian distribution

f(x) =
1√
2πσ

e−
1

2σ2 (x−µ)2
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Figure 2: PDF and CDF of a couple of random variables.

The shape of the PDFs and CDFs of some of these random variables are shown in Figure ??.

The following table is the summary of some of the properties of these distributions.

Distribution PDF or PMF Mean Variance

Bernoulli(p)

{

p, if x = 1
1− p, if x = 0.

p p(1− p)

Binomial(n, p)
(

n
k

)

pk(1− p)n−k for 0 ≤ k ≤ n np npq

Geometric(p) p(1− p)k−1 for k = 1, 2, . . . 1
p

1−p
p2

Poisson(λ) e−λλx/x! for k = 1, 2, . . . λ λ

Uniform(a, b) 1
b−a ∀x ∈ (a, b) a+b

2
(b−a)2

12

Gaussian(µ, σ2) 1
σ
√
2π

e−
(x−µ)2

2σ2 µ σ2

Exponential(λ) λe−λx x ≥ 0, λ > 0 1
λ

1
λ2

3 Two random variables

Thus far, we have considered single random variables. In many situations, however,
there may be more than one quantity that we are interested in knowing during a ran-
dom experiment. For instance, in an experiment where we flip a coin ten times, we
may care about both X(ω) = the number of heads that come up as well as Y (ω) =
the length of the longest run of consecutive heads. In this section, we consider the setting of two
random variables.

3.1 Joint and marginal distributions

Suppose that we have two random variables X and Y . One way to work with these two random
variables is to consider each of them separately. If we do that we will only need FX(x) and FY (y).
But if we want to know about the values that X and Y assume simultaneously during outcomes
of a random experiment, we require a more complicated structure known as the joint cumulative
distribution function of X and Y , defined by

FXY (x, y) = P (X ≤ x, Y ≤ y)

It can be shown that by knowing the joint cumulative distribution function, the probability of any
event involving X and Y can be calculated.
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The joint CDF FXY (x, y) and the joint distribution functions FX(x) and FY (y) of each variable
separately are related by

FX(x) = lim
y→∞

FXY (x, y)dy

FY (y) = lim
x→∞

FXY (x, y)dx.

Here, we call FX(x) and FY (y) the marginal cumulative distribution functions of FXY (x, y).

Properties:

- 0 ≤ FXY (x, y) ≤ 1.

- limx,y→∞ FXY (x, y) = 1.

- limx,y→−∞ FXY (x, y) = 0.

- FX(x) = limy→∞ FXY (x, y).

3.2 Joint and marginal probability mass functions

If X and Y are discrete random variables, then the joint probability mass function pXY : R×R →
[0, 1] is defined by

pXY (x, y) = P (X = x, Y = y).

Here, 0 ≤ PXY (x, y) ≤ 1 for all x, y, and
∑

x∈V al(X)

∑

y∈V al(Y ) PXY (x, y) = 1.

How does the joint PMF over two variables relate to the probability mass function for each variable
separately? It turns out that

pX(x) =
∑

y

pXY (x, y).

and similarly for pY (y). In this case, we refer to pX(x) as the marginal probability mass function
of X . In statistics, the process of forming the marginal distribution with respect to one variable by
summing out the other variable is often known as “marginalization.”

3.3 Joint and marginal probability density functions

Let X and Y be two continuous random variables with joint distribution function FXY . In the case
that FXY (x, y) is everywhere differentiable in both x and y, then we can define the joint probability
density function,

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
.

Like in the single-dimensional case, fXY (x, y) 6= P (X = x, Y = y), but rather

∫∫

x∈A

fXY (x, y)dxdy = P ((X,Y ) ∈ A).

Note that the values of the probability density function fXY (x, y) are always nonnegative, but they

may be greater than 1. Nonetheless, it must be the case that
∫∞
−∞

∫∞
−∞ fXY (x, y) = 1.

Analagous to the discrete case, we define

fX(x) =

∫ ∞

−∞
fXY (x, y)dy,

as the marginal probability density function (or marginal density) of X , and similarly for fY (y).
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3.4 Conditional distributions

Conditional distributions seek to answer the question, what is the probability distribution over Y ,
when we know that X must take on a certain value x? In the discrete case, the conditional probability
mass function of X given Y is simply

pY |X(y|x) = pXY (x, y)

pX(x)
,

assuming that pX(x) 6= 0.

In the continuous case, the situation is technically a little more complicated because the probability
that a continuous random variable X takes on a specific value x is equal to zero4. Ignoring this
technical point, we simply define, by analogy to the discrete case, the conditional probability density
of Y given X = x to be

fY |X(y|x) = fXY (x, y)

fX(x)
,

provided fX(x) 6= 0.

3.5 Bayes’s rule

A useful formula that often arises when trying to derive expression for the conditional probability of
one variable given another, is Bayes’s rule.

In the case of discrete random variables X and Y ,

PY |X(y|x) = PXY (x, y)

PX(x)
=

PX|Y (x|y)PY (y)
∑

y′∈V al(Y ) PX|Y (x|y′)PY (y′)
.

If the random variables X and Y are continuous,

fY |X(y|x) = fXY (x, y)

fX(x)
=

fX|Y (x|y)fY (y)
∫∞
−∞ fX|Y (x|y′)fY (y′)dy′

.

3.6 Independence

Two random variables X and Y are independent if FXY (x, y) = FX(x)FY (y) for all values of x
and y. Equivalently,

• For discrete random variables, pXY (x, y) = pX(x)pY (y) for all x ∈ V al(X), y ∈
V al(Y ).

• For discrete random variables, pY |X(y|x) = pY (y) whenever pX(x) 6= 0 for all y ∈
V al(Y ).

• For continuous random variables, fXY (x, y) = fX(x)fY (y) for all x, y ∈ R.

• For continuous random variables, fY |X(y|x) = fY (y) whenever fX(x) 6= 0 for all y ∈ R.

4To get around this, a more reasonable way to calculate the conditional CDF is,

FY |X(y, x) = lim
∆x→0

P (Y ≤ y|x ≤ X ≤ x+∆x).

It can be easily seen that if F (x, y) is differentiable in both x, y then,

FY |X(y, x) =

∫ y

−∞

fX,Y (x, α)

fX(x)
dα

and therefore we define the conditional PDF of Y given X = x in the following way,

fY |X(y|x) =
fXY (x, y)

fX(x)
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Informally, two random variables X and Y are independent if “knowing” the value of one variable
will never have any effect on the conditional probability distribution of the other variable, that is,
you know all the information about the pair (X,Y ) by just knowing f(x) and f(y). The following
lemma formalizes this observation:

Lemma 3.1. If X and Y are independent then for any subsets A,B ⊆ R, we have,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

By using the above lemma one can prove that if X is independent of Y then any function of X is
independent of any function of Y .

3.7 Expectation and covariance

Suppose that we have two discrete random variables X,Y and g : R2 −→ R is a function of these
two random variables. Then the expected value of g is defined in the following way,

E[g(X,Y )] ,
∑

x∈V al(X)

∑

y∈V al(Y )

g(x, y)pXY (x, y).

For continuous random variables X,Y , the analogous expression is

E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fXY (x, y)dxdy.

We can use the concept of expectation to study the relationship of two random variables with each
other. In particular, the covariance of two random variables X and Y is defined as

Cov[X,Y ] , E[(X − E[X])(Y − E[Y ])]

Using an argument similar to that for variance, we can rewrite this as,

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])]

= E[XY −XE[Y ]− Y E[X] + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ]− E[Y ]E[X] + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ].

Here, the key step in showing the equality of the two forms of covariance is in the third equality,
where we use the fact that E[X] and E[Y ] are actually constants which can be pulled out of the
expectation. When Cov[X,Y ] = 0, we say that X and Y are uncorrelated5.

Properties:

- (Linearity of expectation) E[f(X,Y ) + g(X,Y )] = E[f(X,Y )] + E[g(X,Y )].

- V ar[X + Y ] = V ar[X] + V ar[Y ] + 2Cov[X,Y ].

- If X and Y are independent, then Cov[X,Y ] = 0.

- If X and Y are independent, then E[f(X)g(Y )] = E[f(X)]E[g(Y )].

4 Multiple random variables

The notions and ideas introduced in the previous section can be generalized to more than
two random variables. In particular, suppose that we have n continuous random variables,
X1(ω), X2(ω), . . . Xn(ω). In this section, for simplicity of presentation, we focus only on the
continuous case, but the generalization to discrete random variables works similarly.

5However, this is not the same thing as stating that X and Y are independent! For example, if X ∼
Uniform(−1, 1) and Y = X2, then one can show that X and Y are uncorrelated, even though they are not
independent.
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4.1 Basic properties

We can define the joint distribution function of X1, X2, . . . , Xn, the joint probability density
function of X1, X2, . . . , Xn, the marginal probability density function of X1, and the condi-
tional probability density function of X1 given X2, . . . , Xn, as

FX1,X2,...,Xn
(x1, x2, . . . xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

fX1,X2,...,Xn
(x1, x2, . . . xn) =

∂nFX1,X2,...,Xn
(x1, x2, . . . xn)

∂x1 . . . ∂xn

fX1
(X1) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX1,X2,...,Xn

(x1, x2, . . . xn)dx2 . . . dxn

fX1|X2,...,Xn
(x1|x2, . . . xn) =

fX1,X2,...,Xn
(x1, x2, . . . xn)

fX2,...,Xn
(x1, x2, . . . xn)

To calculate the probability of an event A ⊆ R
n we have,

P ((x1, x2, . . . xn) ∈ A) =

∫

(x1,x2,...xn)∈A

fX1,X2,...,Xn
(x1, x2, . . . xn)dx1dx2 . . . dxn (4)

Chain rule: From the definition of conditional probabilities for multiple random variables, one can
show that

f(x1, x2, . . . , xn) = f(xn|x1, x2 . . . , xn−1)f(x1, x2 . . . , xn−1)

= f(xn|x1, x2 . . . , xn−1)f(xn−1|x1, x2 . . . , xn−2)f(x1, x2 . . . , xn−2)

= . . . = f(x1)
n
∏

i=2

f(xi|x1, . . . , xi−1).

Independence: For multiple events, A1, . . . , Ak, we say that A1, . . . , Ak are mutually indepen-
dent if for any subset S ⊆ {1, 2, . . . , k}, we have

P (∩i∈SAi) =
∏

i∈S

P (Ai).

Likewise, we say that random variables X1, . . . , Xn are independent if

f(x1, . . . , xn) = f(x1)f(x2) · · · f(xn).

Here, the definition of mutual independence is simply the natural generalization of independence of
two random variables to multiple random variables.

Independent random variables arise often in machine learning algorithms where we assume that the
training examples belonging to the training set represent independent samples from some unknown
probability distribution. To make the significance of independence clear, consider a “bad” training

set in which we first sample a single training example (x(1), y(1)) from the some unknown distribu-
tion, and then add m− 1 copies of the exact same training example to the training set. In this case,
we have (with some abuse of notation)

P ((x(1), y(1)), . . . .(x(m), y(m))) 6=
m
∏

i=1

P (x(i), y(i)).

Despite the fact that the training set has size m, the examples are not independent! While clearly the
procedure described here is not a sensible method for building a training set for a machine learning
algorithm, it turns out that in practice, non-independence of samples does come up often, and it has
the effect of reducing the “effective size” of the training set.
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4.2 Random vectors

Suppose that we have n random variables. When working with all these random variables together,
we will often find it convenient to put them in a vector X = [X1 X2 . . . Xn]

T . We call the resulting
vector a random vector (more formally, a random vector is a mapping from Ω to R

n). It should be
clear that random vectors are simply an alternative notation for dealing with n random variables, so
the notions of joint PDF and CDF will apply to random vectors as well.

Expectation: Consider an arbitrary function from g : Rn → R. The expected value of this function
is defined as

E[g(X)] =

∫

Rn

g(x1, x2, . . . , xn)fX1,X2,...,Xn
(x1, x2, . . . xn)dx1dx2 . . . dxn, (5)

where
∫

Rn is n consecutive integrations from −∞ to ∞. If g is a function from R
n to R

m, then the
expected value of g is the element-wise expected values of the output vector, i.e., if g is

g(x) =









g1(x)
g2(x)

...
gm(x)









,

Then,

E[g(X)] =









E[g1(X)]
E[g2(X)]

...
E[gm(X)]









.

Covariance matrix: For a given random vector X : Ω → R
n, its covariance matrix Σ is the n× n

square matrix whose entries are given by Σij = Cov[Xi, Xj ].

From the definition of covariance, we have

Σ =







Cov[X1, X1] · · · Cov[X1, Xn]
...

. . .
...

Cov[Xn, X1] · · · Cov[Xn, Xn]







=







E[X2
1 ]− E[X1]E[X1] · · · E[X1Xn]− E[X1]E[Xn]

...
. . .

...

E[XnX1]− E[Xn]E[X1] · · · E[X2
n]− E[Xn]E[Xn]







=







E[X2
1 ] · · · E[X1Xn]

...
. . .

...

E[XnX1] · · · E[X2
n]






−







E[X1]E[X1] · · · E[X1]E[Xn]
...

. . .
...

E[Xn]E[X1] · · · E[Xn]E[Xn]







= E[XXT ]− E[X]E[X]T = . . . = E[(X − E[X])(X − E[X])T ].

where the matrix expectation is defined in the obvious way.

The covariance matrix has a number of useful properties:

- Σ � 0; that is, Σ is positive semidefinite.

- Σ = ΣT ; that is, Σ is symmetric.

4.3 The multivariate Gaussian distribution

One particularly important example of a probability distribution over random vectors X is called
the multivariate Gaussian or multivariate normal distribution. A random vector X ∈ R

n is said
to have a multivariate normal (or Gaussian) distribution with mean µ ∈ R

n and covariance matrix
Σ ∈ S

n
++ (where S

n
++ refers to the space of symmetric positive definite n× n matrices)

fX1,X2,...,Xn
(x1, x2, . . . , xn;µ,Σ) =

1

(2π)n/2|Σ|1/2 exp

(

−1

2
(x− µ)TΣ−1(x− µ)

)

.
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We write this as X ∼ N (µ,Σ). Notice that in the case n = 1, this reduces the regular definition of
a normal distribution with mean parameter µ1 and variance Σ11.

Generally speaking, Gaussian random variables are extremely useful in machine learning and statis-
tics for two main reasons. First, they are extremely common when modeling “noise” in statistical
algorithms. Quite often, noise can be considered to be the accumulation of a large number of small
independent random perturbations affecting the measurement process; by the Central Limit Theo-
rem, summations of independent random variables will tend to “look Gaussian.” Second, Gaussian
random variables are convenient for many analytical manipulations, because many of the integrals
involving Gaussian distributions that arise in practice have simple closed form solutions. We will
encounter this later in the course.

5 Other resources

A good textbook on probablity at the level needed for CS229 is the book, A First Course on Proba-
bility by Sheldon Ross.
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1 Basic Concepts and Notation

Linear algebra provides a way of compactly representing and operating on sets of linear
equations. For example, consider the following system of equations:

4x1 − 5x2 = −13
−2x1 + 3x2 = 9.

This is two equations and two variables, so as you know from high school algebra, you
can find a unique solution for x1 and x2 (unless the equations are somehow degenerate, for
example if the second equation is simply a multiple of the first, but in the case above there
is in fact a unique solution). In matrix notation, we can write the system more compactly
as

Ax = b

with

A =

[

4 −5
−2 3

]

, b =

[

−13
9

]

.

As we will see shortly, there are many advantages (including the obvious space savings)
to analyzing linear equations in this form.

1.1 Basic Notation

We use the following notation:

• By A ∈ Rm×n we denote a matrix with m rows and n columns, where the entries of A
are real numbers.

• By x ∈ R
n, we denote a vector with n entries. By convention, an n-dimensional vector

is often thought of as a matrix with n rows and 1 column, known as a column vector .
If we want to explicitly represent a row vector — a matrix with 1 row and n columns
— we typically write xT (here xT denotes the transpose of x, which we will define
shortly).

• The ith element of a vector x is denoted xi:

x =











x1

x2
...
xn











.
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• We use the notation aij (or Aij, Ai,j, etc) to denote the entry of A in the ith row and
jth column:

A =











a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn











.

• We denote the jth column of A by aj or A:,j:

A =





| | |
a1 a2 · · · an
| | |



 .

• We denote the ith row of A by aTi or Ai,::

A =











— aT1 —
— aT2 —

...
— aTm —











.

• Note that these definitions are ambiguous (for example, the a1 and aT1 in the previous
two definitions are not the same vector). Usually the meaning of the notation should
be obvious from its use.

2 Matrix Multiplication

The product of two matrices A ∈ Rm×n and B ∈ Rn×p is the matrix

C = AB ∈ R
m×p,

where

Cij =
n
∑

k=1

AikBkj.

Note that in order for the matrix product to exist, the number of columns in A must equal
the number of rows in B. There are many ways of looking at matrix multiplication, and
we’ll start by examining a few special cases.
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2.1 Vector-Vector Products

Given two vectors x, y ∈ Rn, the quantity xTy, sometimes called the inner product or dot
product of the vectors, is a real number given by

xT y ∈ R =
[

x1 x2 · · · xn

]











y1
y2
...
yn











=

n
∑

i=1

xiyi.

Observe that inner products are really just special case of matrix multiplication. Note that
it is always the case that xTy = yTx.

Given vectors x ∈ Rm, y ∈ Rn (not necessarily of the same size), xyT ∈ Rm×n is called
the outer product of the vectors. It is a matrix whose entries are given by (xyT )ij = xiyj,
i.e.,

xyT ∈ R
m×n =











x1

x2
...
xm











[

y1 y2 · · · yn
]

=











x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn
...

...
. . .

...
xmy1 xmy2 · · · xmyn











.

As an example of how the outer product can be useful, let 1 ∈ Rn denote an n-dimensional
vector whose entries are all equal to 1. Furthermore, consider the matrix A ∈ Rm×n whose
columns are all equal to some vector x ∈ Rm. Using outer products, we can represent A
compactly as,

A =





| | |
x x · · · x
| | |



 =











x1 x1 · · · x1

x2 x2 · · · x2
...

...
. . .

...
xm xm · · · xm











=











x1

x2
...
xm











[

1 1 · · · 1
]

= x1T .

2.2 Matrix-Vector Products

Given a matrix A ∈ Rm×n and a vector x ∈ Rn, their product is a vector y = Ax ∈ Rm.
There are a couple ways of looking at matrix-vector multiplication, and we will look at each
of them in turn.

If we write A by rows, then we can express Ax as,

y = Ax =











— aT1 —
— aT2 —

...
— aTm —











x =











aT1 x
aT2 x
...

aTmx











.
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In other words, the ith entry of y is equal to the inner product of the ith row of A and x,
yi = aTi x.

Alternatively, let’s write A in column form. In this case we see that,

y = Ax =





| | |
a1 a2 · · · an
| | |















x1

x2
...
xn











=



 a1



 x1 +



 a2



 x2 + . . .+



 an



 xn .

In other words, y is a linear combination of the columns of A, where the coefficients of
the linear combination are given by the entries of x.

So far we have been multiplying on the right by a column vector, but it is also possible
to multiply on the left by a row vector. This is written, yT = xTA for A ∈ Rm×n, x ∈ Rm,
and y ∈ Rn. As before, we can express yT in two obvious ways, depending on whether we
express A in terms on its rows or columns. In the first case we express A in terms of its
columns, which gives

yT = xTA = xT





| | |
a1 a2 · · · an
| | |



 =
[

xTa1 xTa2 · · · xTan
]

which demonstrates that the ith entry of yT is equal to the inner product of x and the ith
column of A.

Finally, expressing A in terms of rows we get the final representation of the vector-matrix
product,

yT = xTA

=
[

x1 x2 · · · xn

]











— aT1 —
— aT2 —

...
— aTm —











= x1

[

— aT1 —
]

+ x2

[

— aT2 —
]

+ ... + xn

[

— aTn —
]

so we see that yT is a linear combination of the rows of A, where the coefficients for the
linear combination are given by the entries of x.

2.3 Matrix-Matrix Products

Armed with this knowledge, we can now look at four different (but, of course, equivalent)
ways of viewing the matrix-matrix multiplication C = AB as defined at the beginning of
this section.

First, we can view matrix-matrix multiplication as a set of vector-vector products. The
most obvious viewpoint, which follows immediately from the definition, is that the (i, j)th
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entry of C is equal to the inner product of the ith row of A and the jth column of B.
Symbolically, this looks like the following,

C = AB =











— aT1 —
— aT2 —

...
— aTm —















| | |
b1 b2 · · · bp
| | |



 =











aT1 b1 aT1 b2 · · · aT1 bp
aT2 b1 aT2 b2 · · · aT2 bp
...

...
. . .

...
aTmb1 aTmb2 · · · aTmbp











.

Remember that since A ∈ Rm×n and B ∈ Rn×p, ai ∈ Rn and bj ∈ Rn, so these inner
products all make sense. This is the most “natural” representation when we represent A
by rows and B by columns. Alternatively, we can represent A by columns, and B by rows.
This representation leads to a much trickier interpretation of AB as a sum of outer products.
Symbolically,

C = AB =





| | |
a1 a2 · · · an
| | |















— bT1 —
— bT2 —

...
— bTn —











=
n
∑

i=1

aib
T
i .

Put another way, AB is equal to the sum, over all i, of the outer product of the ith column
of A and the ith row of B. Since, in this case, ai ∈ Rm and bi ∈ Rp, the dimension of the
outer product aib

T
i is m× p, which coincides with the dimension of C. Chances are, the last

equality above may appear confusing to you. If so, take the time to check it for yourself!
Second, we can also view matrix-matrix multiplication as a set of matrix-vector products.

Specifically, if we represent B by columns, we can view the columns of C as matrix-vector
products between A and the columns of B. Symbolically,

C = AB = A





| | |
b1 b2 · · · bp
| | |



 =





| | |
Ab1 Ab2 · · · Abp
| | |



 .

Here the ith column of C is given by the matrix-vector product with the vector on the right,
ci = Abi. These matrix-vector products can in turn be interpreted using both viewpoints
given in the previous subsection. Finally, we have the analogous viewpoint, where we repre-
sent A by rows, and view the rows of C as the matrix-vector product between the rows of A
and C. Symbolically,

C = AB =











— aT1 —
— aT2 —

...
— aTm —











B =











— aT1B —
— aT2B —

...
— aTmB —











.

Here the ith row of C is given by the matrix-vector product with the vector on the left,
cTi = aTi B.
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It may seem like overkill to dissect matrix multiplication to such a large degree, especially
when all these viewpoints follow immediately from the initial definition we gave (in about a
line of math) at the beginning of this section. However, virtually all of linear algebra deals
with matrix multiplications of some kind, and it is worthwhile to spend some time trying to
develop an intuitive understanding of the viewpoints presented here.

In addition to this, it is useful to know a few basic properties of matrix multiplication at
a higher level:

• Matrix multiplication is associative: (AB)C = A(BC).

• Matrix multiplication is distributive: A(B + C) = AB + AC.

• Matrix multiplication is, in general, not commutative; that is, it can be the case that
AB 6= BA. (For example, if A ∈ Rm×n and B ∈ Rn×q, the matrix product BA does
not even exist if m and q are not equal!)

If you are not familiar with these properties, take the time to verify them for yourself.
For example, to check the associativity of matrix multiplication, suppose that A ∈ Rm×n,
B ∈ Rn×p, and C ∈ Rp×q. Note that AB ∈ Rm×p, so (AB)C ∈ Rm×q. Similarly, BC ∈ Rn×q,
so A(BC) ∈ Rm×q. Thus, the dimensions of the resulting matrices agree. To show that
matrix multiplication is associative, it suffices to check that the (i, j)th entry of (AB)C is
equal to the (i, j)th entry of A(BC). We can verify this directly using the definition of
matrix multiplication:

((AB)C)ij =

p
∑

k=1

(AB)ikCkj =

p
∑

k=1

(

n
∑

l=1

AilBlk

)

Ckj

=

p
∑

k=1

(

n
∑

l=1

AilBlkCkj

)

=

n
∑

l=1

(

p
∑

k=1

AilBlkCkj

)

=

n
∑

l=1

Ail

(

p
∑

k=1

BlkCkj

)

=

n
∑

l=1

Ail(BC)lj = (A(BC))ij.

Here, the first and last two equalities simply use the definition of matrix multiplication, the
third and fifth equalities use the distributive property for scalar multiplication over addition,
and the fourth equality uses the commutative and associativity of scalar addition. This
technique for proving matrix properties by reduction to simple scalar properties will come
up often, so make sure you’re familiar with it.

3 Operations and Properties

In this section we present several operations and properties of matrices and vectors. Hope-
fully a great deal of this will be review for you, so the notes can just serve as a reference for
these topics.
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3.1 The Identity Matrix and Diagonal Matrices

The identity matrix , denoted I ∈ Rn×n, is a square matrix with ones on the diagonal and
zeros everywhere else. That is,

Iij =

{

1 i = j
0 i 6= j

It has the property that for all A ∈ Rm×n,

AI = A = IA.

Note that in some sense, the notation for the identity matrix is ambiguous, since it does not
specify the dimension of I. Generally, the dimensions of I are inferred from context so as to
make matrix multiplication possible. For example, in the equation above, the I in AI = A
is an n× n matrix, whereas the I in A = IA is an m×m matrix.

A diagonal matrix is a matrix where all non-diagonal elements are 0. This is typically
denoted D = diag(d1, d2, . . . , dn), with

Dij =

{

di i = j
0 i 6= j

Clearly, I = diag(1, 1, . . . , 1).

3.2 The Transpose

The transpose of a matrix results from “flipping” the rows and columns. Given a matrix
A ∈ Rm×n, its transpose, written AT ∈ Rn×m, is the n ×m matrix whose entries are given
by

(AT )ij = Aji.

We have in fact already been using the transpose when describing row vectors, since the
transpose of a column vector is naturally a row vector.

The following properties of transposes are easily verified:

• (AT )T = A

• (AB)T = BTAT

• (A+B)T = AT +BT

3.3 Symmetric Matrices

A square matrix A ∈ R
n×n is symmetric if A = AT . It is anti-symmetric if A = −AT .

It is easy to show that for any matrix A ∈ Rn×n, the matrix A + AT is symmetric and the
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matrix A−AT is anti-symmetric. From this it follows that any square matrix A ∈ R
n×n can

be represented as a sum of a symmetric matrix and an anti-symmetric matrix, since

A =
1

2
(A+ AT ) +

1

2
(A− AT )

and the first matrix on the right is symmetric, while the second is anti-symmetric. It turns out
that symmetric matrices occur a great deal in practice, and they have many nice properties
which we will look at shortly. It is common to denote the set of all symmetric matrices of
size n as Sn, so that A ∈ S

n means that A is a symmetric n× n matrix;

3.4 The Trace

The trace of a square matrix A ∈ Rn×n, denoted tr(A) (or just trA if the parentheses are
obviously implied), is the sum of diagonal elements in the matrix:

trA =

n
∑

i=1

Aii.

As described in the CS229 lecture notes, the trace has the following properties (included
here for the sake of completeness):

• For A ∈ R
n×n, trA = trAT .

• For A,B ∈ Rn×n, tr(A +B) = trA+ trB.

• For A ∈ Rn×n, t ∈ R, tr(tA) = t trA.

• For A,B such that AB is square, trAB = trBA.

• For A,B,C such that ABC is square, trABC = trBCA = trCAB, and so on for the
product of more matrices.

As an example of how these properties can be proven, we’ll consider the fourth property
given above. Suppose that A ∈ Rm×n and B ∈ Rn×m (so that AB ∈ Rm×m is a square
matrix). Observe that BA ∈ Rn×n is also a square matrix, so it makes sense to apply the
trace operator to it. To verify that trAB = trBA, note that

trAB =
m
∑

i=1

(AB)ii =
m
∑

i=1

(

n
∑

j=1

AijBji

)

=

m
∑

i=1

n
∑

j=1

AijBji =

n
∑

j=1

m
∑

i=1

BjiAij

=

n
∑

j=1

(

m
∑

i=1

BjiAij

)

=

n
∑

j=1

(BA)jj = trBA.
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Here, the first and last two equalities use the definition of the trace operator and matrix
multiplication. The fourth equality, where the main work occurs, uses the commutativity
of scalar multiplication in order to reverse the order of the terms in each product, and the
commutativity and associativity of scalar addition in order to rearrange the order of the
summation.

3.5 Norms

A norm of a vector ‖x‖ is informally a measure of the “length” of the vector. For example,
we have the commonly-used Euclidean or ℓ2 norm,

‖x‖2 =

√

√

√

√

n
∑

i=1

x2
i .

Note that ‖x‖22 = xTx.
More formally, a norm is any function f : Rn → R that satisfies 4 properties:

1. For all x ∈ Rn, f(x) ≥ 0 (non-negativity).

2. f(x) = 0 if and only if x = 0 (definiteness).

3. For all x ∈ Rn, t ∈ R, f(tx) = |t|f(x) (homogeneity).

4. For all x, y ∈ Rn, f(x+ y) ≤ f(x) + f(y) (triangle inequality).

Other examples of norms are the ℓ1 norm,

‖x‖1 =
n
∑

i=1

|xi|

and the ℓ∞ norm,
‖x‖∞ = maxi |xi|.

In fact, all three norms presented so far are examples of the family of ℓp norms, which are
parameterized by a real number p ≥ 1, and defined as

‖x‖p =

(

n
∑

i=1

|xi|
p

)1/p

.

Norms can also be defined for matrices, such as the Frobenius norm,

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

A2
ij =

√

tr(ATA).

Many other norms exist, but they are beyond the scope of this review.
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3.6 Linear Independence and Rank

A set of vectors {x1, x2, . . . xn} ⊂ Rm is said to be (linearly) independent if no vector can
be represented as a linear combination of the remaining vectors. Conversely, if one vector
belonging to the set can be represented as a linear combination of the remaining vectors,
then the vectors are said to be (linearly) dependent . That is, if

xn =

n−1
∑

i=1

αixi

for some scalar values α1, . . . , αn−1 ∈ R, then we say that the vectors x1, . . . , xn are linearly
dependent; otherwise, the vectors are linearly independent. For example, the vectors

x1 =





1
2
3



 x2 =





4
1
5



 x3 =





2
−3
−1





are linearly dependent because x3 = −2x1 + x2.
The column rank of a matrix A ∈ Rm×n is the size of the largest subset of columns of

A that constitute a linearly independent set. With some abuse of terminology, this is often
referred to simply as the number of linearly independent columns of A. In the same way,
the row rank is the largest number of rows of A that constitute a linearly independent set.

For any matrix A ∈ Rm×n, it turns out that the column rank of A is equal to the row
rank of A (though we will not prove this), and so both quantities are referred to collectively
as the rank of A, denoted as rank(A). The following are some basic properties of the rank:

• For A ∈ Rm×n, rank(A) ≤ min(m,n). If rank(A) = min(m,n), then A is said to be
full rank .

• For A ∈ Rm×n, rank(A) = rank(AT ).

• For A ∈ Rm×n, B ∈ Rn×p, rank(AB) ≤ min(rank(A), rank(B)).

• For A,B ∈ R
m×n, rank(A+B) ≤ rank(A) + rank(B).

3.7 The Inverse

The inverse of a square matrix A ∈ Rn×n is denoted A−1, and is the unique matrix such
that

A−1A = I = AA−1.

Note that not all matrices have inverses. Non-square matrices, for example, do not have
inverses by definition. However, for some square matrices A, it may still be the case that

11



A−1 may not exist. In particular, we say that A is invertible or non-singular if A−1

exists and non-invertible or singular otherwise.1

In order for a square matrix A to have an inverse A−1, then A must be full rank. We will
soon see that there are many alternative sufficient and necessary conditions, in addition to
full rank, for invertibility.

The following are properties of the inverse; all assume that A,B ∈ R
n×n are non-singular:

• (A−1)−1 = A

• (AB)−1 = B−1A−1

• (A−1)T = (AT )−1. For this reason this matrix is often denoted A−T .

As an example of how the inverse is used, consider the linear system of equations, Ax = b
where A ∈ R

n×n, and x, b ∈ R
n. If A is nonsingular (i.e., invertible), then x = A−1b. (What

if A ∈ Rm×n is not a square matrix? Does this work?)

3.8 Orthogonal Matrices

Two vectors x, y ∈ Rn are orthogonal if xT y = 0. A vector x ∈ Rn is normalized if
‖x‖2 = 1. A square matrix U ∈ Rn×n is orthogonal (note the different meanings when
talking about vectors versus matrices) if all its columns are orthogonal to each other and are
normalized (the columns are then referred to as being orthonormal ).

It follows immediately from the definition of orthogonality and normality that

UTU = I = UUT .

In other words, the inverse of an orthogonal matrix is its transpose. Note that if U is not
square — i.e., U ∈ Rm×n, n < m — but its columns are still orthonormal, then UTU = I,
but UUT 6= I. We generally only use the term orthogonal to describe the previous case,
where U is square.

Another nice property of orthogonal matrices is that operating on a vector with an
orthogonal matrix will not change its Euclidean norm, i.e.,

‖Ux‖2 = ‖x‖2

for any x ∈ R
n, U ∈ R

n×n orthogonal.

3.9 Range and Nullspace of a Matrix

The span of a set of vectors {x1, x2, . . . xn} is the set of all vectors that can be expressed as
a linear combination of {x1, . . . , xn}. That is,

span({x1, . . . xn}) =

{

v : v =
n
∑

i=1

αixi, αi ∈ R

}

.

1It’s easy to get confused and think that non-singular means non-invertible. But in fact, it means the
opposite! Watch out!
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It can be shown that if {x1, . . . , xn} is a set of n linearly independent vectors, where each
xi ∈ Rn, then span({x1, . . . xn}) = Rn. In other words, any vector v ∈ Rn can be written as
a linear combination of x1 through xn. The projection of a vector y ∈ Rm onto the span
of {x1, . . . , xn} (here we assume xi ∈ Rm) is the vector v ∈ span({x1, . . . xn}), such that v
is as close as possible to y, as measured by the Euclidean norm ‖v − y‖2. We denote the
projection as Proj(y; {x1, . . . , xn}) and can define it formally as,

Proj(y; {x1, . . . xn}) = argminv∈span({x1,...,xn})‖y − v‖2.

The range (sometimes also called the columnspace) of a matrix A ∈ R
m×n, denoted

R(A), is the the span of the columns of A. In other words,

R(A) = {v ∈ R
m : v = Ax, x ∈ R

n}.

Making a few technical assumptions (namely that A is full rank and that n < m), the
projection of a vector y ∈ Rm onto the range of A is given by,

Proj(y;A) = argminv∈R(A)‖v − y‖2 = A(ATA)−1ATy .

This last equation should look extremely familiar, since it is almost the same formula we
derived in class (and which we will soon derive again) for the least squares estimation of
parameters. Looking at the definition for the projection, it should not be too hard to
convince yourself that this is in fact the same objective that we minimized in our least
squares problem (except for a squaring of the norm, which doesn’t affect the optimal point)
and so these problems are naturally very connected. When A contains only a single column,
a ∈ R

m, this gives the special case for a projection of a vector on to a line:

Proj(y; a) =
aaT

aTa
y .

The nullspace of a matrix A ∈ Rm×n, denoted N (A) is the set of all vectors that equal
0 when multiplied by A, i.e.,

N (A) = {x ∈ R
n : Ax = 0}.

Note that vectors in R(A) are of size m, while vectors in the N (A) are of size n, so vectors
in R(AT ) and N (A) are both in Rn. In fact, we can say much more. It turns out that

{

w : w = u+ v, u ∈ R(AT ), v ∈ N (A)
}

= R
n and R(AT ) ∩N (A) = {0} .

In other words, R(AT ) and N (A) are disjoint subsets that together span the entire space of
R

n. Sets of this type are called orthogonal complements , and we denote this R(AT ) =
N (A)⊥.

13



3.10 The Determinant

The determinant of a square matrix A ∈ Rn×n, is a function det : Rn×n → R, and is
denoted |A| or detA (like the trace operator, we usually omit parentheses). Algebraically,
one could write down an explicit formula for the determinant of A, but this unfortunately
gives little intuition about its meaning. Instead, we’ll start out by providing a geometric
interpretation of the determinant and then visit some of its specific algebraic properties
afterwards.

Given a matrix










— aT1 —
— aT2 —

...
— aTn —











,

consider the set of points S ⊂ Rn formed by taking all possible linear combinations of the
row vectors a1, . . . , an ∈ Rn of A, where the coefficients of the linear combination are all
between 0 and 1; that is, the set S is the restriction of span({a1, . . . , an}) to only those
linear combinations whose coefficients α1, . . . , αn satisfy 0 ≤ αi ≤ 1, i = 1, . . . , n. Formally,

S = {v ∈ R
n : v =

n
∑

i=1

αiai where 0 ≤ αi ≤ 1, i = 1, . . . , n}.

The absolute value of the determinant of A, it turns out, is a measure of the “volume” of
the set S.2

For example, consider the 2× 2 matrix,

A =

[

1 3
3 2

]

. (1)

Here, the rows of the matrix are

a1 =

[

1
3

]

a2 =

[

3
2

]

.

The set S corresponding to these rows is shown in Figure 1. For two-dimensional matrices,
S generally has the shape of a parallelogram. In our example, the value of the determinant
is |A| = −7 (as can be computed using the formulas shown later in this section), so the area
of the parallelogram is 7. (Verify this for yourself!)

In three dimensions, the set S corresponds to an object known as a parallelepiped (a three-
dimensional box with skewed sides, such that every face has the shape of a parallelogram).
The absolute value of the determinant of the 3 × 3 matrix whose rows define S give the
three-dimensional volume of the parallelepiped. In even higher dimensions, the set S is an
object known as an n-dimensional parallelotope.

2Admittedly, we have not actually defined what we mean by “volume” here, but hopefully the intuition
should be clear enough. When n = 2, our notion of “volume” corresponds to the area of S in the Cartesian
plane. When n = 3, “volume” corresponds with our usual notion of volume for a three-dimensional object.
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a1

a2

(1, 3)

(3, 2)

(4, 5)

(0, 0)

Figure 1: Illustration of the determinant for the 2×2 matrix A given in (1). Here, a1 and a2
are vectors corresponding to the rows of A, and the set S corresponds to the shaded region
(i.e., the parallelogram). The absolute value of the determinant, |detA| = 7, is the area of
the parallelogram.

Algebraically, the determinant satisfies the following three properties (from which all
other properties follow, including the general formula):

1. The determinant of the identity is 1, |I| = 1. (Geometrically, the volume of a unit
hypercube is 1).

2. Given a matrix A ∈ Rn×n, if we multiply a single row in A by a scalar t ∈ R, then the
determinant of the new matrix is t|A|,

∣

∣

∣

∣

∣

∣

∣

∣

∣











— t aT1 —
— aT2 —

...
— aTm —











∣

∣

∣

∣

∣

∣

∣

∣

∣

= t|A|.

(Geometrically, multiplying one of the sides of the set S by a factor t causes the volume
to increase by a factor t.)

3. If we exchange any two rows aTi and aTj of A, then the determinant of the new matrix
is −|A|, for example

∣

∣

∣

∣

∣

∣

∣

∣

∣











— aT2 —
— aT1 —

...
— aTm —











∣

∣

∣

∣

∣

∣

∣

∣

∣

= −|A|.

In case you are wondering, it is not immediately obvious that a function satisfying the above
three properties exists. In fact, though, such a function does exist, and is unique (which we
will not prove here).

Several properties that follow from the three properties above include:
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• For A ∈ R
n×n, |A| = |AT |.

• For A,B ∈ Rn×n, |AB| = |A||B|.

• For A ∈ Rn×n, |A| = 0 if and only if A is singular (i.e., non-invertible). (If A is singular
then it does not have full rank, and hence its columns are linearly dependent. In this
case, the set S corresponds to a “flat sheet” within the n-dimensional space and hence
has zero volume.)

• For A ∈ Rn×n and A non-singular, |A−1| = 1/|A|.

Before giving the general definition for the determinant, we define, for A ∈ Rn×n, A\i,\j ∈
R

(n−1)×(n−1) to be the matrix that results from deleting the ith row and jth column from A.
The general (recursive) formula for the determinant is

|A| =

n
∑

i=1

(−1)i+jaij |A\i,\j| (for any j ∈ 1, . . . , n)

=
n
∑

j=1

(−1)i+jaij |A\i,\j| (for any i ∈ 1, . . . , n)

with the initial case that |A| = a11 for A ∈ R1×1. If we were to expand this formula
completely for A ∈ Rn×n, there would be a total of n! (n factorial) different terms. For this
reason, we hardly ever explicitly write the complete equation of the determinant for matrices
bigger than 3× 3. However, the equations for determinants of matrices up to size 3× 3 are
fairly common, and it is good to know them:

|[a11]| = a11
∣

∣

∣

∣

[

a11 a12
a21 a22

]
∣

∣

∣

∣

= a11a22 − a12a21
∣

∣

∣

∣

∣

∣





a11 a12 a13
a21 a22 a23
a31 a32 a33





∣

∣

∣

∣

∣

∣

=
a11a22a33 + a12a23a31 + a13a21a32

−a11a23a32 − a12a21a33 − a13a22a31

The classical adjoint (often just called the adjoint) of a matrix A ∈ Rn×n, is denoted
adj(A), and defined as

adj(A) ∈ R
n×n, (adj(A))ij = (−1)i+j |A\j,\i|

(note the switch in the indices A\j,\i). It can be shown that for any nonsingular A ∈ Rn×n,

A−1 =
1

|A|
adj(A) .

While this is a nice “explicit” formula for the inverse of matrix, we should note that, numer-
ically, there are in fact much more efficient ways of computing the inverse.
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3.11 Quadratic Forms and Positive Semidefinite Matrices

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the scalar value xTAx is called a
quadratic form . Written explicitly, we see that

xTAx =
n
∑

i=1

xi(Ax)i =
n
∑

i=1

xi

(

n
∑

j=1

Aijxj

)

=
n
∑

i=1

n
∑

j=1

Aijxixj .

Note that,

xTAx = (xTAx)T = xTATx = xT

(

1

2
A+

1

2
AT

)

x,

where the first equality follows from the fact that the transpose of a scalar is equal to
itself, and the second equality follows from the fact that we are averaging two quantities
which are themselves equal. From this, we can conclude that only the symmetric part of
A contributes to the quadratic form. For this reason, we often implicitly assume that the
matrices appearing in a quadratic form are symmetric.

We give the following definitions:

• A symmetric matrix A ∈ Sn is positive definite (PD) if for all non-zero vectors
x ∈ Rn, xTAx > 0. This is usually denoted A ≻ 0 (or just A > 0), and often times the
set of all positive definite matrices is denoted Sn

++.

• A symmetric matrix A ∈ Sn is positive semidefinite (PSD) if for all vectors xTAx ≥
0. This is written A � 0 (or just A ≥ 0), and the set of all positive semidefinite matrices
is often denoted S

n
+.

• Likewise, a symmetric matrix A ∈ Sn is negative definite (ND), denoted A ≺ 0 (or
just A < 0) if for all non-zero x ∈ Rn, xTAx < 0.

• Similarly, a symmetric matrix A ∈ Sn is negative semidefinite (NSD), denoted
A � 0 (or just A ≤ 0) if for all x ∈ R

n, xTAx ≤ 0.

• Finally, a symmetric matrix A ∈ Sn is indefinite, if it is neither positive semidefinite
nor negative semidefinite — i.e., if there exists x1, x2 ∈ Rn such that xT

1Ax1 > 0 and
xT
2Ax2 < 0.

It should be obvious that if A is positive definite, then −A is negative definite and vice
versa. Likewise, if A is positive semidefinite then −A is negative semidefinite and vice versa.
If A is indefinite, then so is −A.

One important property of positive definite and negative definite matrices is that they
are always full rank, and hence, invertible. To see why this is the case, suppose that some
matrix A ∈ Rn×n is not full rank. Then, suppose that the jth column of A is expressible as
a linear combination of other n− 1 columns:

aj =
∑

i 6=j

xiai,
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for some x1, . . . , xj−1, xj+1, . . . , xn ∈ R. Setting xj = −1, we have

Ax =

n
∑

i=1

xiai = 0.

But this implies xTAx = 0 for some non-zero vector x, so A must be neither positive definite
nor negative definite. Therefore, if A is either positive definite or negative definite, it must
be full rank.

Finally, there is one type of positive definite matrix that comes up frequently, and so
deserves some special mention. Given any matrix A ∈ Rm×n (not necessarily symmetric or
even square), the matrix G = ATA (sometimes called a Gram matrix ) is always positive
semidefinite. Further, if m ≥ n (and we assume for convenience that A is full rank), then
G = ATA is positive definite.

3.12 Eigenvalues and Eigenvectors

Given a square matrix A ∈ Rn×n, we say that λ ∈ C is an eigenvalue of A and x ∈ Cn is
the corresponding eigenvector 3 if

Ax = λx, x 6= 0.

Intuitively, this definition means that multiplying A by the vector x results in a new vector
that points in the same direction as x, but scaled by a factor λ. Also note that for any
eigenvector x ∈ Cn, and scalar t ∈ C, A(cx) = cAx = cλx = λ(cx), so cx is also an
eigenvector. For this reason when we talk about “the” eigenvector associated with λ, we
usually assume that the eigenvector is normalized to have length 1 (this still creates some
ambiguity, since x and −x will both be eigenvectors, but we will have to live with this).

We can rewrite the equation above to state that (λ, x) is an eigenvalue-eigenvector pair
of A if,

(λI − A)x = 0, x 6= 0.

But (λI − A)x = 0 has a non-zero solution to x if and only if (λI − A) has a non-empty
nullspace, which is only the case if (λI −A) is singular, i.e.,

|(λI − A)| = 0.

We can now use the previous definition of the determinant to expand this expression
into a (very large) polynomial in λ, where λ will have maximum degree n. We then find
the n (possibly complex) roots of this polynomial to find the n eigenvalues λ1, . . . , λn. To
find the eigenvector corresponding to the eigenvalue λi, we simply solve the linear equation
(λiI − A)x = 0. It should be noted that this is not the method which is actually used

3Note that λ and the entries of x are actually in C, the set of complex numbers, not just the reals; we
will see shortly why this is necessary. Don’t worry about this technicality for now, you can think of complex
vectors in the same way as real vectors.
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in practice to numerically compute the eigenvalues and eigenvectors (remember that the
complete expansion of the determinant has n! terms); it is rather a mathematical argument.

The following are properties of eigenvalues and eigenvectors (in all cases assume A ∈ Rn×n

has eigenvalues λi, . . . , λn and associated eigenvectors x1, . . . xn):

• The trace of a A is equal to the sum of its eigenvalues,

trA =

n
∑

i=1

λi.

• The determinant of A is equal to the product of its eigenvalues,

|A| =
n
∏

i=1

λi.

• The rank of A is equal to the number of non-zero eigenvalues of A.

• If A is non-singular then 1/λi is an eigenvalue of A−1 with associated eigenvector xi,
i.e., A−1xi = (1/λi)xi. (To prove this, take the eigenvector equation, Axi = λixi and
left-multiply each side by A−1.)

• The eigenvalues of a diagonal matrix D = diag(d1, . . . dn) are just the diagonal entries
d1, . . . dn.

We can write all the eigenvector equations simultaneously as

AX = XΛ

where the columns of X ∈ Rn×n are the eigenvectors of A and Λ is a diagonal matrix whose
entries are the eigenvalues of A, i.e.,

X ∈ R
n×n =





| | |
x1 x2 · · · xn

| | |



 , Λ = diag(λ1, . . . , λn).

If the eigenvectors of A are linearly independent, then the matrix X will be invertible, so
A = XΛX−1. A matrix that can be written in this form is called diagonalizable.

3.13 Eigenvalues and Eigenvectors of Symmetric Matrices

Two remarkable properties come about when we look at the eigenvalues and eigenvectors
of a symmetric matrix A ∈ Sn. First, it can be shown that all the eigenvalues of A are
real. Secondly, the eigenvectors of A are orthonormal, i.e., the matrix X defined above is an
orthogonal matrix (for this reason, we denote the matrix of eigenvectors as U in this case).
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We can therefore represent A as A = UΛUT , remembering from above that the inverse of
an orthogonal matrix is just its transpose.

Using this, we can show that the definiteness of a matrix depends entirely on the sign of
its eigenvalues. Suppose A ∈ Sn = UΛUT . Then

xTAx = xTUΛUTx = yTΛy =
n
∑

i=1

λiy
2
i

where y = UTx (and since U is full rank, any vector y ∈ Rn can be represented in this form).
Because y2i is always positive, the sign of this expression depends entirely on the λi’s. If all
λi > 0, then the matrix is positive definite; if all λi ≥ 0, it is positive semidefinite. Likewise,
if all λi < 0 or λi ≤ 0, then A is negative definite or negative semidefinite respectively.
Finally, if A has both positive and negative eigenvalues, it is indefinite.

An application where eigenvalues and eigenvectors come up frequently is in maximizing
some function of a matrix. In particular, for a matrix A ∈ Sn, consider the following
maximization problem,

maxx∈Rn xTAx subject to ‖x‖22 = 1

i.e., we want to find the vector (of norm 1) which maximizes the quadratic form. Assuming
the eigenvalues are ordered as λ1 ≥ λ2 ≥ . . . ≥ λn, the optimal x for this optimization
problem is x1, the eigenvector corresponding to λ1. In this case the maximal value of the
quadratic form is λ1. Similarly, the optimal solution to the minimization problem,

minx∈Rn xTAx subject to ‖x‖22 = 1

is xn, the eigenvector corresponding to λn, and the minimal value is λn. This can be proved by
appealing to the eigenvector-eigenvalue form of A and the properties of orthogonal matrices.
However, in the next section we will see a way of showing it directly using matrix calculus.

4 Matrix Calculus

While the topics in the previous sections are typically covered in a standard course on linear
algebra, one topic that does not seem to be covered very often (and which we will use
extensively) is the extension of calculus to the vector setting. Despite the fact that all the
actual calculus we use is relatively trivial, the notation can often make things look much
more difficult than they are. In this section we present some basic definitions of matrix
calculus and provide a few examples.

4.1 The Gradient

Suppose that f : Rm×n → R is a function that takes as input a matrix A of size m× n and
returns a real value. Then the gradient of f (with respect to A ∈ Rm×n) is the matrix of

20



partial derivatives, defined as:

∇Af(A) ∈ R
m×n =













∂f(A)
∂A11

∂f(A)
∂A12

· · · ∂f(A)
∂A1n

∂f(A)
∂A21

∂f(A)
∂A22

· · · ∂f(A)
∂A2n

...
...

. . .
...

∂f(A)
∂Am1

∂f(A)
∂Am2

· · · ∂f(A)
∂Amn













i.e., an m× n matrix with

(∇Af(A))ij =
∂f(A)

∂Aij

.

Note that the size of ∇Af(A) is always the same as the size of A. So if, in particular, A is
just a vector x ∈ Rn,

∇xf(x) =













∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xn













.

It is very important to remember that the gradient of a function is only defined if the function
is real-valued, that is, if it returns a scalar value. We can not, for example, take the gradient
of Ax,A ∈ Rn×n with respect to x, since this quantity is vector-valued.

It follows directly from the equivalent properties of partial derivatives that:

• ∇x(f(x) + g(x)) = ∇xf(x) +∇xg(x).

• For t ∈ R, ∇x(t f(x)) = t∇xf(x).

In principle, gradients are a natural extension of partial derivatives to functions of mul-
tiple variables. In practice, however, working with gradients can sometimes be tricky for
notational reasons. For example, suppose that A ∈ Rm×n is a matrix of fixed coefficients
and suppose that b ∈ Rm is a vector of fixed coefficients. Let f : Rm → R be the function
defined by f(z) = zT z, such that ∇zf(z) = 2z. But now, consider the expression,

∇f(Ax).

How should this expression be interpreted? There are at least two possibilities:

1. In the first interpretation, recall that ∇zf(z) = 2z. Here, we interpret ∇f(Ax) as
evaluating the gradient at the point Ax, hence,

∇f(Ax) = 2(Ax) = 2Ax ∈ R
m.

2. In the second interpretation, we consider the quantity f(Ax) as a function of the input
variables x. More formally, let g(x) = f(Ax). Then in this interpretation,

∇f(Ax) = ∇xg(x) ∈ R
n.
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Here, we can see that these two interpretations are indeed different. One interpretation yields
an m-dimensional vector as a result, while the other interpretation yields an n-dimensional
vector as a result! How can we resolve this?

Here, the key is to make explicit the variables which we are differentiating with respect
to. In the first case, we are differentiating the function f with respect to its arguments z and
then substituting the argument Ax. In the second case, we are differentiating the composite
function g(x) = f(Ax) with respect to x directly. We denote the first case as ∇zf(Ax) and
the second case as ∇xf(Ax).

4 Keeping the notation clear is extremely important (as you’ll
find out in your homework, in fact!).

4.2 The Hessian

Suppose that f : Rn → R is a function that takes a vector in Rn and returns a real number.
Then the Hessian matrix with respect to x, written ∇2

xf(x) or simply as H is the n × n
matrix of partial derivatives,

∇2
xf(x) ∈ R

n×n =













∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)

∂x2

2

· · · ∂2f(x)
∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n













.

In other words, ∇2
xf(x) ∈ Rn×n, with

(∇2
xf(x))ij =

∂2f(x)

∂xi∂xj
.

Note that the Hessian is always symmetric, since

∂2f(x)

∂xi∂xj
=

∂2f(x)

∂xj∂xi
.

Similar to the gradient, the Hessian is defined only when f(x) is real-valued.
It is natural to think of the gradient as the analogue of the first derivative for functions

of vectors, and the Hessian as the analogue of the second derivative (and the symbols we
use also suggest this relation). This intuition is generally correct, but there a few caveats to
keep in mind.

4A drawback to this notation that we will have to live with is the fact that in the first case, ∇zf(Ax) it
appears that we are differentiating with respect to a variable that does not even appear in the expression
being differentiated! For this reason, the first case is often written as ∇f(Ax), and the fact that we are
differentiating with respect to the arguments of f is understood. However, the second case is always written
as ∇xf(Ax).
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First, for real-valued functions of one variable f : R → R, it is a basic definition that the
second derivative is the derivative of the first derivative, i.e.,

∂2f(x)

∂x2
=

∂

∂x

∂

∂x
f(x).

However, for functions of a vector, the gradient of the function is a vector, and we cannot
take the gradient of a vector — i.e.,

∇x∇xf(x) = ∇x













∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xn













and this expression is not defined. Therefore, it is not the case that the Hessian is the
gradient of the gradient. However, this is almost true, in the following sense: If we look at
the ith entry of the gradient (∇xf(x))i = ∂f(x)/∂xi, and take the gradient with respect to
x we get

∇x
∂f(x)

∂xi
=













∂2f(x)
∂xi∂x1

∂2f(x)
∂xi∂x2

...
∂f(x)
∂xi∂xn













which is the ith column (or row) of the Hessian. Therefore,

∇2
xf(x) =

[

∇x(∇xf(x))1 ∇x(∇xf(x))2 · · · ∇x(∇xf(x))n
]

.

If we don’t mind being a little bit sloppy we can say that (essentially)∇2
xf(x) = ∇x(∇xf(x))

T ,
so long as we understand that this really means taking the gradient of each entry of (∇xf(x))

T ,
not the gradient of the whole vector.

Finally, note that while we can take the gradient with respect to a matrix A ∈ Rn, for
the purposes of this class we will only consider taking the Hessian with respect to a vector
x ∈ Rn. This is simply a matter of convenience (and the fact that none of the calculations
we do require us to find the Hessian with respect to a matrix), since the Hessian with respect
to a matrix would have to represent all the partial derivatives ∂2f(A)/(∂Aij∂Akℓ), and it is
rather cumbersome to represent this as a matrix.

4.3 Gradients and Hessians of Quadratic and Linear Functions

Now let’s try to determine the gradient and Hessian matrices for a few simple functions. It
should be noted that all the gradients given here are special cases of the gradients given in
the CS229 lecture notes.
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For x ∈ R
n, let f(x) = bTx for some known vector b ∈ R

n. Then

f(x) =

n
∑

i=1

bixi

so
∂f(x)

∂xk
=

∂

∂xk

n
∑

i=1

bixi = bk.

From this we can easily see that ∇xb
Tx = b. This should be compared to the analogous

situation in single variable calculus, where ∂/(∂x) ax = a.
Now consider the quadratic function f(x) = xTAx for A ∈ Sn. Remember that

f(x) =

n
∑

i=1

n
∑

j=1

Aijxixj .

To take the partial derivative, we’ll consider the terms including xk and x2
k factors separately:

∂f(x)

∂xk
=

∂

∂xk

n
∑

i=1

n
∑

j=1

Aijxixj

=
∂

∂xk

[

∑

i 6=k

∑

j 6=k

Aijxixj +
∑

i 6=k

Aikxixk +
∑

j 6=k

Akjxkxj + Akkx
2
k

]

=
∑

i 6=k

Aikxi +
∑

j 6=k

Akjxj + 2Akkxk

=
n
∑

i=1

Aikxi +
n
∑

j=1

Akjxj = 2
n
∑

i=1

Akixi,

where the last equality follows since A is symmetric (which we can safely assume, since it is
appearing in a quadratic form). Note that the kth entry of ∇xf(x) is just the inner product
of the kth row of A and x. Therefore, ∇xx

TAx = 2Ax. Again, this should remind you of
the analogous fact in single-variable calculus, that ∂/(∂x) ax2 = 2ax.

Finally, let’s look at the Hessian of the quadratic function f(x) = xTAx (it should be
obvious that the Hessian of a linear function bTx is zero). In this case,

∂2f(x)

∂xk∂xℓ

=
∂

∂xk

[

∂f(x)

∂xℓ

]

=
∂

∂xk

[

2
n
∑

i=1

Aℓixi

]

= 2Aℓk = 2Akℓ.

Therefore, it should be clear that ∇2
xx

TAx = 2A, which should be entirely expected (and
again analogous to the single-variable fact that ∂2/(∂x2) ax2 = 2a).

To recap,

• ∇xb
Tx = b

• ∇xx
TAx = 2Ax (if A symmetric)

• ∇2
xx

TAx = 2A (if A symmetric)
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4.4 Least Squares

Let’s apply the equations we obtained in the last section to derive the least squares equations.
Suppose we are given matrices A ∈ Rm×n (for simplicity we assume A is full rank) and a
vector b ∈ Rm such that b 6∈ R(A). In this situation we will not be able to find a vector
x ∈ Rn, such that Ax = b, so instead we want to find a vector x such that Ax is as close as
possible to b, as measured by the square of the Euclidean norm ‖Ax− b‖22.

Using the fact that ‖x‖22 = xTx, we have

‖Ax− b‖22 = (Ax− b)T (Ax− b)

= xTATAx− 2bTAx+ bT b

Taking the gradient with respect to x we have, and using the properties we derived in the
previous section

∇x(x
TATAx− 2bTAx+ bT b) = ∇xx

TATAx−∇x2b
TAx+∇xb

T b

= 2ATAx− 2AT b

Setting this last expression equal to zero and solving for x gives the normal equations

x = (ATA)−1AT b

which is the same as what we derived in class.

4.5 Gradients of the Determinant

Now let’s consider a situation where we find the gradient of a function with respect to
a matrix, namely for A ∈ Rn×n, we want to find ∇A|A|. Recall from our discussion of
determinants that

|A| =
n
∑

i=1

(−1)i+jAij|A\i,\j | (for any j ∈ 1, . . . , n)

so
∂

∂Akℓ

|A| =
∂

∂Akℓ

n
∑

i=1

(−1)i+jAij |A\i,\j| = (−1)k+ℓ|A\k,\ℓ| = (adj(A))ℓk.

From this it immediately follows from the properties of the adjoint that

∇A|A| = (adj(A))T = |A|A−T .

Now let’s consider the function f : Sn
++ → R, f(A) = log |A|. Note that we have to

restrict the domain of f to be the positive definite matrices, since this ensures that |A| > 0,
so that the log of |A| is a real number. In this case we can use the chain rule (nothing fancy,
just the ordinary chain rule from single-variable calculus) to see that

∂ log |A|

∂Aij
=

∂ log |A|

∂|A|

∂|A|

∂Aij
=

1

|A|

∂|A|

∂Aij
.
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From this it should be obvious that

∇A log |A| =
1

|A|
∇A|A| = A−1,

where we can drop the transpose in the last expression because A is symmetric. Note the
similarity to the single-valued case, where ∂/(∂x) log x = 1/x.

4.6 Eigenvalues as Optimization

Finally, we use matrix calculus to solve an optimization problem in a way that leads directly
to eigenvalue/eigenvector analysis. Consider the following, equality constrained optimization
problem:

maxx∈Rn xTAx subject to ‖x‖22 = 1

for a symmetric matrix A ∈ Sn. A standard way of solving optimization problems with
equality constraints is by forming the Lagrangian , an objective function that includes the
equality constraints.5 The Lagrangian in this case can be given by

L(x, λ) = xTAx− λxTx

where λ is called the Lagrange multiplier associated with the equality constraint. It can be
established that for x∗ to be a optimal point to the problem, the gradient of the Lagrangian
has to be zero at x∗ (this is not the only condition, but it is required). That is,

∇xL(x, λ) = ∇x(x
TAx− λxTx) = 2ATx− 2λx = 0.

Notice that this is just the linear equation Ax = λx. This shows that the only points which
can possibly maximize (or minimize) xTAx assuming xTx = 1 are the eigenvectors of A.

5Don’t worry if you haven’t seen Lagrangians before, as we will cover them in greater detail later in
CS229.
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CS229 Supplemental Lecture notes

Hoeffding’s inequality

John Duchi

1 Basic probability bounds

A basic question in probability, statistics, and machine learning is the fol-
lowing: given a random variable Z with expectation E[Z], how likely is Z to
be close to its expectation? And more precisely, how close is it likely to be?
With that in mind, these notes give a few tools for computing bounds of the
form

P(Z ≥ E[Z] + t) and P(Z ≤ E[Z]− t) (1)

for t ≥ 0.
Our first bound is perhaps the most basic of all probability inequalities,

and it is known as Markov’s inequality. Given its basic-ness, it is perhaps
unsurprising that its proof is essentially only one line.

Proposition 1 (Markov’s inequality). Let Z ≥ 0 be a non-negative random

variable. Then for all t ≥ 0,

P(Z ≥ t) ≤ E[Z]

t
.

Proof We note that P(Z ≥ t) = E[1 {Z ≥ t}], and that if Z ≥ t, then it
must be the case that Z/t ≥ 1 ≥ 1 {Z ≥ t}, while if Z < t, then we still have
Z/t ≥ 0 = 1 {Z ≥ t}. Thus

P(Z ≥ t) = E[1 {Z ≥ t}] ≤ E

[

Z

t

]

=
E[Z]

t
,

as desired.
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Essentially all other bounds on the probabilities (1) are variations on
Markov’s inequality. The first variation uses second moments—the variance—
of a random variable rather than simply its mean, and is known as Cheby-
shev’s inequality.

Proposition 2 (Chebyshev’s inequality). Let Z be any random variable with

Var(Z) < ∞. Then

P(Z ≥ E[Z] + t or Z ≤ E[Z]− t) ≤ Var(Z)

t2

for t ≥ 0.

Proof The result is an immediate consequence of Markov’s inequality. We
note that if Z ≥ E[Z] + t, then certainly we have (Z − E[Z])2 ≥ t2, and
similarly if Z ≤ E[Z]− t we have (Z − E[Z])2 ≥ t2. Thus

P(Z ≥ E[Z] + t or Z ≤ E[Z]− t) = P((Z − E[Z])2 ≥ t2)

(i)

≤ E[(Z − E[Z])2]

t2
=

Var(Z)

t2
,

where step (i) is Markov’s inequality.

A nice consequence of Chebyshev’s inequality is that averages of random
variables with finite variance converge to their mean. Let us give an example
of this fact. Suppose that Zi are i.i.d. and satisfy E[Zi] = 0. Then E[Zi] = 0,
while if we define Z̄ = 1

n

∑n

i=1 Zi then

Var(Z̄) = E

[

(

1

n

n
∑

i=1

Zi

)2
]

=
1

n2

∑

i,j≤n

E[ZiZj] =
1

n2

n
∑

i=1

E[Z2
i ] =

Var(Z1)

n
.

In particular, for any t ≥ 0 we have

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Zi

∣

∣

∣

∣

∣

≥ t

)

≤ Var(Z1)

nt2
,

so that P(|Z̄| ≥ t) → 0 for any t > 0.
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2 Moment generating functions

Often, we would like sharper—even exponential—bounds on the probability
that a random variable Z exceeds its expectation by much. With that in
mind, we need a stronger condition than finite variance, for which moment
generating functions are natural candidates. (Conveniently, they also play
nicely with sums, as we will see.) Recall that for a random variable Z, the
moment generating function of Z is the function

MZ(λ) := E[exp(λZ)], (2)

which may be infinite for some λ.

2.1 Chernoff bounds

Chernoff bounds use of moment generating functions in an essential way to
give exponential deviation bounds.

Proposition 3 (Chernoff bounds). Let Z be any random variable. Then for

any t ≥ 0,

P(Z ≥ E[Z] + t) ≤ min
λ≥0

E[eλ(Z−E[Z])]e−λt = min
λ≥0

MZ−E[Z](λ)e
−λt

and

P(Z ≤ E[Z]− t) ≤ min
λ≥0

E[eλ(E[Z]−Z)]e−λt = min
λ≥0

ME[Z]−Z(λ)e
−λt.

Proof We only prove the first inequality, as the second is completely iden-
tical. We use Markov’s inequality. For any λ > 0, we have Z ≥ E[Z] + t if
and only if eλZ ≥ eλE[Z]+λt, or eλ(Z−E[Z]) ≥ eλt. Thus, we have

P(Z − E[Z] ≥ t) = P(eλ(Z−E[Z]) ≥ eλt)
(i)

≤ E[eλ(Z−E[Z])]e−λt,

where the inequality (i) follows from Markov’s inequality. As our choice of
λ > 0 did not matter, we can take the best one by minizing the right side of
the bound. (And noting that certainly the bound holds at λ = 0.)

3



The important result is that Chernoff bounds “play nicely” with sum-
mations, which is a consequence of the moment generating function. Let us
assume that Zi are independent. Then we have that

MZ1+···+Zn
(λ) =

n
∏

i=1

MZi
(λ),

which we see because

E

[

exp

(

λ
n
∑

i=1

Zi

)

]

= E

[

n
∏

i=1

exp(λZi)

]

=
n
∏

i=1

E[exp(λZi)],

by of the independence of the Zi. This means that when we calculate a
Chernoff bound of a sum of i.i.d. variables, we need only calculate the moment
generating function for one of them. Indeed, suppose that Zi are i.i.d. and
(for simplicity) mean zero. Then

P

( n
∑

i=1

Zi ≥ t

)

≤
∏n

i=1 E [exp(λZi)]

eλt

= (E[eλZ1 ])ne−λt,

by the Chernoff bound.

2.2 Moment generating function examples

Now we give several examples of moment generating functions, which enable
us to give a few nice deviation inequalities as a result. For all of our examples,
we will have very convienent bounds of the form

MZ(λ) = E[eλZ ] ≤ exp

(

C2λ2

2

)

for all λ ∈ R,

for some C ∈ R (which depends on the distribution of Z); this form is very
nice for applying Chernoff bounds.

We begin with the classical normal distribution, where Z ∼ N (0, σ2).
Then we have

E[exp(λZ)] = exp

(

λ2σ2

2

)

,
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which one obtains via a calculation that we omit. (You should work this out
if you are curious!)

A second example is known as a Rademacher random variable, or the
random sign variable. Let S = 1 with probability 1

2
and S = −1 with

probability 1
2
. Then we claim that

E[eλS] ≤ exp

(

λ2

2

)

for all λ ∈ R. (3)

To see inequality (3), we use the Taylor expansion of the exponential function,

that is, that ex =
∑∞

k=0
xk

k!
. Note that E[Sk] = 0 whenever k is odd, while

E[Sk] = 1 whenever k is even. Then we have

E[eλS] =
∞
∑

k=0

λk
E[Sk]

k!

=
∑

k=0,2,4,...

λk

k!
=

∞
∑

k=0

λ2k

(2k)!
.

Finally, we use that (2k)! ≥ 2k · k! for all k = 0, 1, 2, . . ., so that

E[eλS] ≤
∞
∑

k=0

(λ2)k

2k · k! =
∞
∑

k=0

(

λ2

2

)k
1

k!
= exp

(

λ2

2

)

.

Let us apply inequality (3) in a Chernoff bound to see how large a sum of
i.i.d. random signs is likely to be.

We have that if Z =
∑n

i=1 Si, where Si ∈ {±1} is a random sign, then
E[Z] = 0. By the Chernoff bound, it becomes immediately clear that

P(Z ≥ t) ≤ E[eλZ ]e−λt = E[eλS1 ]ne−λt ≤ exp

(

nλ2

2

)

e−λt.

Applying the Chernoff bound technique, we may minimize this in λ ≥ 0,
which is equivalent to finding

min
λ≥0

{

nλ2

2
− λt

}

.

Luckily, this is a convenient function to minimize: taking derivatives and
setting to zero, we have nλ− t = 0, or λ = t/n, which gives

P(Z ≥ t) ≤ exp

(

− t2

2n

)

.

5



In particular, taking t =
√

2n log 1
δ
, we have

P

(

n
∑

i=1

Si ≥
√

2n log
1

δ

)

≤ δ.

So Z =
∑n

i=1 Si = O(
√
n) with extremely high probability—the sum of n

independent random signs is essentially never larger than O(
√
n).

3 Hoeffding’s lemma and Hoeffding’s inequal-

ity

Hoeffding’s inequality is a powerful technique—perhaps the most important
inequality in learning theory—for bounding the probability that sums of
bounded random variables are too large or too small. We will state the
inequality, and then we will prove a weakened version of it based on our
moment generating function calculations earlier.

Theorem 4 (Hoeffding’s inequality). Let Z1, . . . , Zn be independent bounded

random variables with Zi ∈ [a, b] for all i, where −∞ < a ≤ b < ∞. Then

P

(

1

n

n
∑

i=1

(Zi − E[Zi]) ≥ t

)

≤ exp

(

− 2nt2

(b− a)2

)

and

P

(

1

n

n
∑

i=1

(Zi − E[Zi]) ≤ −t

)

≤ exp

(

− 2nt2

(b− a)2

)

for all t ≥ 0.

We prove Theorem 4 by using a combination of (1) Chernoff bounds and
(2) a classic lemma known as Hoeffding’s lemma, which we now state.

Lemma 5 (Hoeffding’s lemma). Let Z be a bounded random variable with

Z ∈ [a, b]. Then

E[exp(λ(Z − E[Z]))] ≤ exp

(

λ2(b− a)2

8

)

for all λ ∈ R.

6



Proof We prove a slightly weaker version of this lemma with a factor of 2
instead of 8 using our random sign moment generating bound and an inequal-
ity known as Jensen’s inequality (we will see this very important inequality
later in our derivation of the EM algorithm). Jensen’s inequality states the
following: if f : R → R is a convex function, meaning that f is bowl-shaped,
then

f(E[Z]) ≤ E[f(Z)].

The simplest way to remember this inequality is to think of f(t) = t2, and
note that if E[Z] = 0 then f(E[Z]) = 0, while we generally have E[Z2] > 0.
In any case, f(t) = exp(t) and f(t) = exp(−t) are convex functions.

We use a clever technique in probability theory known as symmetrization

to give our result (you are not expected to know this, but it is a very common
technique in probability theory, machine learning, and statistics, so it is
good to have seen). First, let Z ′ be an independent copy of Z with the
same distribution, so that Z ′ ∈ [a, b] and E[Z ′] = E[Z], but Z and Z ′ are
independent. Then

EZ [exp(λ(Z−EZ [Z]))] = EZ [exp(λ(Z−EZ′ [Z ′]))]
(i)

≤ EZ [EZ′ exp(λ(Z−Z ′))],

where EZ and EZ′ indicate expectations taken with respect to Z and Z ′.
Here, step (i) uses Jensen’s inequality applied to f(x) = e−x. Now, we have

E[exp(λ(Z − E[Z]))] ≤ E [exp (λ(Z − Z ′))] .

Now, we note a curious fact: the difference Z − Z ′ is symmetric about zero,
so that if S ∈ {−1, 1} is a random sign variable, then S(Z −Z ′) has exactly
the same distribution as Z − Z ′. So we have

EZ,Z′ [exp(λ(Z − Z ′))] = EZ,Z′,S[exp(λS(Z − Z ′))]

= EZ,Z′ [ES [exp(λS(Z − Z ′)) | Z,Z ′]] .

Now we use inequality (3) on the moment generating function of the random
sign, which gives that

ES [exp(λS(Z − Z ′)) | Z,Z ′] ≤ exp

(

λ2(Z − Z ′)2

2

)

.

But of course, by assumption we have |Z−Z ′| ≤ (b−a), so (Z−Z ′)2 ≤ (b−a)2.
This gives

EZ,Z′ [exp(λ(Z − Z ′))] ≤ exp

(

λ2(b− a)2

2

)

.
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This is the result (except with a factor of 2 instead of 8).

Now we use Hoeffding’s lemma to prove Theorem 4, giving only the upper
tail (i.e. the probability that 1

n

∑n

i=1(Zi − E[Zi]) ≥ t) as the lower tail has
a similar proof. We use the Chernoff bound technique, which immediately
tells us that

P

(

1

n

n
∑

i=1

(Zi − E[Zi]) ≥ t

)

= P

(

n
∑

i=1

(Zi − E[Zi]) ≥ nt

)

≤ E

[

exp

(

λ

n
∑

i=1

(Zi − E[Zi])

)]

e−λnt

=

( n
∏

i=1

E[eλ(Zi−E[Zi])]

)

e−λnt
(i)

≤
( n
∏

i=1

e
λ
2(b−a)2

8

)

e−λnt

where inequality (i) is Hoeffding’s Lemma (Lemma 5). Rewriting this slightly
and minimzing over λ ≥ 0, we have

P

(

1

n

n
∑

i=1

(Zi − E[Zi]) ≥ t

)

≤ min
λ≥0

exp

(

nλ2(b− a)2

8
− λnt

)

= exp

(

− 2nt2

(b− a)2

)

,

as desired.

8



❍✐❞❞❡♥ ▼❛r❦♦✈ ▼♦❞❡❧s ❋✉♥❞❛♠❡♥t❛❧s

❉❛♥✐❡❧ ❘❛♠❛❣❡

❈❙✷✷✾ ❙❡❝t✐♦♥ ◆♦t❡s

❉❡❝❡♠❜❡r ✶✱ ✷✵✵✼

❆❜str❛❝t

❍♦✇ ❝❛♥ ✇❡ ❛♣♣❧② ♠❛❝❤✐♥❡ ❧❡❛r♥✐♥❣ t♦ ❞❛t❛ t❤❛t ✐s r❡♣r❡s❡♥t❡❞ ❛s ❛

s❡q✉❡♥❝❡ ♦❢ ♦❜s❡r✈❛t✐♦♥s ♦✈❡r t✐♠❡❄ ❋♦r ✐♥st❛♥❝❡✱ ✇❡ ♠✐❣❤t ❜❡ ✐♥t❡r❡st❡❞

✐♥ ❞✐s❝♦✈❡r✐♥❣ t❤❡ s❡q✉❡♥❝❡ ♦❢ ✇♦r❞s t❤❛t s♦♠❡♦♥❡ s♣♦❦❡ ❜❛s❡❞ ♦♥ ❛♥

❛✉❞✐♦ r❡❝♦r❞✐♥❣ ♦❢ t❤❡✐r s♣❡❡❝❤✳ ❖r ✇❡ ♠✐❣❤t ❜❡ ✐♥t❡r❡st❡❞ ✐♥ ❛♥♥♦t❛t✐♥❣

❛ s❡q✉❡♥❝❡ ♦❢ ✇♦r❞s ✇✐t❤ t❤❡✐r ♣❛rt✲♦❢✲s♣❡❡❝❤ t❛❣s✳ ❚❤❡s❡ ♥♦t❡s ♣r♦✈✐❞❡s ❛

t❤♦r♦✉❣❤ ♠❛t❤❡♠❛t✐❝❛❧ ✐♥tr♦❞✉❝t✐♦♥ t♦ t❤❡ ❝♦♥❝❡♣t ♦❢ ▼❛r❦♦✈ ▼♦❞❡❧s ✖

❛ ❢♦r♠❛❧✐s♠ ❢♦r r❡❛s♦♥✐♥❣ ❛❜♦✉t st❛t❡s ♦✈❡r t✐♠❡ ✖ ❛♥❞ ❍✐❞❞❡♥ ▼❛r❦♦✈

▼♦❞❡❧s ✖ ✇❤❡r❡ ✇❡ ✇✐s❤ t♦ r❡❝♦✈❡r ❛ s❡r✐❡s ♦❢ st❛t❡s ❢r♦♠ ❛ s❡r✐❡s ♦❢

♦❜s❡r✈❛t✐♦♥s✳ ❚❤❡ ✜♥❛❧ s❡❝t✐♦♥ ✐♥❝❧✉❞❡s s♦♠❡ ♣♦✐♥t❡rs t♦ r❡s♦✉r❝❡s t❤❛t

♣r❡s❡♥t t❤✐s ♠❛t❡r✐❛❧ ❢r♦♠ ♦t❤❡r ♣❡rs♣❡❝t✐✈❡s✳

✶ ▼❛r❦♦✈ ▼♦❞❡❧s

●✐✈❡♥ ❛ s❡t ♦❢ st❛t❡s S = {s1, s2, ...s|S|} ✇❡ ❝❛♥ ♦❜s❡r✈❡ ❛ s❡r✐❡s ♦✈❡r t✐♠❡
~z ∈ ST ✳ ❋♦r ❡①❛♠♣❧❡✱ ✇❡ ♠✐❣❤t ❤❛✈❡ t❤❡ st❛t❡s ❢r♦♠ ❛ ✇❡❛t❤❡r s②st❡♠ S =
{sun, cloud, rain} ✇✐t❤ |S| = 3 ❛♥❞ ♦❜s❡r✈❡ t❤❡ ✇❡❛t❤❡r ♦✈❡r ❛ ❢❡✇ ❞❛②s {z1 =
ssun, z2 = scloud, z3 = scloud, z4 = srain, z5 = scloud} ✇✐t❤ T = 5✳

❚❤❡ ♦❜s❡r✈❡❞ st❛t❡s ♦❢ ♦✉r ✇❡❛t❤❡r ❡①❛♠♣❧❡ r❡♣r❡s❡♥t t❤❡ ♦✉t♣✉t ♦❢ ❛ r❛♥❞♦♠
♣r♦❝❡ss ♦✈❡r t✐♠❡✳ ❲✐t❤♦✉t s♦♠❡ ❢✉rt❤❡r ❛ss✉♠♣t✐♦♥s✱ st❛t❡ sj ❛t t✐♠❡ t ❝♦✉❧❞
❜❡ ❛ ❢✉♥❝t✐♦♥ ♦❢ ❛♥② ♥✉♠❜❡r ♦❢ ✈❛r✐❛❜❧❡s✱ ✐♥❝❧✉❞✐♥❣ ❛❧❧ t❤❡ st❛t❡s ❢r♦♠ t✐♠❡s 1
t♦ t − 1 ❛♥❞ ♣♦ss✐❜❧② ♠❛♥② ♦t❤❡rs t❤❛t ✇❡ ❞♦♥✬t ❡✈❡♥ ♠♦❞❡❧✳ ❍♦✇❡✈❡r✱ ✇❡ ✇✐❧❧
♠❛❦❡ t✇♦ ▼❛r❦♦✈ ❛ss✉♠♣t✐♦♥s t❤❛t ✇✐❧❧ ❛❧❧♦✇ ✉s t♦ tr❛❝t❛❜❧② r❡❛s♦♥ ❛❜♦✉t
t✐♠❡ s❡r✐❡s✳

❚❤❡ ❧✐♠✐t❡❞ ❤♦r✐③♦♥ ❛ss✉♠♣t✐♦♥ ✐s t❤❛t t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ ❜❡✐♥❣ ✐♥ ❛
st❛t❡ ❛t t✐♠❡ t ❞❡♣❡♥❞s ♦♥❧② ♦♥ t❤❡ st❛t❡ ❛t t✐♠❡ t−1✳ ❚❤❡ ✐♥t✉✐t✐♦♥ ✉♥❞❡r❧②✐♥❣
t❤✐s ❛ss✉♠♣t✐♦♥ ✐s t❤❛t t❤❡ st❛t❡ ❛t t✐♠❡ t r❡♣r❡s❡♥ts ✏❡♥♦✉❣❤✑ s✉♠♠❛r② ♦❢ t❤❡
♣❛st t♦ r❡❛s♦♥❛❜❧② ♣r❡❞✐❝t t❤❡ ❢✉t✉r❡✳ ❋♦r♠❛❧❧②✿

P (zt|zt−1, zt−2, ..., z1) = P (zt|zt−1)

❚❤❡ st❛t✐♦♥❛r② ♣r♦❝❡ss ❛ss✉♠♣t✐♦♥ ✐s t❤❛t t❤❡ ❝♦♥❞✐t✐♦♥❛❧ ❞✐str✐❜✉t✐♦♥
♦✈❡r ♥❡①t st❛t❡ ❣✐✈❡♥ ❝✉rr❡♥t st❛t❡ ❞♦❡s ♥♦t ❝❤❛♥❣❡ ♦✈❡r t✐♠❡✳ ❋♦r♠❛❧❧②✿

✶



P (zt|zt−1) = P (z2|z1); t ∈ 2...T

❆s ❛ ❝♦♥✈❡♥t✐♦♥✱ ✇❡ ✇✐❧❧ ❛❧s♦ ❛ss✉♠❡ t❤❛t t❤❡r❡ ✐s ❛♥ ✐♥✐t✐❛❧ st❛t❡ ❛♥❞ ✐♥✐t✐❛❧
♦❜s❡r✈❛t✐♦♥ z0 ≡ s0✱ ✇❤❡r❡ s0 r❡♣r❡s❡♥ts t❤❡ ✐♥✐t✐❛❧ ♣r♦❜❛❜✐❧✐t② ❞✐str✐❜✉t✐♦♥ ♦✈❡r
st❛t❡s ❛t t✐♠❡ 0✳ ❚❤✐s ♥♦t❛t✐♦♥❛❧ ❝♦♥✈❡♥✐❡♥❝❡ ❛❧❧♦✇s ✉s t♦ ❡♥❝♦❞❡ ♦✉r ❜❡❧✐❡❢
❛❜♦✉t t❤❡ ♣r✐♦r ♣r♦❜❛❜✐❧✐t② ♦❢ s❡❡✐♥❣ t❤❡ ✜rst r❡❛❧ st❛t❡ z1 ❛s P (z1|z0)✳ ◆♦t❡
t❤❛t P (zt|zt−1, ..., z1) = P (zt|zt−1, ..., z1, z0) ❜❡❝❛✉s❡ ✇❡✬✈❡ ❞❡✜♥❡❞ z0 = s0 ❢♦r
❛♥② st❛t❡ s❡q✉❡♥❝❡✳ ✭❖t❤❡r ♣r❡s❡♥t❛t✐♦♥s ♦❢ ❍▼▼s s♦♠❡t✐♠❡s r❡♣r❡s❡♥t t❤❡s❡
♣r✐♦r ❜❡❧✐❡✈❡s ✇✐t❤ ❛ ✈❡❝t♦r π ∈ R

|S|✳✮
❲❡ ♣❛r❛♠❡tr✐③❡ t❤❡s❡ tr❛♥s✐t✐♦♥s ❜② ❞❡✜♥✐♥❣ ❛ st❛t❡ tr❛♥s✐t✐♦♥ ♠❛tr✐① A ∈

R
(|S|+1)×(|S|+1)✳ ❚❤❡ ✈❛❧✉❡ Aij ✐s t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ tr❛♥s✐t✐♦♥✐♥❣ ❢r♦♠ st❛t❡ i

t♦ st❛t❡ j ❛t ❛♥② t✐♠❡ t✳ ❋♦r ♦✉r s✉♥ ❛♥❞ r❛✐♥ ❡①❛♠♣❧❡✱ ✇❡ ♠✐❣❤t ❤❛✈❡ ❢♦❧❧♦✇✐♥❣
tr❛♥s✐t✐♦♥ ♠❛tr✐①✿

A =

s0 ssun scloud srain

s0 0 .33 .33 .33
ssun 0 .8 .1 .1
scloud 0 .2 .6 .2
srain 0 .1 .2 .7

◆♦t❡ t❤❛t t❤❡s❡ ♥✉♠❜❡rs ✭✇❤✐❝❤ ■ ♠❛❞❡ ✉♣✮ r❡♣r❡s❡♥t t❤❡ ✐♥t✉✐t✐♦♥ t❤❛t t❤❡
✇❡❛t❤❡r ✐s s❡❧❢✲❝♦rr❡❧❛t❡❞✿ ✐❢ ✐t✬s s✉♥♥② ✐t ✇✐❧❧ t❡♥❞ t♦ st❛② s✉♥♥②✱ ❝❧♦✉❞② ✇✐❧❧
st❛② ❝❧♦✉❞②✱ ❡t❝✳ ❚❤✐s ♣❛tt❡r♥ ✐s ❝♦♠♠♦♥ ✐♥ ♠❛♥② ▼❛r❦♦✈ ♠♦❞❡❧s ❛♥❞ ❝❛♥
❜❡ ♦❜s❡r✈❡❞ ❛s ❛ str♦♥❣ ❞✐❛❣♦♥❛❧ ✐♥ t❤❡ tr❛♥s✐t✐♦♥ ♠❛tr✐①✳ ◆♦t❡ t❤❛t ✐♥ t❤✐s
❡①❛♠♣❧❡✱ ♦✉r ✐♥✐t✐❛❧ st❛t❡ s0 s❤♦✇s ✉♥✐❢♦r♠ ♣r♦❜❛❜✐❧✐t② ♦❢ tr❛♥s✐t✐♦♥✐♥❣ t♦ ❡❛❝❤
♦❢ t❤❡ t❤r❡❡ st❛t❡s ✐♥ ♦✉r ✇❡❛t❤❡r s②st❡♠✳

✶✳✶ ❚✇♦ q✉❡st✐♦♥s ♦❢ ❛ ▼❛r❦♦✈ ▼♦❞❡❧

❈♦♠❜✐♥✐♥❣ t❤❡ ▼❛r❦♦✈ ❛ss✉♠♣t✐♦♥s ✇✐t❤ ♦✉r st❛t❡ tr❛♥s✐t✐♦♥ ♣❛r❛♠❡tr✐③❛t✐♦♥
A✱ ✇❡ ❝❛♥ ❛♥s✇❡r t✇♦ ❜❛s✐❝ q✉❡st✐♦♥s ❛❜♦✉t ❛ s❡q✉❡♥❝❡ ♦❢ st❛t❡s ✐♥ ❛ ▼❛r❦♦✈
❝❤❛✐♥✳ ❲❤❛t ✐s t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ ❛ ♣❛rt✐❝✉❧❛r s❡q✉❡♥❝❡ ♦❢ st❛t❡s ~z? ❆♥❞ ❤♦✇
❞♦ ✇❡ ❡st✐♠❛t❡ t❤❡ ♣❛r❛♠❡t❡rs ♦❢ ♦✉r ♠♦❞❡❧ A s✉❝❤ t♦ ♠❛①✐♠✐③❡ t❤❡ ❧✐❦❡❧✐❤♦♦❞
♦❢ ❛♥ ♦❜s❡r✈❡❞ s❡q✉❡♥❝❡ ~z❄

✶✳✶✳✶ Pr♦❜❛❜✐❧✐t② ♦❢ ❛ st❛t❡ s❡q✉❡♥❝❡

❲❡ ❝❛♥ ❝♦♠♣✉t❡ t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ ❛ ♣❛rt✐❝✉❧❛r s❡r✐❡s ♦❢ st❛t❡s ~z ❜② ✉s❡ ♦❢ t❤❡
❝❤❛✐♥ r✉❧❡ ♦❢ ♣r♦❜❛❜✐❧✐t②✿

P (~z) = P (zt, zt−1, ..., z1;A)

= P (zt, zt−1, ..., z1, z0;A)

= P (zt|zt−1, zt−2, ..., z1;A)P (zt−1|zt−2, ..., z1;A)...P (z1|z0;A)

= P (zt|zt−1;A)P (zt−1|zt−2;A)...P (z2|z1;A)P (z1|z0;A)

✷



=

T∏

t=1

P (zt|zt−1;A)

=
T∏

t=1

Azt−1 zt

■♥ t❤❡ s❡❝♦♥❞ ❧✐♥❡ ✇❡ ✐♥tr♦❞✉❝❡ z0 ✐♥t♦ ♦✉r ❥♦✐♥t ♣r♦❜❛❜✐❧✐t②✱ ✇❤✐❝❤ ✐s ❛❧❧♦✇❡❞
❜② t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ z0 ❛❜♦✈❡✳ ❚❤❡ t❤✐r❞ ❧✐♥❡ ✐s tr✉❡ ♦❢ ❛♥② ❥♦✐♥t ❞✐str✐❜✉t✐♦♥
❜② t❤❡ ❝❤❛✐♥ r✉❧❡ ♦❢ ♣r♦❜❛❜✐❧✐t✐❡s ♦r r❡♣❡❛t❡❞ ❛♣♣❧✐❝❛t✐♦♥ ♦❢ ❇❛②❡s r✉❧❡✳ ❚❤❡
❢♦✉rt❤ ❧✐♥❡ ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ▼❛r❦♦✈ ❛ss✉♠♣t✐♦♥s ❛♥❞ t❤❡ ❧❛st ❧✐♥❡ r❡♣r❡s❡♥ts
t❤❡s❡ t❡r♠s ❛s t❤❡✐r ❡❧❡♠❡♥ts ✐♥ ♦✉r tr❛♥s✐t✐♦♥ ♠❛tr✐① A✳

▲❡t✬s ❝♦♠♣✉t❡ t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ ♦✉r ❡①❛♠♣❧❡ t✐♠❡ s❡q✉❡♥❝❡ ❢r♦♠ ❡❛r❧✐❡r✳ ❲❡
✇❛♥t P (z1 = ssun, z2 = scloud, z3 = srain, z4 = srain, z5 = scloud) ✇❤✐❝❤ ❝❛♥ ❜❡
❢❛❝t♦r❡❞ ❛s P (ssun|s0)P (scloud|ssun)P (srain|scloud)P (srain|srain)P (scloud|srain) =
.33 × .1 × .2 × .7 × .2✳

✶✳✶✳✷ ▼❛①✐♠✉♠ ❧✐❦❡❧✐❤♦♦❞ ♣❛r❛♠❡t❡r ❛ss✐❣♥♠❡♥t

❋r♦♠ ❛ ❧❡❛r♥✐♥❣ ♣❡rs♣❡❝t✐✈❡✱ ✇❡ ❝♦✉❧❞ s❡❡❦ t♦ ✜♥❞ t❤❡ ♣❛r❛♠❡t❡rs A t❤❛t ♠❛①✐✲
♠✐③❡ t❤❡ ❧♦❣✲❧✐❦❡❧✐❤♦♦❞ ♦❢ s❡q✉❡♥❝❡ ♦❢ ♦❜s❡r✈❛t✐♦♥s ~z✳ ❚❤✐s ❝♦rr❡s♣♦♥❞s t♦ ✜♥❞✲
✐♥❣ t❤❡ ❧✐❦❡❧✐❤♦♦❞s ♦❢ tr❛♥s✐t✐♦♥✐♥❣ ❢r♦♠ s✉♥♥② t♦ ❝❧♦✉❞② ✈❡rs✉s s✉♥♥② t♦ s✉♥♥②✱
❡t❝✳✱ t❤❛t ♠❛❦❡ ❛ s❡t ♦❢ ♦❜s❡r✈❛t✐♦♥s ♠♦st ❧✐❦❡❧②✳ ▲❡t✬s ❞❡✜♥❡ t❤❡ ❧♦❣✲❧✐❦❡❧✐❤♦♦❞
❛ ▼❛r❦♦✈ ♠♦❞❡❧✳

l(A) = log P (~z;A)

= log

T∏

t=1

Azt−1 zt

=

T∑

t=1

log Azt−1 zt

=

|S|∑

i=1

|S|∑

j=1

T∑

t=1

1{zt−1 = si ∧ zt = sj} log Aij

■♥ t❤❡ ❧❛st ❧✐♥❡✱ ✇❡ ✉s❡ ❛♥ ✐♥❞✐❝❛t♦r ❢✉♥❝t✐♦♥ ✇❤♦s❡ ✈❛❧✉❡ ✐s ♦♥❡ ✇❤❡♥ t❤❡
❝♦♥❞✐t✐♦♥ ❤♦❧❞s ❛♥❞ ③❡r♦ ♦t❤❡r✇✐s❡ t♦ s❡❧❡❝t t❤❡ ♦❜s❡r✈❡❞ tr❛♥s✐t✐♦♥ ❛t ❡❛❝❤
t✐♠❡ st❡♣✳ ❲❤❡♥ s♦❧✈✐♥❣ t❤✐s ♦♣t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠✱ ✐t✬s ✐♠♣♦rt❛♥t t♦ ❡♥s✉r❡
t❤❛t s♦❧✈❡❞ ♣❛r❛♠❡t❡rs A st✐❧❧ ♠❛❦❡ ❛ ✈❛❧✐❞ tr❛♥s✐t✐♦♥ ♠❛tr✐①✳ ■♥ ♣❛rt✐❝✉❧❛r✱ ✇❡
♥❡❡❞ t♦ ❡♥❢♦r❝❡ t❤❛t t❤❡ ♦✉t❣♦✐♥❣ ♣r♦❜❛❜✐❧✐t② ❞✐str✐❜✉t✐♦♥ ❢r♦♠ st❛t❡ i ❛❧✇❛②s
s✉♠s t♦ ✶ ❛♥❞ ❛❧❧ ❡❧❡♠❡♥ts ♦❢ A ❛r❡ ♥♦♥✲♥❡❣❛t✐✈❡✳ ❲❡ ❝❛♥ s♦❧✈❡ t❤✐s ♦♣t✐♠✐③❛t✐♦♥
♣r♦❜❧❡♠ ✉s✐♥❣ t❤❡ ♠❡t❤♦❞ ♦❢ ▲❛❣r❛♥❣❡ ♠✉❧t✐♣❧✐❡rs✳

max
A

l(A)

✸



s.t.

|S|∑

j=1

Aij = 1, i = 1..|S|

Aij ≥ 0, i, j = 1..|S|

❚❤✐s ❝♦♥str❛✐♥❡❞ ♦♣t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠ ❝❛♥ ❜❡ s♦❧✈❡❞ ✐♥ ❝❧♦s❡❞ ❢♦r♠ ✉s✐♥❣ t❤❡
♠❡t❤♦❞ ♦❢ ▲❛❣r❛♥❣❡ ♠✉❧t✐♣❧✐❡rs✳ ❲❡✬❧❧ ✐♥tr♦❞✉❝❡ t❤❡ ❡q✉❛❧✐t② ❝♦♥str❛✐♥t ✐♥t♦ t❤❡
▲❛❣r❛♥❣✐❛♥✱ ❜✉t t❤❡ ✐♥❡q✉❛❧✐t② ❝♦♥str❛✐♥t ❝❛♥ s❛❢❡❧② ❜❡ ✐❣♥♦r❡❞ ✖ t❤❡ ♦♣t✐♠❛❧
s♦❧✉t✐♦♥ ✇✐❧❧ ♣r♦❞✉❝❡ ♣♦s✐t✐✈❡ ✈❛❧✉❡s ❢♦r Aij ❛♥②✇❛②✳ ❚❤❡r❡❢♦r❡ ✇❡ ❝♦♥str✉❝t
t❤❡ ▲❛❣r❛♥❣✐❛♥ ❛s✿

L(A, α) =

|S|∑

i=1

|S|∑

j=1

T∑

t=1

1{zt−1 = si ∧ zt = sj} log Aij +

|S|∑

i=1

αi(1 −

|S|∑

j=1

Aij)

❚❛❦✐♥❣ ♣❛rt✐❛❧ ❞❡r✐✈❛t✐✈❡s ❛♥❞ s❡tt✐♥❣ t❤❡♠ ❡q✉❛❧ t♦ ③❡r♦ ✇❡ ❣❡t✿

∂L(A, α)

∂Aij

=
∂

∂Aij

(

T∑

t=1

1{zt−1 = si ∧ zt = sj} log Aij) +
∂

∂Aij

αi(1 −

|S|∑

j=1

Aij)

=
1

Aij

T∑

t=1

1{zt−1 = si ∧ zt = sj} − αi ≡ 0

⇒

Aij =
1

αi

T∑

t=1

1{zt−1 = si ∧ zt = sj}

❙✉❜st✐t✉t✐♥❣ ❜❛❝❦ ✐♥ ❛♥❞ s❡tt✐♥❣ t❤❡ ♣❛rt✐❛❧ ✇✐t❤ r❡s♣❡❝t t♦ α ❡q✉❛❧ t♦ ③❡r♦✿

∂L(A, β)

∂αi

= 1 −

|S|∑

j=1

Aij

= 1 −

|S|∑

j=1

1

αi

T∑

t=1

1{zt−1 = si ∧ zt = sj} ≡ 0

⇒

αi =

|S|∑

j=1

T∑

t=1

1{zt−1 = si ∧ zt = sj}

=

T∑

t=1

1{zt−1 = si}

❙✉❜st✐t✉t✐♥❣ ✐♥ t❤✐s ✈❛❧✉❡ ❢♦r αi ✐♥t♦ t❤❡ ❡①♣r❡ss✐♦♥ ✇❡ ❞❡r✐✈❡❞ ❢♦r Aij ✇❡

♦❜t❛✐♥ ♦✉r ✜♥❛❧ ♠❛①✐♠✉♠ ❧✐❦❡❧✐❤♦♦❞ ♣❛r❛♠❡t❡r ✈❛❧✉❡ ❢♦r Âij ✳

✹



Âij =

∑T
t=1 1{zt−1 = si ∧ zt = sj}∑T

t=1 1{zt−1 = si}

❚❤✐s ❢♦r♠✉❧❛ ❡♥❝♦❞❡s ❛ s✐♠♣❧❡ ✐♥t✉✐t✐♦♥✿ t❤❡ ♠❛①✐♠✉♠ ❧✐❦❡❧✐❤♦♦❞ ♣r♦❜❛❜✐❧✐t②
♦❢ tr❛♥s✐t✐♦♥✐♥❣ ❢r♦♠ st❛t❡ i t♦ st❛t❡ j ✐s ❥✉st t❤❡ ♥✉♠❜❡r ♦❢ t✐♠❡s ✇❡ tr❛♥s✐t✐♦♥
❢r♦♠ i t♦ j ❞✐✈✐❞❡❞ ❜② t❤❡ t♦t❛❧ ♥✉♠❜❡r ♦❢ t✐♠❡s ✇❡ ❛r❡ ✐♥ i✳ ■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡
♠❛①✐♠✉♠ ❧✐❦❡❧✐❤♦♦❞ ♣❛r❛♠❡t❡r ❝♦rr❡s♣♦♥❞s t♦ t❤❡ ❢r❛❝t✐♦♥ ♦❢ t❤❡ t✐♠❡ ✇❤❡♥ ✇❡
✇❡r❡ ✐♥ st❛t❡ i t❤❛t ✇❡ tr❛♥s✐t✐♦♥❡❞ t♦ j✳

✷ ❍✐❞❞❡♥ ▼❛r❦♦✈ ▼♦❞❡❧s

▼❛r❦♦✈ ▼♦❞❡❧s ❛r❡ ❛ ♣♦✇❡r❢✉❧ ❛❜str❛❝t✐♦♥ ❢♦r t✐♠❡ s❡r✐❡s ❞❛t❛✱ ❜✉t ❢❛✐❧ t♦ ❝❛♣✲
t✉r❡ ❛ ✈❡r② ❝♦♠♠♦♥ s❝❡♥❛r✐♦✳ ❍♦✇ ❝❛♥ ✇❡ r❡❛s♦♥ ❛❜♦✉t ❛ s❡r✐❡s ♦❢ st❛t❡s ✐❢ ✇❡
❝❛♥♥♦t ♦❜s❡r✈❡ t❤❡ st❛t❡s t❤❡♠s❡❧✈❡s✱ ❜✉t r❛t❤❡r ♦♥❧② s♦♠❡ ♣r♦❜❛❜✐❧✐st✐❝ ❢✉♥❝✲
t✐♦♥ ♦❢ t❤♦s❡ st❛t❡s❄ ❚❤✐s ✐s t❤❡ s❝❡♥❛r✐♦ ❢♦r ♣❛rt✲♦❢✲s♣❡❡❝❤ t❛❣❣✐♥❣ ✇❤❡r❡ t❤❡
✇♦r❞s ❛r❡ ♦❜s❡r✈❡❞ ❜✉t t❤❡ ♣❛rts✲♦❢✲s♣❡❡❝❤ t❛❣s ❛r❡♥✬t✱ ❛♥❞ ❢♦r s♣❡❡❝❤ r❡❝♦❣♥✐✲
t✐♦♥ ✇❤❡r❡ t❤❡ s♦✉♥❞ s❡q✉❡♥❝❡ ✐s ♦❜s❡r✈❡❞ ❜✉t ♥♦t t❤❡ ✇♦r❞s t❤❛t ❣❡♥❡r❛t❡❞ ✐t✳
❋♦r ❛ s✐♠♣❧❡ ❡①❛♠♣❧❡✱ ❧❡t✬s ❜♦rr♦✇ t❤❡ s❡t✉♣ ♣r♦♣♦s❡❞ ❜② ❏❛s♦♥ ❊✐s♥❡r ✐♥ ✷✵✵✷
❬✶❪✱ ✏■❝❡ ❈r❡❛♠ ❈❧✐♠❛t♦❧♦❣②✳✑

❚❤❡ s✐t✉❛t✐♦♥✿ ❨♦✉ ❛r❡ ❛ ❝❧✐♠❛t♦❧♦❣✐st ✐♥ t❤❡ ②❡❛r ✷✼✾✾✱ st✉❞②✐♥❣
t❤❡ ❤✐st♦r② ♦❢ ❣❧♦❜❛❧ ✇❛r♠✐♥❣✳ ❨♦✉ ❝❛♥✬t ✜♥❞ ❛♥② r❡❝♦r❞s ♦❢ ❇❛❧t✐✲
♠♦r❡ ✇❡❛t❤❡r✱ ❜✉t ②♦✉ ❞♦ ✜♥❞ ♠② ✭❏❛s♦♥ ❊✐s♥❡r✬s✮ ❞✐❛r②✱ ✐♥ ✇❤✐❝❤ ■
❛ss✐❞✉♦✉s❧② r❡❝♦r❞❡❞ ❤♦✇ ♠✉❝❤ ✐❝❡ ❝r❡❛♠ ■ ❛t❡ ❡❛❝❤ ❞❛②✳ ❲❤❛t ❝❛♥

②♦✉ ✜❣✉r❡ ♦✉t ❢r♦♠ t❤✐s ❛❜♦✉t t❤❡ ✇❡❛t❤❡r t❤❛t s✉♠♠❡r❄

❆ ❍✐❞❞❡♥ ▼❛r❦♦✈ ▼♦❞❡❧ ✭❍▼▼✮ ❝❛♥ ❜❡ ✉s❡❞ t♦ ❡①♣❧♦r❡ t❤✐s s❝❡♥❛r✐♦✳ ❲❡
❞♦♥✬t ❣❡t t♦ ♦❜s❡r✈❡ t❤❡ ❛❝t✉❛❧ s❡q✉❡♥❝❡ ♦❢ st❛t❡s ✭t❤❡ ✇❡❛t❤❡r ♦♥ ❡❛❝❤ ❞❛②✮✳
❘❛t❤❡r✱ ✇❡ ❝❛♥ ♦♥❧② ♦❜s❡r✈❡ s♦♠❡ ♦✉t❝♦♠❡ ❣❡♥❡r❛t❡❞ ❜② ❡❛❝❤ st❛t❡ ✭❤♦✇ ♠❛♥②
✐❝❡ ❝r❡❛♠s ✇❡r❡ ❡❛t❡♥ t❤❛t ❞❛②✮✳

❋♦r♠❛❧❧②✱ ❛♥ ❍▼▼ ✐s ❛ ▼❛r❦♦✈ ♠♦❞❡❧ ❢♦r ✇❤✐❝❤ ✇❡ ❤❛✈❡ ❛ s❡r✐❡s ♦❢ ♦❜s❡r✈❡❞
♦✉t♣✉ts x = {x1, x2, ..., xT } ❞r❛✇♥ ❢r♦♠ ❛♥ ♦✉t♣✉t ❛❧♣❤❛❜❡t V = {v1, v2, ..., v|V |}✱
✐✳❡✳ xt ∈ V, t = 1..T ✳ ❆s ✐♥ t❤❡ ♣r❡✈✐♦✉s s❡❝t✐♦♥✱ ✇❡ ❛❧s♦ ♣♦s✐t t❤❡ ❡①✐st❡♥❝❡ ♦❢ s❡✲
r✐❡s ♦❢ st❛t❡s z = {z1, z2, ..., zT } ❞r❛✇♥ ❢r♦♠ ❛ st❛t❡ ❛❧♣❤❛❜❡t S = {s1, s2, ...s|S|}✱
zt ∈ S, t = 1..T ❜✉t ✐♥ t❤✐s s❝❡♥❛r✐♦ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ st❛t❡s ❛r❡ ✉♥♦❜s❡r✈❡❞✳ ❚❤❡
tr❛♥s✐t✐♦♥ ❜❡t✇❡❡♥ st❛t❡s i ❛♥❞ j ✇✐❧❧ ❛❣❛✐♥ ❜❡ r❡♣r❡s❡♥t❡❞ ❜② t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣
✈❛❧✉❡ ✐♥ ♦✉r st❛t❡ tr❛♥s✐t✐♦♥ ♠❛tr✐① Aij ✳

❲❡ ❛❧s♦ ♠♦❞❡❧ t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ ❣❡♥❡r❛t✐♥❣ ❛♥ ♦✉t♣✉t ♦❜s❡r✈❛t✐♦♥ ❛s ❛
❢✉♥❝t✐♦♥ ♦❢ ♦✉r ❤✐❞❞❡♥ st❛t❡✳ ❚♦ ❞♦ s♦✱ ✇❡ ♠❛❦❡ t❤❡ ♦✉t♣✉t ✐♥❞❡♣❡♥❞❡♥❝❡

❛ss✉♠♣t✐♦♥ ❛♥❞ ❞❡✜♥❡ P (xt = vk|zt = sj) = P (xt = vk|x1, ..., xT , z1, ..., zT ) =
Bjk ✳ ❚❤❡ ♠❛tr✐① B ❡♥❝♦❞❡s t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ ♦✉r ❤✐❞❞❡♥ st❛t❡ ❣❡♥❡r❛t✐♥❣
♦✉t♣✉t vk ❣✐✈❡♥ t❤❛t t❤❡ st❛t❡ ❛t t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ t✐♠❡ ✇❛s sj ✳

❘❡t✉r♥✐♥❣ t♦ t❤❡ ✇❡❛t❤❡r ❡①❛♠♣❧❡✱ ✐♠❛❣✐♥❡ t❤❛t ②♦✉ ❤❛✈❡ ❧♦❣s ♦❢ ✐❝❡ ❝r❡❛♠
❝♦♥s✉♠♣t✐♦♥ ♦✈❡r ❛ ❢♦✉r ❞❛② ♣❡r✐♦❞✿ ~x = {x1 = v3, x2 = v2, x3 = v1, x4 = v2}

✺



✇❤❡r❡ ♦✉r ❛❧♣❤❛❜❡t ❥✉st ❡♥❝♦❞❡s t❤❡ ♥✉♠❜❡r ♦❢ ✐❝❡ ❝r❡❛♠s ❝♦♥s✉♠❡❞✱ ✐✳❡✳ V =
{v1 = 1 ice cream, v2 = 2 ice creams, v3 = 3 ice creams}✳ ❲❤❛t q✉❡st✐♦♥s ❝❛♥
❛♥ ❍▼▼ ❧❡t ✉s ❛♥s✇❡r❄

✷✳✶ ❚❤r❡❡ q✉❡st✐♦♥s ♦❢ ❛ ❍✐❞❞❡♥ ▼❛r❦♦✈ ▼♦❞❡❧

❚❤❡r❡ ❛r❡ t❤r❡❡ ❢✉♥❞❛♠❡♥t❛❧ q✉❡st✐♦♥s ✇❡ ♠✐❣❤t ❛s❦ ♦❢ ❛♥ ❍▼▼✳ ❲❤❛t ✐s t❤❡
♣r♦❜❛❜✐❧✐t② ♦❢ ❛♥ ♦❜s❡r✈❡❞ s❡q✉❡♥❝❡ ✭❤♦✇ ❧✐❦❡❧② ✇❡r❡ ✇❡ t♦ s❡❡ 3, 2, 1, 2 ✐❝❡ ❝r❡❛♠s
❝♦♥s✉♠❡❞✮❄ ❲❤❛t ✐s t❤❡ ♠♦st ❧✐❦❡❧② s❡r✐❡s ♦❢ st❛t❡s t♦ ❣❡♥❡r❛t❡ t❤❡ ♦❜s❡r✈❛t✐♦♥s
✭✇❤❛t ✇❛s t❤❡ ✇❡❛t❤❡r ❢♦r t❤♦s❡ ❢♦✉r ❞❛②s✮❄ ❆♥❞ ❤♦✇ ❝❛♥ ✇❡ ❧❡❛r♥ ✈❛❧✉❡s ❢♦r
t❤❡ ❍▼▼✬s ♣❛r❛♠❡t❡rs A ❛♥❞ B ❣✐✈❡♥ s♦♠❡ ❞❛t❛❄

✷✳✷ Pr♦❜❛❜✐❧✐t② ♦❢ ❛♥ ♦❜s❡r✈❡❞ s❡q✉❡♥❝❡✿ ❋♦r✇❛r❞ ♣r♦❝❡✲

❞✉r❡

■♥ ❛♥ ❍▼▼✱ ✇❡ ❛ss✉♠❡ t❤❛t ♦✉r ❞❛t❛ ✇❛s ❣❡♥❡r❛t❡❞ ❜② t❤❡ ❢♦❧❧♦✇✐♥❣ ♣r♦❝❡ss✿
♣♦s✐t t❤❡ ❡①✐st❡♥❝❡ ♦❢ ❛ s❡r✐❡s ♦❢ st❛t❡s ~z ♦✈❡r t❤❡ ❧❡♥❣t❤ ♦❢ ♦✉r t✐♠❡ s❡r✐❡s✳
❚❤✐s st❛t❡ s❡q✉❡♥❝❡ ✐s ❣❡♥❡r❛t❡❞ ❜② ❛ ▼❛r❦♦✈ ♠♦❞❡❧ ♣❛r❛♠❡tr✐③❡❞ ❜② ❛ st❛t❡
tr❛♥s✐t✐♦♥ ♠❛tr✐① A✳ ❆t ❡❛❝❤ t✐♠❡ st❡♣ t✱ ✇❡ s❡❧❡❝t ❛♥ ♦✉t♣✉t xt ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢
t❤❡ st❛t❡ zt✳ ❚❤❡r❡❢♦r❡✱ t♦ ❣❡t t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ ❛ s❡q✉❡♥❝❡ ♦❢ ♦❜s❡r✈❛t✐♦♥s✱ ✇❡
♥❡❡❞ t♦ ❛❞❞ ✉♣ t❤❡ ❧✐❦❡❧✐❤♦♦❞ ♦❢ t❤❡ ❞❛t❛ ~x ❣✐✈❡♥ ❡✈❡r② ♣♦ss✐❜❧❡ s❡r✐❡s ♦❢ st❛t❡s✳

P (~x;A, B) =
∑

~z

P (~x, ~z;A, B)

=
∑

~z

P (~x|~z;A, B)P (~z;A, B)

❚❤❡ ❢♦r♠✉❧❛s ❛❜♦✈❡ ❛r❡ tr✉❡ ❢♦r ❛♥② ♣r♦❜❛❜✐❧✐t② ❞✐str✐❜✉t✐♦♥✳ ❍♦✇❡✈❡r✱ t❤❡
❍▼▼ ❛ss✉♠♣t✐♦♥s ❛❧❧♦✇ ✉s t♦ s✐♠♣❧✐❢② t❤❡ ❡①♣r❡ss✐♦♥ ❢✉rt❤❡r✿

P (~x;A, B) =
∑

~z

P (~x|~z;A, B)P (~z;A, B)

=
∑

~z

(
T∏

t=1

P (xt|zt;B)) (
T∏

t=1

P (zt|zt−1;A))

=
∑

~z

(

T∏

t=1

Bzt xt
) (

T∏

t=1

Azt−1 zt
)

❚❤❡ ❣♦♦❞ ♥❡✇s ✐s t❤❛t t❤✐s ✐s ❛ s✐♠♣❧❡ ❡①♣r❡ss✐♦♥ ✐♥ t❡r♠s ♦❢ ♦✉r ♣❛r❛♠❡✲
t❡rs✳ ❚❤❡ ❞❡r✐✈❛t✐♦♥ ❢♦❧❧♦✇s t❤❡ ❍▼▼ ❛ss✉♠♣t✐♦♥s✿ t❤❡ ♦✉t♣✉t ✐♥❞❡♣❡♥❞❡♥❝❡
❛ss✉♠♣t✐♦♥✱ ▼❛r❦♦✈ ❛ss✉♠♣t✐♦♥✱ ❛♥❞ st❛t✐♦♥❛r② ♣r♦❝❡ss ❛ss✉♠♣t✐♦♥ ❛r❡ ❛❧❧ ✉s❡❞
t♦ ❞❡r✐✈❡ t❤❡ s❡❝♦♥❞ ❧✐♥❡✳ ❚❤❡ ❜❛❞ ♥❡✇s ✐s t❤❛t t❤❡ s✉♠ ✐s ♦✈❡r ❡✈❡r② ♣♦ss✐❜❧❡
❛ss✐❣♥♠❡♥t t♦ ~z✳ ❇❡❝❛✉s❡ zt ❝❛♥ t❛❦❡ ♦♥❡ ♦❢ |S| ♣♦ss✐❜❧❡ ✈❛❧✉❡s ❛t ❡❛❝❤ t✐♠❡
st❡♣✱ ❡✈❛❧✉❛t✐♥❣ t❤✐s s✉♠ ❞✐r❡❝t❧② ✇✐❧❧ r❡q✉✐r❡ O(|S|T ) ♦♣❡r❛t✐♦♥s✳

✻



❆❧❣♦r✐t❤♠ ✶ ❋♦r✇❛r❞ Pr♦❝❡❞✉r❡ ❢♦r ❝♦♠♣✉t✐♥❣ αi(t)

✶✳ ❇❛s❡ ❝❛s❡✿ αi(0) = A0 i, i = 1..|S|

✷✳ ❘❡❝✉rs✐♦♥✿ αj(t) =
∑|S|

i=1 αi(t − 1)AijBj xt
, j = 1..|S|, t = 1..T

❋♦rt✉♥❛t❡❧②✱ ❛ ❢❛st❡r ♠❡❛♥s ♦❢ ❝♦♠♣✉t✐♥❣ P (~x;A, B) ✐s ♣♦ss✐❜❧❡ ✈✐❛ ❛ ❞②✲
♥❛♠✐❝ ♣r♦❣r❛♠♠✐♥❣ ❛❧❣♦r✐t❤♠ ❝❛❧❧❡❞ t❤❡ ❋♦r✇❛r❞ Pr♦❝❡❞✉r❡✳ ❋✐rst✱ ❧❡t✬s
❞❡✜♥❡ ❛ q✉❛♥t✐t② αi(t) = P (x1, x2, ..., xt, zt = si;A, B)✳ αi(t) r❡♣r❡s❡♥ts t❤❡
t♦t❛❧ ♣r♦❜❛❜✐❧✐t② ♦❢ ❛❧❧ t❤❡ ♦❜s❡r✈❛t✐♦♥s ✉♣ t❤r♦✉❣❤ t✐♠❡ t ✭❜② ❛♥② st❛t❡ ❛ss✐❣♥✲
♠❡♥t✮ ❛♥❞ t❤❛t ✇❡ ❛r❡ ✐♥ st❛t❡ si ❛t t✐♠❡ t✳ ■❢ ✇❡ ❤❛❞ s✉❝❤ ❛ q✉❛♥t✐t②✱ t❤❡
♣r♦❜❛❜✐❧✐t② ♦❢ ♦✉r ❢✉❧❧ s❡t ♦❢ ♦❜s❡r✈❛t✐♦♥s P (~x) ❝♦✉❧❞ ❜❡ r❡♣r❡s❡♥t❡❞ ❛s✿

P (~x;A, B) = P (x1, x2, ..., xT ;A, B)

=

|S|∑

i=1

P (x1, x2, ..., xT , zT = si;A, B)

=

|S|∑

i=1

αi(T )

❆❧❣♦r✐t❤♠ ✷✳✷ ♣r❡s❡♥ts ❛♥ ❡✣❝✐❡♥t ✇❛② t♦ ❝♦♠♣✉t❡ αi(t)✳ ❆t ❡❛❝❤ t✐♠❡ st❡♣
✇❡ ♠✉st ❞♦ ♦♥❧② O(|S|) ♦♣❡r❛t✐♦♥s✱ r❡s✉❧t✐♥❣ ✐♥ ❛ ✜♥❛❧ ❛❧❣♦r✐t❤♠ ❝♦♠♣❧❡①✐t②
♦❢ O(|S| · T ) t♦ ❝♦♠♣✉t❡ t❤❡ t♦t❛❧ ♣r♦❜❛❜✐❧✐t② ♦❢ ❛♥ ♦❜s❡r✈❡❞ st❛t❡ s❡q✉❡♥❝❡
P (~x;A, B)✳

❆ s✐♠✐❧❛r ❛❧❣♦r✐t❤♠ ❦♥♦✇♥ ❛s t❤❡ ❇❛❝❦✇❛r❞ Pr♦❝❡❞✉r❡ ❝❛♥ ❜❡ ✉s❡❞ t♦
❝♦♠♣✉t❡ ❛♥ ❛♥❛❧♦❣♦✉s ♣r♦❜❛❜✐❧✐t② βi(t) = P (xT , xT−1, .., xt+1, zt = si;A, B)✳

✷✳✸ ▼❛①✐♠✉♠ ▲✐❦❡❧✐❤♦♦❞ ❙t❛t❡ ❆ss✐❣♥♠❡♥t✿ ❚❤❡ ❱✐t❡r❜✐

❆❧❣♦r✐t❤♠

❖♥❡ ♦❢ t❤❡ ♠♦st ❝♦♠♠♦♥ q✉❡r✐❡s ♦❢ ❛ ❍✐❞❞❡♥ ▼❛r❦♦✈ ▼♦❞❡❧ ✐s t♦ ❛s❦ ✇❤❛t
✇❛s t❤❡ ♠♦st ❧✐❦❡❧② s❡r✐❡s ♦❢ st❛t❡s ~z ∈ ST ❣✐✈❡♥ ❛♥ ♦❜s❡r✈❡❞ s❡r✐❡s ♦❢ ♦✉t♣✉ts
~x ∈ V T ✳ ❋♦r♠❛❧❧②✱ ✇❡ s❡❡❦✿

arg max
~z

P (~z|~x;A, B) = arg max
~z

P (~x, ~z;A, B)∑
~z P (~x, ~z;A, B)

= arg max
~z

P (~x, ~z;A, B)

❚❤❡ ✜rst s✐♠♣❧✐✜❝❛t✐♦♥ ❢♦❧❧♦✇s ❢r♦♠ ❇❛②❡s r✉❧❡ ❛♥❞ t❤❡ s❡❝♦♥❞ ❢r♦♠ t❤❡
♦❜s❡r✈❛t✐♦♥ t❤❛t t❤❡ ❞❡♥♦♠✐♥❛t♦r ❞♦❡s ♥♦t ❞✐r❡❝t❧② ❞❡♣❡♥❞ ♦♥ ~z✳ ◆❛✐✈❡❧②✱ ✇❡
♠✐❣❤t tr② ❡✈❡r② ♣♦ss✐❜❧❡ ❛ss✐❣♥♠❡♥t t♦ ~z ❛♥❞ t❛❦❡ t❤❡ ♦♥❡ ✇✐t❤ t❤❡ ❤✐❣❤❡st
❥♦✐♥t ♣r♦❜❛❜✐❧✐t② ❛ss✐❣♥❡❞ ❜② ♦✉r ♠♦❞❡❧✳ ❍♦✇❡✈❡r✱ t❤✐s ✇♦✉❧❞ r❡q✉✐r❡ O(|S|T )
♦♣❡r❛t✐♦♥s ❥✉st t♦ ❡♥✉♠❡r❛t❡ t❤❡ s❡t ♦❢ ♣♦ss✐❜❧❡ ❛ss✐❣♥♠❡♥ts✳ ❆t t❤✐s ♣♦✐♥t✱ ②♦✉
♠✐❣❤t t❤✐♥❦ ❛ ❞②♥❛♠✐❝ ♣r♦❣r❛♠♠✐♥❣ s♦❧✉t✐♦♥ ❧✐❦❡ t❤❡ ❋♦r✇❛r❞ ❆❧❣♦r✐t❤♠ ♠✐❣❤t
s❛✈❡ t❤❡ ❞❛②✱ ❛♥❞ ②♦✉✬❞ ❜❡ r✐❣❤t✳ ◆♦t✐❝❡ t❤❛t ✐❢ ②♦✉ r❡♣❧❛❝❡❞ t❤❡ arg max~z ✇✐t❤∑

~z✱ ♦✉r ❝✉rr❡♥t t❛s❦ ✐s ❡①❛❝t❧② ❛♥❛❧♦❣♦✉s t♦ t❤❡ ❡①♣r❡ss✐♦♥ ✇❤✐❝❤ ♠♦t✐✈❛t❡❞
t❤❡ ❢♦r✇❛r❞ ♣r♦❝❡❞✉r❡✳

✼



❆❧❣♦r✐t❤♠ ✷ ◆❛✐✈❡ ❛♣♣❧✐❝❛t✐♦♥ ♦❢ ❊▼ t♦ ❍▼▼s

❘❡♣❡❛t ✉♥t✐❧ ❝♦♥✈❡r❣❡♥❝❡ ④
✭❊✲❙t❡♣✮ ❋♦r ❡✈❡r② ♣♦ss✐❜❧❡ ❧❛❜❡❧✐♥❣ ~z ∈ ST ✱ s❡t

Q(~z) := p(~z|~x;A, B)

✭▼✲❙t❡♣✮ ❙❡t

A, B := arg max
A,B

∑

~z

Q(~z) log
P (~x, ~z;A, B)

Q(~z)

s.t.

|S|∑

j=1

Aij = 1, i = 1..|S|; Aij ≥ 0, i, j = 1..|S|

|V |∑

k=1

Bik = 1, i = 1..|S|; Bik ≥ 0, i = 1..|S|, k = 1..|V |

⑥

❚❤❡ ❱✐t❡r❜✐ ❆❧❣♦r✐t❤♠ ✐s ❥✉st ❧✐❦❡ t❤❡ ❢♦r✇❛r❞ ♣r♦❝❡❞✉r❡ ❡①❝❡♣t t❤❛t
✐♥st❡❛❞ ♦❢ tr❛❝❦✐♥❣ t❤❡ t♦t❛❧ ♣r♦❜❛❜✐❧✐t② ♦❢ ❣❡♥❡r❛t✐♥❣ t❤❡ ♦❜s❡r✈❛t✐♦♥s s❡❡♥ s♦
❢❛r✱ ✇❡ ♥❡❡❞ ♦♥❧② tr❛❝❦ t❤❡ ♠❛①✐♠✉♠ ♣r♦❜❛❜✐❧✐t② ❛♥❞ r❡❝♦r❞ ✐ts ❝♦rr❡s♣♦♥❞✐♥❣
st❛t❡ s❡q✉❡♥❝❡✳

✷✳✹ P❛r❛♠❡t❡r ▲❡❛r♥✐♥❣✿ ❊▼ ❢♦r ❍▼▼s

❚❤❡ ✜♥❛❧ q✉❡st✐♦♥ t♦ ❛s❦ ♦❢ ❛♥ ❍▼▼ ✐s✿ ❣✐✈❡♥ ❛ s❡t ♦❢ ♦❜s❡r✈❛t✐♦♥s✱ ✇❤❛t
❛r❡ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ st❛t❡ tr❛♥s✐t✐♦♥ ♣r♦❜❛❜✐❧✐t✐❡s A ❛♥❞ t❤❡ ♦✉t♣✉t ❡♠✐ss✐♦♥
♣r♦❜❛❜✐❧✐t✐❡s B t❤❛t ♠❛❦❡ t❤❡ ❞❛t❛ ♠♦st ❧✐❦❡❧②❄ ❋♦r ❡①❛♠♣❧❡✱ s♦❧✈✐♥❣ ❢♦r t❤❡
♠❛①✐♠✉♠ ❧✐❦❡❧✐❤♦♦❞ ♣❛r❛♠❡t❡rs ❜❛s❡❞ ♦♥ ❛ s♣❡❡❝❤ r❡❝♦❣♥✐t✐♦♥ ❞❛t❛s❡t ✇✐❧❧ ❛❧❧♦✇
✉s t♦ ❡✛❡❝t✐✈❡❧② tr❛✐♥ t❤❡ ❍▼▼ ❜❡❢♦r❡ ❛s❦✐♥❣ ❢♦r t❤❡ ♠❛①✐♠✉♠ ❧✐❦❡❧✐❤♦♦❞ st❛t❡
❛ss✐❣♥♠❡♥t ♦❢ ❛ ❝❛♥❞✐❞❛t❡ s♣❡❡❝❤ s✐❣♥❛❧✳

■♥ t❤✐s s❡❝t✐♦♥✱ ✇❡ ♣r❡s❡♥t ❛ ❞❡r✐✈❛t✐♦♥ ♦❢ t❤❡ ❊①♣❡❝t❛t✐♦♥ ▼❛①✐♠✐③❛t✐♦♥
❛❧❣♦r✐t❤♠ ❢♦r ❍✐❞❞❡♥ ▼❛r❦♦✈ ▼♦❞❡❧s✳ ❚❤✐s ♣r♦♦❢ ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ❣❡♥❡r❛❧ ❢♦r✲
♠✉❧❛t✐♦♥ ♦❢ ❊▼ ♣r❡s❡♥t❡❞ ✐♥ t❤❡ ❈❙✷✷✾ ❧❡❝t✉r❡ ♥♦t❡s✳ ❆❧❣♦r✐t❤♠ ✷✳✹ s❤♦✇s t❤❡
❜❛s✐❝ ❊▼ ❛❧❣♦r✐t❤♠✳ ◆♦t✐❝❡ t❤❛t t❤❡ ♦♣t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠ ✐♥ t❤❡ ▼✲❙t❡♣ ✐s ♥♦✇
❝♦♥str❛✐♥❡❞ s✉❝❤ t❤❛t A ❛♥❞ B ❝♦♥t❛✐♥ ✈❛❧✐❞ ♣r♦❜❛❜✐❧✐t✐❡s✳ ▲✐❦❡ t❤❡ ♠❛①✐♠✉♠
❧✐❦❡❧✐❤♦♦❞ s♦❧✉t✐♦♥ ✇❡ ❢♦✉♥❞ ❢♦r ✭♥♦♥✲❍✐❞❞❡♥✮ ▼❛r❦♦✈ ♠♦❞❡❧s✱ ✇❡✬❧❧ ❜❡ ❛❜❧❡ t♦
s♦❧✈❡ t❤✐s ♦♣t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠ ✇✐t❤ ▲❛❣r❛♥❣❡ ♠✉❧t✐♣❧✐❡rs✳ ◆♦t✐❝❡ ❛❧s♦ t❤❛t t❤❡
❊✲❙t❡♣ ❛♥❞ ▼✲❙t❡♣ ❜♦t❤ r❡q✉✐r❡ ❡♥✉♠❡r❛t✐♥❣ ❛❧❧ |S|T ♣♦ss✐❜❧❡ ❧❛❜❡❧❧✐♥❣s ♦❢ ~z✳
❲❡✬❧❧ ♠❛❦❡ ✉s❡ ♦❢ t❤❡ ❋♦r✇❛r❞ ❛♥❞ ❇❛❝❦✇❛r❞ ❛❧❣♦r✐t❤♠s ♠❡♥t✐♦♥❡❞ ❡❛r❧✐❡r t♦
❝♦♠♣✉t❡ ❛ s❡t ♦❢ s✉✣❝✐❡♥t st❛t✐st✐❝s ❢♦r ♦✉r ❊✲❙t❡♣ ❛♥❞ ▼✲❙t❡♣ tr❛❝t❛❜❧②✳

❋✐rst✱ ❧❡t✬s r❡✇r✐t❡ t❤❡ ♦❜❥❡❝t✐✈❡ ❢✉♥❝t✐♦♥ ✉s✐♥❣ ♦✉r ▼❛r❦♦✈ ❛ss✉♠♣t✐♦♥s✳

✽



A, B = arg max
A,B

∑

~z

Q(~z) log
P (~x, ~z;A, B)

Q(~z)

= arg max
A,B

∑

~z

Q(~z) log P (~x, ~z;A, B)

= arg max
A,B

∑

~z

Q(~z) log(

T∏

t=1

P (xt|zt;B)) (

T∏

t=1

P (zt|zt−1;A))

= arg max
A,B

∑

~z

Q(~z)

T∑

t=1

log Bzt xt
+ log Azt−1 zt

= arg max
A,B

∑

~z

Q(~z)

|S|∑

i=1

|S|∑

j=1

|V |∑

k=1

T∑

t=1

1{zt = sj ∧ xt = vk} log Bjk + 1{zt−1 = si ∧ zt = sj} log Aij

■♥ t❤❡ ✜rst ❧✐♥❡ ✇❡ s♣❧✐t t❤❡ ❧♦❣ ❞✐✈✐s✐♦♥ ✐♥t♦ ❛ s✉❜tr❛❝t✐♦♥ ❛♥❞ ♥♦t❡ t❤❛t
t❤❡ ❞❡♥♦♠✐♥❛t♦r✬s t❡r♠ ❞♦❡s ♥♦t ❞❡♣❡♥❞ ♦♥ t❤❡ ♣❛r❛♠❡t❡rs A, B✳ ❚❤❡ ▼❛r❦♦✈
❛ss✉♠♣t✐♦♥s ❛r❡ ❛♣♣❧✐❡❞ ✐♥ ❧✐♥❡ ✸✳ ▲✐♥❡ ✺ ✉s❡s ✐♥❞✐❝❛t♦r ❢✉♥❝t✐♦♥s t♦ ✐♥❞❡① A

❛♥❞ B ❜② st❛t❡✳
❏✉st ❛s ❢♦r t❤❡ ♠❛①✐♠✉♠ ❧✐❦❡❧✐❤♦♦❞ ♣❛r❛♠❡t❡rs ❢♦r ❛ ✈✐s✐❜❧❡ ▼❛r❦♦✈ ♠♦❞❡❧✱

✐t ✐s s❛❢❡ t♦ ✐❣♥♦r❡ t❤❡ ✐♥❡q✉❛❧✐t② ❝♦♥str❛✐♥ts ❜❡❝❛✉s❡ t❤❡ s♦❧✉t✐♦♥ ❢♦r♠ ♥❛t✉r❛❧❧②
r❡s✉❧ts ✐♥ ♦♥❧② ♣♦s✐t✐✈❡ s♦❧✉t✐♦♥s✳ ❈♦♥str✉❝t✐♥❣ t❤❡ ▲❛❣r❛♥❣✐❛♥✿

L(A, B, δ, ǫ) =
∑

~z

Q(~z)

|S|∑

i=1

|S|∑

j=1

|V |∑

k=1

T∑

t=1

1{zt = sj ∧ xt = vk} log Bjk + 1{zt−1 = si ∧ zt = sj} log Aij

+

|S|∑

j=1

ǫj(1 −

|V |∑

k=1

Bjk) +

|S|∑

i=1

δi(1 −

|S|∑

j=1

Aij)

❚❛❦✐♥❣ ♣❛rt✐❛❧ ❞❡r✐✈❛t✐✈❡s ❛♥❞ s❡tt✐♥❣ t❤❡♠ ❡q✉❛❧ t♦ ③❡r♦✿

∂L(A, B, δ, ǫ)

∂Aij

=
∑

~z

Q(~z)
1

Aij

T∑

t=1

1{zt−1 = si ∧ zt = sj} − δi ≡ 0

Aij =
1

δi

∑

~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj}

∂L(A, B, δ, ǫ)

∂Bjk

=
∑

~z

Q(~z)
1

Bjk

T∑

t=1

1{zt = sj ∧ xt = vk} − ǫj ≡ 0

Bjk =
1

ǫj

∑

~z

Q(~z)
T∑

t=1

1{zt = sj ∧ xt = vk}

✾



❚❛❦✐♥❣ ♣❛rt✐❛❧ ❞❡r✐✈❛t✐✈❡s ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ▲❛❣r❛♥❣❡ ♠✉❧t✐♣❧✐❡rs ❛♥❞ s✉❜✲
st✐t✉t✐♥❣ ♦✉r ✈❛❧✉❡s ♦❢ Aij ❛♥❞ Bjk ❛❜♦✈❡✿

∂L(A, B, δ, ǫ)

∂δi

= 1 −

|S|∑

j=1

Aij

= 1 −

|S|∑

j=1

1

δi

∑

~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj} ≡ 0

δi =

|S|∑

j=1

∑

~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj}

=
∑

~z

Q(~z)

T∑

t=1

1{zt−1 = si}

∂L(A, B, δ, ǫ)

∂ǫj

= 1 −

|V |∑

k=1

Bjk

= 1 −

|V |∑

k=1

1

ǫj

∑

~z

Q(~z)

T∑

t=1

1{zt = sj ∧ xt = vk} ≡ 0

ǫj =

|V |∑

k=1

∑

~z

Q(~z)

T∑

t=1

1{zt = sj ∧ xt = vk}

=
∑

~z

Q(~z)

T∑

t=1

1{zt = sj}

❙✉❜st✐t✉t✐♥❣ ❜❛❝❦ ✐♥t♦ ♦✉r ❡①♣r❡ss✐♦♥s ❛❜♦✈❡✱ ✇❡ ✜♥❞ t❤❛t ♣❛r❛♠❡t❡rs Â ❛♥❞
B̂ t❤❛t ♠❛①✐♠✐③❡ ♦✉r ♣r❡❞✐❝t❡❞ ❝♦✉♥ts ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ❞❛t❛s❡t ❛r❡✿

Âij =

∑
~z Q(~z)

∑T
t=1 1{zt−1 = si ∧ zt = sj}∑

~z Q(~z)
∑T

t=1 1{zt−1 = si}

B̂jk =

∑
~z Q(~z)

∑T
t=1 1{zt = sj ∧ xt = vk}∑

~z Q(~z)
∑T

t=1 1{zt = sj}

❯♥❢♦rt✉♥❛t❡❧②✱ ❡❛❝❤ ♦❢ t❤❡s❡ s✉♠s ✐s ♦✈❡r ❛❧❧ ♣♦ss✐❜❧❡ ❧❛❜❡❧❧✐♥❣s ~z ∈ ST ✳ ❇✉t
r❡❝❛❧❧ t❤❛t Q(~z) ✇❛s ❞❡✜♥❡❞ ✐♥ t❤❡ ❊✲st❡♣ ❛s P (~z|~x;A, B) ❢♦r ♣❛r❛♠❡t❡rs A ❛♥❞
B ❛t t❤❡ ❧❛st t✐♠❡ st❡♣✳ ▲❡t✬s ❝♦♥s✐❞❡r ❤♦✇ t♦ r❡♣r❡s❡♥t ✜rst t❤❡ ♥✉♠❡r❛t♦r ♦❢
Âij ✐♥ t❡r♠s ♦❢ ♦✉r ❢♦r✇❛r❞ ❛♥❞ ❜❛❝❦✇❛r❞ ♣r♦❜❛❜✐❧✐t✐❡s✱ αi(t) ❛♥❞ βj(t)✳

∑

~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj}

✶✵



=

T∑

t=1

∑

~z

1{zt−1 = si ∧ zt = sj}Q(~z)

=

T∑

t=1

∑

~z

1{zt−1 = si ∧ zt = sj}P (~z|~x;A, B)

=
1

P (~x;A, B)

T∑

t=1

∑

~z

1{zt−1 = si ∧ zt = sj}P (~z, ~x;A, B)

=
1

P (~x;A, B)

T∑

t=1

αi(t)AijBj xt
βj(t + 1)

■♥ t❤❡ ✜rst t✇♦ st❡♣s ✇❡ r❡❛rr❛♥❣❡ t❡r♠s ❛♥❞ s✉❜st✐t✉t❡ ✐♥ ❢♦r ♦✉r ❞❡✜♥✐t✐♦♥
♦❢ Q✳ ❚❤❡♥ ✇❡ ✉s❡ ❇❛②❡s r✉❧❡ ✐♥ ❞❡r✐✈✐♥❣ ❧✐♥❡ ❢♦✉r✱ ❢♦❧❧♦✇❡❞ ❜② t❤❡ ❞❡✜♥✐t✐♦♥s
♦❢ α✱ β✱ A✱ ❛♥❞ B✱ ✐♥ ❧✐♥❡ ✜✈❡✳ ❙✐♠✐❧❛r❧②✱ t❤❡ ❞❡♥♦♠✐♥❛t♦r ❝❛♥ ❜❡ r❡♣r❡s❡♥t❡❞
❜② s✉♠♠✐♥❣ ♦✉t ♦✈❡r j t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ♥✉♠❡r❛t♦r✳

∑

~z

Q(~z)
T∑

t=1

1{zt−1 = si}

=

|S|∑

j=1

∑

~z

Q(~z)

T∑

t=1

1{zt−1 = si ∧ zt = sj}

=
1

P (~x;A, B)

|S|∑

j=1

T∑

t=1

αi(t)AijBj xt
βj(t + 1)

❈♦♠❜✐♥✐♥❣ t❤❡s❡ ❡①♣r❡ss✐♦♥s✱ ✇❡ ❝❛♥ ❢✉❧❧② ❝❤❛r❛❝t❡r✐③❡ ♦✉r ♠❛①✐♠✉♠ ❧✐❦❡❧✐✲
❤♦♦❞ st❛t❡ tr❛♥s✐t✐♦♥s Âij ✇✐t❤♦✉t ♥❡❡❞✐♥❣ t♦ ❡♥✉♠❡r❛t❡ ❛❧❧ ♣♦ss✐❜❧❡ ❧❛❜❡❧❧✐♥❣s
❛s✿

Âij =

∑T
t=1 αi(t)AijBj xt

βj(t + 1)
∑|S|

j=1

∑T
t=1 αi(t)AijBj xt

βj(t + 1)

❙✐♠✐❧❛r❧②✱ ✇❡ ❝❛♥ r❡♣r❡s❡♥t t❤❡ ♥✉♠❡r❛t♦r ❢♦r B̂jk ❛s✿

∑

~z

Q(~z)

T∑

t=1

1{zt = sj ∧ xt = vk}

=
1

P (~x;A, B)

T∑

t=1

∑

~z

1{zt = sj ∧ xt = vk}P (~z, ~x;A, B)

=
1

P (~x;A, B)

|S|∑

i=1

T∑

t=1

∑

~z

1{zt−1 = si ∧ zt = sj ∧ xt = vk}P (~z, ~x;A, B)

✶✶



❆❧❣♦r✐t❤♠ ✸ ❋♦r✇❛r❞✲❇❛❝❦✇❛r❞ ❛❧❣♦r✐t❤♠ ❢♦r ❍▼▼ ♣❛r❛♠❡t❡r ❧❡❛r♥✐♥❣

■♥✐t✐❛❧✐③❛t✐♦♥✿ ❙❡t A ❛♥❞ B ❛s r❛♥❞♦♠ ✈❛❧✐❞ ♣r♦❜❛❜✐❧✐t② ♠❛tr✐❝❡s
✇❤❡r❡ Ai0 = 0 ❛♥❞ B0k = 0 ❢♦r i = 1..|S| ❛♥❞ k = 1..|V |✳

❘❡♣❡❛t ✉♥t✐❧ ❝♦♥✈❡r❣❡♥❝❡ ④
✭❊✲❙t❡♣✮ ❘✉♥ t❤❡ ❋♦r✇❛r❞ ❛♥❞ ❇❛❝❦✇❛r❞ ❛❧❣♦r✐t❤♠s t♦ ❝♦♠♣✉t❡ αi ❛♥❞ βi ❢♦r
i = 1..|S|✳ ❚❤❡♥ s❡t✿

γt(i, j) := αi(t)AijBj xt
βj(t + 1)

✭▼✲❙t❡♣✮ ❘❡✲❡st✐♠❛t❡ t❤❡ ♠❛①✐♠✉♠ ❧✐❦❡❧✐❤♦♦❞ ♣❛r❛♠❡t❡rs ❛s✿

Aij :=

∑T
t=1 γt(i, j)

∑|S|
j=1

∑T
t=1 γt(i, j)

Bjk :=

∑|S|
i=1

∑T
t=1 1{xt = vk} γt(i, j)

∑|S|
i=1

∑T
t=1 γt(i, j)

⑥

=
1

P (~x;A, B)

|S|∑

i=1

T∑

t=1

1{xt = vk}αi(t)AijBj xt
βj(t + 1)

❆♥❞ t❤❡ ❞❡♥♦♠✐♥❛t♦r ♦❢ B̂jk ❛s✿

∑

~z

Q(~z)

T∑

t=1

1{zt = sj}

=
1

P (~x;A, B)

|S|∑

i=1

T∑

t=1

∑

~z

1{zt−1 = si ∧ zt = sj}P (~z, ~x;A, B)

=
1

P (~x;A, B)

|S|∑

i=1

T∑

t=1

αi(t)AijBj xt
βj(t + 1)

❈♦♠❜✐♥✐♥❣ t❤❡s❡ ❡①♣r❡ss✐♦♥s✱ ✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ❢♦r♠ ❢♦r ♦✉r ♠❛①✐♠✉♠
❧✐❦❡❧✐❤♦♦❞ ❡♠✐ss✐♦♥ ♣r♦❜❛❜✐❧✐t✐❡s ❛s✿

B̂jk =

∑|S|
i=1

∑T
t=1 1{xt = vk}αi(t)AijBj xt

βj(t + 1)
∑|S|

i=1

∑T
t=1 αi(t)AijBj xt

βj(t + 1)

❆❧❣♦r✐t❤♠ ✷✳✹ s❤♦✇s ❛ ✈❛r✐❛♥t ♦❢ t❤❡ ❋♦r✇❛r❞✲❇❛❝❦✇❛r❞ ❆❧❣♦r✐t❤♠✱
♦r t❤❡ ❇❛✉♠✲❲❡❧❝❤ ❆❧❣♦r✐t❤♠ ❢♦r ♣❛r❛♠❡t❡r ❧❡❛r♥✐♥❣ ✐♥ ❍▼▼s✳ ■♥ t❤❡

✶✷



❊✲❙t❡♣✱ r❛t❤❡r t❤❛♥ ❡①♣❧✐❝✐t❧② ❡✈❛❧✉❛t✐♥❣ Q(~z) ❢♦r ❛❧❧ ~z ∈ ST ✱ ✇❡ ❝♦♠♣✉t❡
❛ s✉✣❝✐❡♥t st❛t✐st✐❝s γt(i, j) = αi(t)AijBj xt

βj(t + 1) t❤❛t ✐s ♣r♦♣♦rt✐♦♥❛❧ t♦
t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ tr❛♥s✐t✐♦♥✐♥❣ ❜❡t✇❡❡♥ s❛t❡ si ❛♥❞ sj ❛t t✐♠❡ t ❣✐✈❡♥ ❛❧❧ ♦❢
♦✉r ♦❜s❡r✈❛t✐♦♥s ~x✳ ❚❤❡ ❞❡r✐✈❡❞ ❡①♣r❡ss✐♦♥s ❢♦r Aij ❛♥❞ Bjk ❛r❡ ✐♥t✉✐t✐✈❡❧②
❛♣♣❡❛❧✐♥❣✳ Aij ✐s ❝♦♠♣✉t❡❞ ❛s t❤❡ ❡①♣❡❝t❡❞ ♥✉♠❜❡r ♦❢ tr❛♥s✐t✐♦♥s ❢r♦♠ si t♦
sj ❞✐✈✐❞❡❞ ❜② t❤❡ ❡①♣❡❝t❡❞ ♥✉♠❜❡r ♦❢ ❛♣♣❡❛r❛♥❝❡s ♦❢ si✳ ❙✐♠✐❧❛r❧②✱ Bjk ✐s
❝♦♠♣✉t❡❞ ❛s t❤❡ ❡①♣❡❝t❡❞ ♥✉♠❜❡r ♦❢ ❡♠✐ss✐♦♥s ♦❢ vk ❢r♦♠ sj ❞✐✈✐❞❡❞ ❜② t❤❡
❡①♣❡❝t❡❞ ♥✉♠❜❡r ♦❢ ❛♣♣❡❛r❛♥❝❡s ♦❢ sj ✳

▲✐❦❡ ♠❛♥② ❛♣♣❧✐❝❛t✐♦♥s ♦❢ ❊▼✱ ♣❛r❛♠❡t❡r ❧❡❛r♥✐♥❣ ❢♦r ❍▼▼s ✐s ❛ ♥♦♥✲❝♦♥✈❡①
♣r♦❜❧❡♠ ✇✐t❤ ♠❛♥② ❧♦❝❛❧ ♠❛①✐♠❛✳ ❊▼ ✇✐❧❧ ❝♦♥✈❡r❣❡ t♦ ❛ ♠❛①✐♠✉♠ ❜❛s❡❞ ♦♥
✐ts ✐♥✐t✐❛❧ ♣❛r❛♠❡t❡rs✱ s♦ ♠✉❧t✐♣❧❡ r✉♥s ♠✐❣❤t ❜❡ ✐♥ ♦r❞❡r✳ ❆❧s♦✱ ✐t ✐s ♦❢t❡♥
✐♠♣♦rt❛♥t t♦ s♠♦♦t❤ t❤❡ ♣r♦❜❛❜✐❧✐t② ❞✐str✐❜✉t✐♦♥s r❡♣r❡s❡♥t❡❞ ❜② A ❛♥❞ B s♦
t❤❛t ♥♦ tr❛♥s✐t✐♦♥ ♦r ❡♠✐ss✐♦♥ ✐s ❛ss✐❣♥❡❞ ✵ ♣r♦❜❛❜✐❧✐t②✳

✷✳✺ ❋✉rt❤❡r r❡❛❞✐♥❣

❚❤❡r❡ ❛r❡ ♠❛♥② ❣♦♦❞ s♦✉r❝❡s ❢♦r ❧❡❛r♥✐♥❣ ❛❜♦✉t ❍✐❞❞❡♥ ▼❛r❦♦✈ ▼♦❞❡❧s✳ ❋♦r ❛♣✲
♣❧✐❝❛t✐♦♥s ✐♥ ◆▲P✱ ■ r❡❝♦♠♠❡♥❞ ❝♦♥s✉❧t✐♥❣ ❏✉r❛❢s❦② ✫ ▼❛rt✐♥✬s ❞r❛❢t s❡❝♦♥❞ ❡❞✐✲
t✐♦♥ ♦❢ ❙♣❡❡❝❤ ❛♥❞ ▲❛♥❣✉❛❣❡ Pr♦❝❡ss✐♥❣✶ ♦r ▼❛♥♥✐♥❣ ✫ ❙❝❤üt③❡✬s ❋♦✉♥❞❛t✐♦♥s ♦❢
❙t❛t✐st✐❝❛❧ ◆❛t✉r❛❧ ▲❛♥❣✉❛❣❡ Pr♦❝❡ss✐♥❣✳ ❆❧s♦✱ ❊✐s♥❡r✬s ❍▼▼✲✐♥✲❛✲s♣r❡❛❞s❤❡❡t
❬✶❪ ✐s ❛ ❧✐❣❤t✲✇❡✐❣❤t ✐♥t❡r❛❝t✐✈❡ ✇❛② t♦ ♣❧❛② ✇✐t❤ ❛♥ ❍▼▼ t❤❛t r❡q✉✐r❡s ♦♥❧② ❛
s♣r❡❛❞s❤❡❡t ❛♣♣❧✐❝❛t✐♦♥✳

❘❡❢❡r❡♥❝❡s

❬✶❪ ❏❛s♦♥ ❊✐s♥❡r✳ ❆♥ ✐♥t❡r❛❝t✐✈❡ s♣r❡❛❞s❤❡❡t ❢♦r t❡❛❝❤✐♥❣ t❤❡ ❢♦r✇❛r❞✲❜❛❝❦✇❛r❞
❛❧❣♦r✐t❤♠✳ ■♥ ❉r❛❣♦♠✐r ❘❛❞❡✈ ❛♥❞ ❈❤r✐s ❇r❡✇✱ ❡❞✐t♦rs✱ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡
❆❈▲ ❲♦r❦s❤♦♣ ♦♥ ❊✛❡❝t✐✈❡ ❚♦♦❧s ❛♥❞ ▼❡t❤♦❞♦❧♦❣✐❡s ❢♦r ❚❡❛❝❤✐♥❣ ◆▲P ❛♥❞

❈▲✱ ♣❛❣❡s ✶✵✕✶✽✱ ✷✵✵✷✳

✶❤tt♣✿✴✴✇✇✇✳❝s✳❝♦❧♦r❛❞♦✳❡❞✉✴⑦♠❛rt✐♥✴s❧♣✷✳❤t♠❧
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CS229 Supplemental Lecture notes

John Duchi

1 Binary classification

In binary classification problems, the target y can take on at only two
values. In this set of notes, we show how to model this problem by letting
y ∈ {−1,+1}, where we say that y is a 1 if the example is a member of the
positive class and y = −1 if the example is a member of the negative class.
We assume, as usual, that we have input features x ∈ R

n.
As in our standard approach to supervised learning problems, we first

pick a representation for our hypothesis class (what we are trying to learn),
and after that we pick a loss function that we will minimize. In binary
classification problems, it is often convenient to use a hypothesis class of the
form hθ(x) = θTx, and, when presented with a new example x, we classify it
as positive or negative depending on the sign of θTx, that is, our predicted
label is

sign(hθ(x)) = sign(θTx) where sign(t) =











1 if t > 0

0 if t = 0

−1 if t < 0.

In a binary classification problem, then, the hypothesis hθ with parameter
vector θ classifies a particular example (x, y) correctly if

sign(θTx) = y or equivalently yθTx > 0. (1)

The quantity yθTx in expression (1) is a very important quantity in binary
classification, important enough that we call the value

yxT θ

the margin for the example (x, y). Often, though not always, one interprets
the value hθ(x) = xT θ as a measure of the confidence that the parameter

1



vector θ assigns to labels for the point x: if xT θ is very negative (or very
positive), then we more strongly believe the label y is negative (or positive).

Now that we have chosen a representation for our data, we must choose a
loss function. Intuitively, we would like to choose some loss function so that
for our training data {(x(i), y(i))}mi=1, the θ chosen makes the margin y(i)θTx(i)

very large for each training example. Let us fix a hypothetical example (x, y),
let z = yxT θ denote the margin, and let ϕ : R → R be the loss function—that
is, the loss for the example (x, y) with margin z = yxT θ is ϕ(z) = ϕ(yxT θ).
For any particular loss function, the empirical risk that we minimize is then

J(θ) =
1

m

m
∑

i=1

ϕ(y(i)θTx(i)). (2)

Consider our desired behavior: we wish to have y(i)θTx(i) positive for each
training example i = 1, . . . ,m, and we should penalize those θ for which
y(i)θTx(i) < 0 frequently in the training data. Thus, an intuitive choice for
our loss would be one with ϕ(z) small if z > 0 (the margin is positive), while
ϕ(z) is large if z < 0 (the margin is negative). Perhaps the most natural
such loss is the zero-one loss, given by

ϕzo(z) =

{

1 if z ≤ 0

0 if z > 0.

In this case, the risk J(θ) is simply the average number of mistakes—misclassifications—
the parameter θ makes on the training data. Unfortunately, the loss ϕzo is
discontinuous, non-convex (why this matters is a bit beyond the scope of
the course), and perhaps even more vexingly, NP-hard to minimize. So we
prefer to choose losses that have the shape given in Figure 1. That is, we
will essentially always use losses that satisfy

ϕ(z) → 0 as z → ∞, while ϕ(z) → ∞ as z → −∞.

As a few different examples, here are three loss functions that we will see
either now or later in the class, all of which are commonly used in machine
learning.

(i) The logistic loss uses

ϕlogistic(z) = log(1 + e−z)

2



ϕ

z = yxT θ

Figure 1: The rough shape of loss we desire: the loss is convex and continuous,
and tends to zero as the margin z = yxT θ → ∞.

(ii) The hinge loss uses

ϕhinge(z) = [1− z]+ = max{1− z, 0}

(iii) The exponential loss uses

ϕexp(z) = e−z.

In Figure 2, we plot each of these losses against the margin z = yxT θ,
noting that each goes to zero as the margin grows, and each tends to +∞ as
the margin becomes negative. The different loss functions lead to different
machine learning procedures; in particular, the logistic loss ϕlogistic is logistic
regression, the hinge loss ϕhinge gives rise to so-called support vector machines,
and the exponential loss gives rise to the classical version of boosting, both
of which we will explore in more depth later in the class.

2 Logistic regression

With this general background in place, we now we give a complementary
view of logistic regression to that in Andrew Ng’s lecture notes. When we

3



ϕlogistic

ϕhinge

ϕexp

z = yxT θ

Figure 2: The three margin-based loss functions logistic loss, hinge loss, and
exponential loss.

use binary labels y ∈ {−1, 1}, it is possible to write logistic regression more
compactly. In particular, we use the logistic loss

ϕlogistic(yx
T θ) = log

(

1 + exp(−yxT θ)
)

,

and the logistic regression algorithm corresponds to choosing θ that mini-
mizes

J(θ) =
1

m

m
∑

i=1

ϕlogistic(y
(i)θTx(i)) =

1

m

m
∑

i=1

log
(

1 + exp(−y(i)θTx(i))
)

. (3)

Roughly, we hope that choosing θ to minimize the average logistic loss will
yield a θ for which y(i)θTx(i) > 0 for most (or even all!) of the training
examples.

2.1 Probabilistic intrepretation

Similar to the linear regression (least-squares) case, it is possible to give a
probabilistic interpretation of logistic regression. To do this, we define the

4
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0

1

Figure 3: Sigmoid function

sigmoid function (also often called the logistic function)

g(z) =
1

1 + e−z
,

which is plotted in Fig. 3. In particular, the sigmoid function satisfies

g(z) + g(−z) =
1

1 + e−z
+

1

1 + ez
=

ez

1 + ez
+

1

1 + ez
= 1,

so we can use it to define a probability model for binary classification. In
particular, for y ∈ {−1, 1}, we define the logistic model for classification as

p(Y = y | x; θ) = g(yxT θ) =
1

1 + e−yxT θ
. (4)

For intepretation, we see that if the margin yxT θ is large—bigger than, say,
5 or so—then p(Y = y | x; θ) = g(yxT θ) ≈ 1, that is, we assign nearly
probability 1 to the event that the label is y. Conversely, if yxT θ is quite
negative, then p(Y = y | x; θ) ≈ 0.

By redefining our hypothesis class as

hθ(x) = g(θTx) =
1

1 + e−θT x
,

5



then we see that the likelihood of the training data is

L(θ) =
m
∏

i=1

p(Y = y(i) | x(i); θ) =
m
∏

i=1

hθ(y
(i)x(i)),

and the log-likelihood is precisely

ℓ(θ) =
m
∑

i=1

log hθ(y
(i)x(i)) = −

m
∑

i=1

log
(

1 + e−y(i)θT x(i)
)

= −mJ(θ),

where J(θ) is exactly the logistic regression risk from Eq. (3). That is,
maximum likelihood in the logistic model (4) is the same as minimizing the
average logistic loss, and we arrive at logistic regression again.

2.2 Gradient descent methods

The final part of logistic regression is to actually fit the model. As is usually
the case, we consider gradient-descent-based procedures for performing this
minimization. With that in mind, we now show how to take derivatives of
the logistic loss. For ϕlogistic(z) = log(1 + e−z), we have the one-dimensional
derivative

d

dz
ϕlogistic(z) = ϕ′

logistic(z) =
1

1 + e−z
·
d

dz
e−z = −

e−z

1 + e−z
= −

1

1 + ez
= −g(−z),

where g is the sigmoid function. Then we apply the chain rule to find that
for a single training example (x, y), we have

∂

∂θk
ϕlogistic(yx

T θ) = −g(−yxT θ)
∂

∂θk
(yxT θ) = −g(−yxT θ)yxk.

Thus, a stochastic gradient procedure for minimization of J(θ) iteratively
performs the following for iterations t = 1, 2, . . ., where αt is a stepsize at
time t:

1. Choose an example i ∈ {1, . . . ,m} uniformly at random

2. Perform the gradient update

θ(t+1) = θ(t) − αt · ∇θϕlogistic(y
(i)x(i)T θ(t))

= θ(t) + αtg(−y(i)x(i)T θ(t))y(i)x(i) = θ(t) + αthθ(t)(−y(i)x(i))y(i)x(i).

6



This update is intuitive: if our current hypothesis hθ(t) assigns probability
close to 1 for the incorrect label −y(i), then we try to reduce the loss by
moving θ in the direction of y(i)x(i). Conversely, if our current hypothesis
hθ(t) assigns probability close to 0 for the incorrect label −y(i), the update
essentially does nothing.
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1 General loss functions

Building off of our interpretations of supervised learning as (1) choosing a
representation for our problem, (2) choosing a loss function, and (3) minimiz-
ing the loss, let us consider a slightly more general formulation for supervised
learning. In the supervised learning settings we have considered thus far, we
have input data x ∈ R

n and targets y from a space Y . In linear regression,
this corresponded to y ∈ R, that is, Y = R, for logistic regression and other
binary classification problems, we had y ∈ Y = {−1, 1}, and for multiclass
classification we had y ∈ Y = {1, 2, . . . , k} for some number k of classes.

For each of these problems, we made predictions based on θTx for some
vector θ, and we constructed a loss function L : R×Y → R, where L(θTx, y)
measures the loss we suffer for predicting θTx. For logistic regression, we use
the logistic loss

L(z, y) = log(1 + e−yz) or L(θTx, y) = log(1 + e−yθT x).

For linear regression we use the squared error

L(z, y) =
1

2
(z − y)2 or L(θTx, y) =

1

2
(θTx− y)2.

For multiclass classification, we had a slight variant, where we let Θ =
[θ1 · · · θk] for θi ∈ R

n, and used the loss L : Rk × {1, . . . , k} → R

L(z, y) = log

(
k∑

i=1

exp(zi − zy)

)

or L(ΘTx, y) = log

(
k∑

i=1

exp(xT (θi − θy))

)

,

the idea being that we wish to have θTy x > θTi x for all i 6= k. Given a training

set of pairs {x(i), y(i)}, choose θ by minimizing the empirical risk

J(θ) =
1

m

m∑

i=1

L(θTx(i), y(i)). (1)

1



2 The representer theorem

Let us consider a slight variant of choosing θ to minimize the risk (1). In
many situations—for reasons that we will study more later in the class—it
is useful to add regularization to the risk J . We add regularization for many
reasons: often, it makes problem (1) easier to solve numerically, and also
it can allow the θ we get out of minimizing the risk (1) able to generalize
better to unseen data. Generally, regularization is taken to be of the form
r(θ) = ‖θ‖ or r(θ) = ‖θ‖2 for some norm ‖·‖ on R

n. The most common
choice is so-called ℓ2-regularization, in which we choose

r(θ) =
λ

2
‖θ‖22 ,

where we recall that ‖θ‖2 =
√
θT θ is the Euclidean norm, or length, of the

vector θ. This gives rise to the regularized risk, which is

Jλ(θ) =
1

m

m∑

i=1

L(θTx(i), y(i)) +
λ

2
‖θ‖22 . (2)

Let us consider the structure of any θ that minimizes the risk (2). We
assume—as we often do—that for each fixed target value y ∈ Y , the function
L(z, y) is convex in z. (This is the case for linear regression and binary
and multiclass logistic regression, as well as a number of other losses we will
consider.) It turns out that under these assumptions, we may always write
the solutions to the problem (2) as a linear combination of the input variables
x(i). More precisely, we have the following theorem, known as the representer
theorem.

Theorem 2.1. Suppose in the definition of the regularized risk (2) that λ ≥
0. Then there is a minimizer of the regularized risk (2) that can be written

θ =
m∑

i=1

αix
(i)

for some real-valued weights αi.

Proof For intuition, we give a proof of the result in the case that L(z, y),
when viewed as a function of z, is differentiable and λ > 0. In Appendix A,

2



we present a more general statement of the theorem as well as a rigorous
proof.

Let L′(z, y) = ∂
∂z
L(z, y) denote the derivative of the loss with respect to

z. Then by the chain rule, we have the gradient identity

∇θL(θ
Tx, y) = L

′(θTx, y)x and ∇θ

1

2
‖θ‖22 = θ,

where ∇θ denotes taking a gradient with respect to θ. As the risk must have
0 gradient at all stationary points (including the minimizer), we can write

∇Jλ(θ) =
1

m

m∑

i=1

L
′(θTx(i), y(i))x(i) + λθ = ~0.

In particular, letting wi = L
′(θTx(i), y(i)), as L′(θTx(i), y(i)) is a scalar (which

depends on θ, but no matter what θ is, wi is still a real number), we have

θ = −1

λ

n∑

i=1

wix
(i).

Set αi = −wi

λ
to get the result.

3 Nonlinear features and kernels

Based on the representer theorem, Theorem 2.1, we see that we can always
write the vector θ as a linear combination of the data {x(i)}mi=1. Importantly,
this means we can always make predictions

θTx = xT θ =
m∑

i=1

αix
Tx(i).

That is, in any learning algorithm, we may can replace all appearances of

θTx with
∑m

i=1 αix
(i)Tx, and then minimize directly over α ∈ R

m.
Let us consider this idea in somewhat more generality. In our discussion

of linear regression, we had a problem in which the input x was the living
area of a house, and we considered performing regression using the features x,
x2 and x3 (say) to obtain a cubic function. To distinguish between these two

3



sets of variables, we’ll call the “original” input value the input attributes

of a problem (in this case, x, the living area). When that is mapped to
some new set of quantities that are then passed to the learning algorithm,
we’ll call those new quantities the input features. (Unfortunately, different
authors use different terms to describe these two things, but we’ll try to use
this terminology consistently in these notes.) We will also let φ denote the
feature mapping, which maps from the attributes to the features. For
instance, in our example, we had

φ(x) =





x
x2

x3



 .

Rather than applying a learning algorithm using the original input at-
tributes x, we may instead want to learn using some features φ(x). To do so,
we simply need to go over our previous algorithm, and replace x everywhere
in it with φ(x).

Since the algorithm can be written entirely in terms of the inner prod-
ucts 〈x, z〉, this means that we would replace all those inner products with
〈φ(x), φ(z)〉. Specificically, given a feature mapping φ, we define the corre-
sponding kernel to be

K(x, z) = φ(x)Tφ(z).

Then, everywhere we previously had 〈x, z〉 in our algorithm, we could simply
replace it with K(x, z), and our algorithm would now be learning using the
features φ. Let us write this out more carefully. We saw by the representer
theorem (Theorem 2.1) that we can write θ =

∑m

i=1 αiφ(x
(i)) for some weights

αi. Then we can write the (regularized) risk

Jλ(θ) = Jλ(α)

=
1

m

m∑

i=1

L

(

φ(x(i))T
m∑

j=1

αjφ(x
(j)), y(i)

)

+
λ

2

∥
∥
∥
∥

m∑

i=1

αiφ(x
(i))

∥
∥
∥
∥

2

2

=
1

m

m∑

i=1

L

( m∑

j=1

αjφ(x
(i))Tφ(x(j)), y(i)

)

+
λ

2

m∑

i=1

m∑

j=1

αiαjφ(x
(i))Tφ(x(j))

=
1

m

m∑

i=1

L

( m∑

j=1

αjK(x(i), x(j)), y(i)
)

+
λ

2

∑

i,j

αiαiK(x(i), x(j)).
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That is, we can write the entire loss function to be minimized in terms of the
kernel matrix

K = [K(x(i), x(j))]mi,j=1 ∈ R
m×m.

Now, given φ, we could easily compute K(x, z) by finding φ(x) and φ(z)
and taking their inner product. But what’s more interesting is that often,
K(x, z) may be very inexpensive to calculate, even though φ(x) itself may be
very expensive to calculate (perhaps because it is an extremely high dimen-
sional vector). In such settings, by using in our algorithm an efficient way to
calculate K(x, z), we can learn in the high dimensional feature space space
given by φ, but without ever having to explicitly find or represent vectors
φ(x). As a few examples, some kernels (corresponding to infinite-dimensional
vectors φ) include

K(x, z) = exp

(

− 1

2τ 2
‖x− z‖22

)

,

known as the Gaussian or Radial Basis Function (RBF) kernel and applicable
to data in any dimension, or the min-kernel (applicable when x ∈ R, defined
by

K(x, z) = min{x, z}.
See also the lecture notes on Support Vector Machines (SVMs) for more on
these kernel machines.

4 Stochastic gradient descent for kernelized

machine learning

If we let K ∈ R
m×m denote the kernel matrix, and for shorthand define the

vectors

K(i) =








K(x(i), x(1))
K(x(i), x(2))

...
K(x(i), x(m))







,

so that K = [K(1) K(2) · · · K(m)], then we may write the regularized risk in
a consise form as

Jλ(α) =
1

m

m∑

i=1

L(K(i)Tα, y(i)) +
λ

2
αTKα.

5



Now, let us consider taking a stochastic gradient of the above risk Jλ. That is,
we wish to construct a (simple to compute) random vector whose expectation
is∇Jλ(α), which does not have too much variance. To do so, we first compute
the gradient of Jλ(α) on its own. We calculate the gradient of individual loss
terms by noting that

∇αL(K
(i)Tα, y(i)) = L

′(K(i)Tα, y(i))K(i),

while

∇α

[
λ

2
αTKα

]

= λKα = λ

m∑

i=1

K(i)αi.

Thus, we have

∇αJλ(α) =
1

m

m∑

i=1

L
′(K(i)Tα, y(i))K(i) + λ

m∑

i=1

K(i)αi.

Thus, if we choose a random index i ∈ {1, . . . ,m}, we have that

L
′(K(i)Tα, y(i))K(i) +mλK(i)αi

is a stochastic gradient for Jλ(α). This gives us a stochastic gradient proce-
dure for Kernel supervised learning problems, shown in Figure 1. One minor

Input: A loss function L, kernel matrix K = [K(1) · · · K(m)], and labels
{y(i)}mi=1, and sequence of positive stepsizes η1, η2, η3, . . .

Iterate for t = 1, 2, . . .

(i) Choose index i ∈ {1, . . . ,m} uniformly at random

(ii) Update

α := α− ηt

[

L
′(K(i)Tα, y(i))K(i) +mλK(i)αi

]

.

Figure 1: Stochastic gradient descent for kernel supervised learning problems.

remark is in order regarding Algorithm 1: because we multiply the λK(i)αi

term by m to keep the gradient unbiased, it is important that λ > 0 not be
too large, as the algorithm can be a bit unstable otherwise. In addition, a
common choice of stepsize is to use ηt = 1/

√
t, or a constant multiple thereof.
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5 Support vector machines

Now we discuss (one approach) to Support Vector Machines (SVM)s, which
apply to binary classification problems with labels y ∈ {−1, 1}, and a partic-
ular choice of loss function L. In particular, for the support vector machine,
we use the margin-based loss function

L(z, y) = [1− yz]+ = max{0, 1− yz}. (3)

So, in a sense, SVMs are nothing but a special case of the general theoret-
ical results we have described above. In particular, we have the empirical
regularized risk

Jλ(α) =
1

m

m∑

i=1

[

1− y(i)K(i)Tα
]

+
+

λ

2
αTKα,

where the matrix K = [K(1) · · · K(m)] is defined by Kij = K(x(i), x(j)).
In the lecture notes, you can see another way of deriving the support

vector machine and a description of why we actually call them support vector
machines.

6 An example

In this section, we consider a particular example kernel, known as the Gaus-
sian or Radial Basis Function (RBF) kernel. This kernel is defined by

K(x, z) = exp

(

− 1

2τ 2
‖x− z‖22

)

, (4)

where τ > 0 is a parameter controlling the bandwidth of the kernel. Intu-
itively, for τ very small, we will have K(x, z) ≈ 0 unless x ≈ z, that is, x and
z are very close, in which case we have K(x, z) ≈ 1. However, for τ large,
then we have a much smoother kernel function K. The feature function φ
for this kernel is infinite dimensional.1 That said, it is possible to gain some

1If you have seen characteristic functions or Fourier transforms, then you might rec-
ognize the RBF kernel as the Fourier transform of the Gaussian distribution with mean
zero and variance τ2. That is, in R

n, let W ∼ N(0, τ2In×n), so that W has density
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Figure 2: Small bandwidths τ for Gaussian kernel K(x, z) =
exp(− 1

2τ2
‖x− z‖22).

intuition for the kernel by considering the classifications it makes on a new
example x: we have prediction

m∑

i=1

K(x(i), x)αi =
m∑

i=1

exp

(

− 1

2τ 2
∥
∥x(i) − x

∥
∥
2

2

)

αi,

p(w) = 1
(2πτ2)n/2 exp(−‖w‖2

2

2τ2 ). Let i =
√
−1 be the imaginary unit, then for any vector v

we have

E[exp(ivTW )] =

∫

exp(ivTw)p(w)dw =

∫
1

(2πτ2)n/2
exp

(

ivTw − 1

2τ2
‖w‖22

)

dw

= exp

(

− 1

2τ2
‖v‖22

)

.

Thus, if we define the “vector” (really, function) φ(x,w) = eix
Tw and let a∗ be the complex

conjugate of a ∈ C, then we have

E[φ(x,W )φ(z,W )∗] = E[eix
TW e−ixTW ] = E[exp(iWT (x− z))] = exp

(

− 1

2τ2
‖x− z‖22

)

.

In particular, we see that K(x, z) is the inner product in a space of functions that are
integrable against p(w).
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Figure 3: Medium bandwidths τ for Gaussian kernel K(x, z) =
exp(− 1

2τ2
‖x− z‖22).

so that this becomes something like a weighting depending on how close x
is to each x(i)—that is, the contribution of weight αi is multiplied by the
similarity of x to x(i) as determined by the kernel function.

In Figures 2, 3, and 4, we show the results of training 6 different kernel
classifiers by minimizing

Jλ(α) =
m∑

i=1

[

1− y(i)K(i)Tα
]

+
+

λ

2
αTKα,

with m = 200 and λ = 1/m, for different values of τ in the kernel (4). We
plot the training data (positive examples as blue x’s and negative examples
as red o’s) as well as the decision surface of the resulting classifier. That is,
we plot the lines defined by

{

x ∈ R
2 :

m∑

i=1

K(x, x(i))αi = 0

}

,

giving the regions where the learned classifier makes a prediction
∑m

i=1 K(x, x(i))αi >
0 and

∑m

i=1 K(x, x(i))αi < 0. From the figure, we see that for large τ , we have
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Figure 4: Large bandwidths τ for Gaussian kernel K(x, z) =
exp(− 1

2τ2
‖x− z‖22).

a very simple classifier: it is nearly linear, while for τ = .1, the classifier has
substantial variability and is highly non-linear. For reference, in Figure 5, we
plot the optimal classifier along with the training data; the optimal classifier
minimizes the misclassification error given infinite training data.

A A more general representer theorem

In this section, we present a more general version of the representer theorem
along with a rigorous proof. Let r : R → R be any non-decreasing function
of its argument, and consider the regularized risk

Jr(θ) =
1

m

m∑

i=1

L(x(i)T θ, y(i)) + r(‖θ‖2). (5)

Often, we take r(t) = λ
2
t2, which corresponds to the common choice of ℓ2-

regularization, but the next theorem makes clear that this is not necessary
for the representer theorem. Indeed, we could simply take r(t) = 0 for all t,
and the theorem still holds.
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Figure 5: Optimal classifier along with training data.

Theorem A.1 (Representer theorem in R
n). Let θ ∈ R

n be any vector. Then

there exists some α ∈ R
m and θ(α) =

∑m

i=1 αix
(i) such that

Jr(θ
(α)) ≤ Jr(θ).

In particular, there is no loss of generality in always assuming we can write
the optimization problem to minimize J(θ) by only considering θ in the span
of the data.
Proof Our proof relies on some machinery from linear algebra, which
allows us to keep it concise, but feel free to ask questions if it is too concise.

The vectors {x(i)}mi=1 are in R
n, and as a consequence there is some sub-

space V of Rn such that

V =

{ m∑

i=1

βix
(i) : βi ∈ R

}

.

Then V has an orthonormal basis {v1, . . . , vn0
} for vectors vi ∈ R

n, where the
size (dimension) of the basis is n0 ≤ n. Thus we can write V = {∑n0

i=1 bivi :
bi ∈ R}, where we recall that orthonormality means that the vectors vi
satisfy ‖vi‖2 = 1 and vTi vj = 0 for i 6= j. There is also an orthogonal
subspace V ⊥ = {u ∈ R

n : uTv = 0 for all v ∈ V }, which has an orthonormal
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basis of size n⊥ = n − n0 ≥ 0, which we write as {u1, . . . , un⊥
} ⊂ R

n. By
construction they satisfy uT

i vj = 0 for all i, j.
Because θ ∈ R

n, we know that we can write it uniquely as

θ =

n0∑

i=1

νivi +

n⊥∑

i=1

µiui, where νi ∈ R and µi ∈ R,

and the values µ, ν are unique. Now, we know that by definition of the space
V as the span of {x(i)}mi=1, there exists α ∈ R

m such that

n0∑

i=1

νivi =
m∑

i=1

αix
(i),

so that we have

θ =
m∑

i=1

αix
(i) +

n⊥∑

i=1

µiui.

Define θ(α) =
∑m

i=1 αix
(i). Now, for any data point x(j), we have

uT
i x

(j) = 0 for all i = 1, . . . , n⊥,

so that uT
i θ

(α) = 0. As a consquence, we have

‖θ‖22 =
∥
∥
∥
∥
θ(α) +

n⊥∑

i=1

µiui

∥
∥
∥
∥

2

2

=
∥
∥θ(α)

∥
∥
2

2
+2

n⊥∑

i=1

µiu
T
i θ

(α)

︸ ︷︷ ︸

=0

+

∥
∥
∥
∥

n⊥∑

i=1

µiui

∥
∥
∥
∥

2

2

≥
∥
∥θ(α)

∥
∥
2

2
,

(6a)
and we also have

θ(α)
T
x(i) = θTx(i) (6b)

for all points x(i).
That is, by using ‖θ‖2 ≥

∥
∥θ(α)

∥
∥
2
and equality (6b), we have

Jr(θ) =
1

m

m∑

i=1

L(θTx(i), y(i)) + r(‖θ‖2)
(6b)
=

1

m

m∑

i=1

L(θ(α)
T
x(i), y(i)) + r(‖θ‖2)

(6a)

≥ 1

m

m∑

i=1

L(θ(α)
T
x(i), y(i)) + r(

∥
∥θ(α)

∥
∥
2
)

= Jr(θ
(α)).

This is the desired result.
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CS229 Supplemental Lecture notes

John Duchi

1 Boosting

We have seen so far how to solve classification (and other) problems when we
have a data representation already chosen. We now talk about a procedure,
known as boosting, which was originally discovered by Rob Schapire, and
further developed by Schapire and Yoav Freund, that automatically chooses
feature representations. We take an optimization-based perspective, which
is somewhat different from the original interpretation and justification of
Freund and Schapire, but which lends itself to our approach of (1) choose a
representation, (2) choose a loss, and (3) minimize the loss.

Before formulating the problem, we give a little intuition for what we
are going to do. Roughly, the idea of boosting is to take a weak learning

algorithm—any learning algorithm that gives a classifier that is slightly bet-
ter than random—and transforms it into a strong classifier, which does much
much better than random. To build a bit of intuition for what this means,
consider a hypothetical digit recognition experiment, where we wish to dis-
tinguish 0s from 1s, and we receive images we must classify. Then a natural
weak learner might be to take the middle pixel of the image, and if it is
colored, call the image a 1, and if it is blank, call the image a 0. This clas-
sifier may be far from perfect, but it is likely better than random. Boosting
procedures proceed by taking a collection of such weak classifiers, and then
reweighting their contributions to form a classifier with much better accuracy
than any individual classifier.

With that in mind, let us formulate the problem. Our interpretation of
boosting is as a coordinate descent method in an infinite dimensional space,
which—while it sounds complex—is not so bad as it seems. First, we assume
we have raw input examples x ∈ R

n with labels y ∈ {−1, 1}, as is usual in
binary classification. We also assume we have an infinite collection of feature
functions φj : Rn → {−1, 1} and an infinite vector θ = [θ1 θ2 · · · ]T , but
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which we assume always has only a finite number of non-zero entries. For
our classifier we use

hθ(x) = sign

( ∞∑

j=1

θjφj(x)

)
.

We will abuse notation, and define θTφ(x) =
∑∞

j=1 θjφj(x).
In boosting, one usually calls the features φj weak hypotheses. Given a

training set (x(1), y(1)), . . . , (x(m), y(m)), we call a vector p = (p(1), . . . , p(m)) a
distribution on the examples if p(i) ≥ 0 for all i and

m∑

i=1

p(i) = 1.

Then we say that there is a weak learner with margin γ > 0 if for any
distribution p on the m training examples there exists one weak hypothesis
φj such that

m∑

i=1

p(i)1
{
y(i) 6= φj(x

(i))
}
≤

1

2
− γ. (1)

That is, we assume that there is some classifier that does slightly better than
random guessing on the dataset. The existence of a weak learning algorithm
is an assumption, but the surprising thing is that we can transform any weak
learning algorithm into one with perfect accuracy.

In more generality, we assume we have access to a weak learner, which is
an algorithm that takes as input a distribution (weights) p on the training
examples and returns a classifier doing slightly better than random. We will

(i) Input: A distribution p(1), . . . , p(m) and training set {(x(i), y(i))}mi=1

with
∑m

i=1 p
(i) = 1 and p(i) ≥ 0

(ii) Return: A weak classifier φj : R
n → {−1, 1} such that

m∑

i=1

p(i)1
{
y(i) 6= φj(x

(i))
}
≤

1

2
− γ.

Figure 1: Weak learning algorithm
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show how, given access to a weak learning algorithm, boosting can return a
classifier with perfect accuracy on the training data. (Admittedly, we would
like the classifer to generalize well to unseen data, but for now, we ignore
this issue.)

1.1 The boosting algorithm

Roughly, boosting begins by assigning each training example equal weight
in the dataset. It then receives a weak-hypothesis that does well according
to the current weights on training examples, which it incorporates into its
current classification model. It then reweights the training examples so that
examples on which it makes mistakes receive higher weight—so that the weak
learning algorithm focuses on a classifier doing well on those examples—while
examples with no mistakes receive lower weight. This repeated reweighting
of the training data coupled with a weak learner doing well on examples for
which the classifier currently does poorly yields classifiers with good perfor-
mance.

The boosting algorithm specifically performs coordinate descent on the
exponential loss for classification problems, where the objective is

J(θ) =
1

m

m∑

i=1

exp(−y(i)θTφ(x(i))).

We first show how to compute the exact form of the coordinate descent
update for the risk J(θ). Coordinate descent iterates as follows:

(i) Choose a coordinate j ∈ N

(ii) Update θj to
θj = argmin

θj

J(θ)

while leaving θk identical for all k 6= j.

We iterate the above procedure until convergence.
In the case of boosting, the coordinate updates are not too challenging to

derive because of the analytic convenience of the exp function. We now show
how to derive the update. Suppose we wish to update coordinate k. Define

w(i) = exp

(
−y(i)

∑

j 6=k

θjφj(x
(i))

)

3



to be a weight, and note that optimizing coordinate k corresponds to mini-
mizing

m∑

i=1

w(i) exp(−y(i)φk(x
(i))α)

in α = θk. Now, define

W+ :=
∑

i:y(i)φk(x(i))=1

w(i) and W− :=
∑

i:y(i)φk(x(i))=−1

w(i)

to be the sums of the weights of examples that φk classifies correctly and
incorrectly, respectively. Then finding θk is the same as choosing

α = argmin
α

{
W+e−α +W−eα

}
=

1

2
log

W+

W−
.

To see the final equality, take derivatives and set the resulting equation to
zero, so we have −W+e−α + W−eα = 0. That is, W−e2α = W+, or α =
1
2
log W+

W−
.

What remains is to choose the particular coordinate to perform coordinate
descent on. We assume we have access to a weak-learning algorithm as in
Figure 1, which at iteration t takes as input a distribution p on the training
set and returns a weak hypothesis φt satisfying the margin condition (1).
We present the full boosting algorithm in Figure 2. It proceeds in iterations
t = 1, 2, 3, . . .. We represent the set of hypotheses returned by the weak
learning algorithm at time t by {φ1, . . . , φt}.

2 The convergence of Boosting

We now argue that the boosting procedure achieves 0 training error, and we
also provide a rate of convergence to zero. To do so, we present a lemma
that guarantees progress is made.

Lemma 2.1. Let

J(θ(t)) =
1

m

m∑

i=1

exp

(
− y(i)

t∑

τ=1

θτφτ (x
(i))

)
.

Then

J(θ(t)) ≤
√
1− 4γ2J(θ(t−1)).
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For each iteration t = 1, 2, . . .:

(i) Define weights

w(i) = exp

(
− y(i)

t−1∑

τ=1

θτφτ (x
(i))

)

and distribution p(i) = w(i)/
∑m

j=1 w
(j)

(ii) Construct a weak hypothesis φt : R
n → {−1, 1} from the distribu-

tion p = (p(1), . . . , p(m)) on the training set

(iii) Compute W+
t =

∑
i:y(i)φt(x(i))=1w

(i) and W−
t =

∑
i:y(i)φt(x(i))=−1 w

(i)

and set

θt =
1

2
log

W+
t

W−
t

.

Figure 2: Boosting algorithm

As the proof of the lemma is somewhat involved and not the central focus of
these notes—though it is important to know one’s algorithm will converge!—
we defer the proof to Appendix A.1. Let us describe how it guarantees
convergence of the boosting procedure to a classifier with zero training error.

We initialize the procedure at θ(0) = ~0, so that the initial empirical risk
J(θ(0)) = 1. Now, we note that for any θ, the misclassification error satisfies

1
{
sign(θTφ(x)) 6= y

}
= 1

{
yθTφ(x) ≤ 0

}
≤ exp

(
−yθTφ(x)

)

because ez ≥ 1 for all z ≥ 0. Thus, we have that the misclassification error
rate has upper bound

1

m

m∑

i=1

1
{
sign(θTφ(x(i))) 6= y(i)

}
≤ J(θ),

and so if J(θ) < 1
m
then the vector θ makes no mistakes on the training data.

After t iterations of boosting, we find that the empirical risk satisfies

J(θ(t)) ≤ (1− 4γ2)
t
2J(θ(0)) = (1− 4γ2)

t
2 .
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To find how many iterations are required to guarantee J(θ(t)) < 1
m
, we take

logarithms to find that J(θ(t)) < 1/m if

t

2
log(1− 4γ2) < log

1

m
, or t >

2 logm

− log(1− 4γ2)
.

Using a first order Taylor expansion, that is, that log(1 − 4γ2) ≤ −4γ2, we
see that if the number of rounds of boosting—the number of weak classifiers
we use—satisfies

t >
logm

2γ2
≥

2 logm

− log(1− 4γ2)
,

then J(θ(t)) < 1
m
.

3 Implementing weak-learners

One of the major advantages of boosting algorithms is that they automat-
ically generate features from raw data for us. Moreover, because the weak
hypotheses always return values in {−1, 1}, there is no need to normalize fea-
tures to have similar scales when using learning algorithms, which in practice
can make a large difference. Additionally, and while this is not theoret-
ically well-understood, many types of weak-learning procedures introduce
non-linearities intelligently into our classifiers, which can yield much more
expressive models than the simpler linear models of the form θTx that we
have seen so far.

3.1 Decision stumps

There are a number of strategies for weak learners, and here we focus on
one, known as decision stumps. For concreteness in this description, let
us suppose that the input variables x ∈ R

n are real-valued. A decision
stump is a function f , which is parameterized by a threshold s and index
j ∈ {1, 2, . . . , n}, and returns

φj,s(x) = sign(xj − s) =

{
1 if xj ≥ s

−1 otherwise.
(2)

These classifiers are simple enough that we can fit them efficiently even to a
weighted dataset, as we now describe.
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Indeed, a decision stump weak learner proceeds as follows. We begin with
a distribution—set of weights p(1), . . . , p(m) summing to 1—on the training
set, and we wish to choose a decision stump of the form (2) to minimize the
error on the training set. That is, we wish to find a threshold s ∈ R and
index j such that

Êrr(φj,s, p) =
m∑

i=1

p(i)1
{
φj,s(x

(i)) 6= y(i)
}
=

m∑

i=1

p(i)1
{
y(i)(x

(i)
j − s) ≤ 0

}
(3)

is minimized. Naively, this could be an inefficient calculation, but a more
intelligent procedure allows us to solve this problem in roughly O(nm logm)
time. For each feature j = 1, 2, . . . , n, we sort the raw input features so that

x
(i1)
j ≥ x

(i2)
j ≥ · · · ≥ x

(im)
j .

As the only values s for which the error of the decision stump can change
are the values x

(i)
j , a bit of clever book-keeping allows us to compute

m∑

i=1

p(i)1
{
y(i)(x

(i)
j − s) ≤ 0

}
=

m∑

k=1

p(ik)1
{
y(ik)(x

(ik)
j − s) ≤ 0

}

efficiently by incrementally modifying the sum in sorted order, which takes
time O(m) after we have already sorted the values x

(i)
j . (We do not describe

the algorithm in detail here, leaving that to the interested reader.) Thus,
performing this calcuation for each of the n input features takes total time
O(nm logm), and we may choose the index j and threshold s that give the
best decision stump for the error (3).

One very important issue to note is that by flipping the sign of the thresh-
olded decision stump φj,s, we achieve error 1− Êrr(φj,s, p), that is, the error
of

Êrr(−φj,s, p) = 1− Êrr(φj,s, p).

(You should convince yourself that this is true.) Thus, it is important to also

track the smallest value of 1 − Êrr(φj,s, p) over all thresholds, because this

may be smaller than Êrr(φj,s, p), which gives a better weak learner. Using
this procedure for our weak learner (Fig. 1) gives the basic, but extremely
useful, boosting classifier.
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Figure 3: Best logistic regression classifier using the raw features x ∈ R
2

(and a bias term x0 = 1) for the example considered here.

3.2 Example

We now give an example showing the behavior of boosting on a simple
dataset. In particular, we consider a problem with data points x ∈ R

2,
where the optimal classifier is

y =

{
1 if x1 < .6 and x2 < .6

−1 otherwise.
(4)

This is a simple non-linear decision rule, but it is impossible for standard
linear classifiers, such as logistic regression, to learn. In Figure 3, we show
the best decision line that logistic regression learns, where positive examples
are circles and negative examples are x’s. It is clear that logistic regression
is not fitting the data particularly well.

With boosted decision stumps, however, we can achieve a much better
fit for the simple nonlinear classification problem (4). Figure 4 shows the
boosted classifiers we have learned after different numbers of iterations of
boosting, using a training set of size m = 150. From the figure, we see that
the first decision stump is to threshold the feature x1 at the value s ≈ .23,
that is, φ(x) = sign(x1 − s) for s ≈ .23.
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Figure 4: Boosted decision stumps after t = 2, 4, 5, and 10 iterations of
boosting, respectively.
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3.3 Other strategies

There are a huge number of variations on the basic boosted decision stumps
idea. First, we do not require that the input features xj be real-valued. Some
of them may be categorical, meaning that xj ∈ {1, 2, . . . , k} for some k, in
which case natural decision stumps are of the form

φj(x) =

{
1 if xj = l

−1 otherwise,

as well as variants setting φj(x) = 1 if xj ∈ C for some set C ⊂ {1, . . . , k} of
categories.

Another natural variation is the boosted decision tree, in which instead of a
single level decision for the weak learners, we consider conjuctions of features
or trees of decisions. Google can help you find examples and information on
these types of problems.

A Appendices

A.1 Proof of Lemma 2.1

We now return to prove the progress lemma. We prove this result by directly
showing the relationship of the weights at time t to those at time t − 1. In
particular, we note by inspection that

J(θ(t)) = min
α

{W+
t e−α +W−

t eα} = 2
√

W+
t W−

t

while

J(θ(t−1)) =
1

m

m∑

i=1

exp

(
− y(i)

t−1∑

τ=1

θτφτ (x
(i))

)
= W+

t +W−
t .

We know by the weak-learning assumption that

m∑

i=1

p(i)1
{
y(i) 6= φt(x

(i))
}
≤

1

2
−γ, or

1

W+
t +W−

t

∑

i:y(i)φt(x(i))=−1

w(i)

︸ ︷︷ ︸
=W−

t

≤
1

2
−γ.
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Rewriting this expression by noting that the sum on the right is nothing but
W−

t , we have

W−
t ≤

(
1

2
− γ

)
(W+

t +W−
t ), or W+

t ≥
1 + 2γ

1− 2γ
W−

t .

By substituting α = 1
2
log 1+2γ

1−2γ
in the minimum defining J(θ(t)), we obtain

J(θ(t)) ≤ W+
t

√
1− 2γ

1 + 2γ
+W−

t

√
1 + 2γ

1− 2γ

= W+
t

√
1− 2γ

1 + 2γ
+W−

t (1− 2γ + 2γ)

√
1 + 2γ

1− 2γ

≤ W+
t

√
1− 2γ

1 + 2γ
+W−

t (1− 2γ)

√
1 + 2γ

1− 2γ
+ 2γ

1− 2γ

1 + 2γ

√
1 + 2γ

1− 2γ
W+

t

= W+
t

[√
1− 2γ

1 + 2γ
+ 2γ

√
1− 2γ

1 + 2γ

]
+W−

t

√
1− 4γ2,

where we used that W−
t ≤ 1−2γ

1+2γ
W+

t . Performing a few algebraic manipula-
tions, we see that the final expression is equal to

√
1− 4γ2(W+

t +W−
t ).

That is, J(θ(t)) ≤
√
1− 4γ2J(θ(t−1)).
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Convex Optimization Overview (cnt’d)

Chuong B. Do

November 29, 2009

During last week’s section, we began our study of convex optimization, the study of
mathematical optimization problems of the form,

minimize
x∈Rn

f(x)

subject to x ∈ C.
(1)

In a convex optimization problem, x ∈ R
n is a vector known as the optimization variable,

f : R
n → R is a convex function that we want to minimize, and C ⊆ R

n is a convex set
describing the set of feasible solutions. From a computational perspective, convex optimiza-
tion problems are interesting in the sense that any locally optimal solution will always be
guaranteed to be globally optimal. Over the last several decades, general purpose methods
for solving convex optimization problems have become increasingly reliable and efficient.

In these lecture notes, we continue our foray into the field of convex optimization. In
particular, we explore a powerful concept in convex optimization theory known as Lagrange
duality. We focus on the main intuitions and mechanics of Lagrange duality; in particular,
we describe the concept of the Lagrangian, its relation to primal and dual problems, and
the role of the Karush-Kuhn-Tucker (KKT) conditions in providing necessary and sufficient
conditions for optimality of a convex optimization problem.

1 Lagrange duality

Generally speaking, the theory of Lagrange duality is the study of optimal solutions to convex
optimization problems. As we saw previously in lecture, when minimizing a differentiable
convex function f(x) with respect to x ∈ R

n, a necessary and sufficient condition for x∗ ∈
R

n to be globally optimal is that ∇xf(x∗) = 0. In the more general setting of convex
optimization problem with constraints, however, this simple optimality condition does not
work. One primary goal of duality theory is to characterize the optimal points of convex
programs in a mathematically rigorous way.

In these notes, we provide a brief introduction to Lagrange duality and its applications
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to generic differentiable convex optimization problems of the form,

minimize
x∈Rn

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

(OPT)

where x ∈ R
n is the optimization variable, f : R

n → R and gi : R
n → R are differen-

tiable convex functions1, and hi : R
n → R are affine functions.2

1.1 The Lagrangian

In this section, we introduce an artificial-looking construct called the “Lagrangian” which
is the basis of Lagrange duality theory. Given a convex constrained minimization problem
of the form (OPT), the (generalized) Lagrangian is a function L : R

n × R
m × R

p → R,
defined as

L(x, α, β) = f(x) +
m∑

i=1

αigi(x) +

p
∑

i=1

βihi(x). (2)

Here, the first argument of the Lagrangian is a vector x ∈ R
n, whose dimensionality matches

that of the optimization variable in the original optimization problem; by convention, we refer
to x as the primal variables of the Lagrangian. The second argument of the Lagrangian
is a vector α ∈ R

m with one variable αi for each of the m convex inequality constraints in
the original optimization problem. The third argument of the Lagrangian is a vector β ∈ R

p,
with one variable βi for each of the p affine equality constraints in the original optimization
problem. These elements of α and β are collectively known as the dual variables of the
Lagrangian or Lagrange multipliers.

Intuitively, the Lagrangian can be thought of as a modified version of the objective
function to the original convex optimization problem (OPT) which accounts for each of the
constraints. The Lagrange multipliers αi and βi can be thought of “costs” associated with
violating different constraints. The key intuition behind the theory of Lagrange duality is
the following:

For any convex optimization problem, there always exist settings of the dual vari-
ables such that the unconstrained minimum of the Lagrangian with respect to the
primal variables (keeping the dual variables fixed) coincides with the solution of
the original constrained minimization problem.

We formalize this intuition when we describe the KKT conditions in Section 1.6.

1Recall that a function f : S → R is convex if S is a convex set, and for any x, y ∈ S and θ ∈ [0, 1], we
have f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). A function f is concave if −f is convex.

2Recall that an affine function is a function of the form f(x) = aT x+ b for some a ∈ R
n, b ∈ R. Since the

Hessian of an affine function is equal to the zero matrix (i.e., it is both positive semidefinite and negative
semidefinite), an affine function is both convex and concave.
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1.2 Primal and dual problems

To show the relationship between the Lagrangian and the original convex optimization prob-
lem (OPT), we introduce the notions of the “primal”and “dual problems” associated with a
Lagrangian:

The primal problem

Consider the optimization problem,

min
x

[

max
α,β:αi≥0,∀i

L(x, α, β)

]

︸ ︷︷ ︸

call this θP (x)

= min
x

θP(x). (P)

In the equation above, the function θP : R
n → R is called the primal

objective, and the unconstrained minimization problem on the right
hand side is known as the primal problem. Generally, we say that
a point x ∈ R

n is primal feasible if gi(x) ≤ 0, i = 1, . . . ,m and
hi(x) = 0, i = 1, . . . , p. We typically use the vector x∗ ∈ R

n to denote
the solution of (P), and we let p∗ = θP(x∗) denote the optimal value
of the primal objective.

The dual problem

By switching the order of the minimization and maximization above,
we obtain an entirely different optimization problem,

max
α,β:αi≥0,∀i

[

min
x

L(x, α, β)
]

︸ ︷︷ ︸

call this θD(α, β)

= max
α,β:αi≥0,∀i

θD(α, β). (D)

Here, the function θD : R
m × R

p → R is called the dual objective,
and the constrained maximization problem on the right hand side is
known as the dual problem. Generally, we say that (α, β) are dual
feasible if αi ≥ 0, i = 1, . . . ,m. We typically use the pair of vectors
(α∗, β∗) ∈ R

m × R
p to denote the solution of (D), and we let d∗ =

θD(α∗, β∗) denote the optimal value of the dual objective.
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1.3 Interpreting the primal problem

First, observe that the primal objective, θP(x), is a convex function of x.3 To interpret the
primal problem, note that

θP(x) = max
α,β:αi≥0,∀i

L(x, α, β) (4)

= max
α,β:αi≥0,∀i

[

f(x) +
m∑

i=1

αigi(x) +

p
∑

i=1

βihi(x)

]

(5)

= f(x) + max
α,β:αi≥0,∀i

[
m∑

i=1

αigi(x) +

p
∑

i=1

βihi(x)

]

(6)

which follows from the fact that f(x) does not depend on α or β. Considering only the
bracketed term, notice that

• If any gi(x) > 0, then maximizing the bracketed expression involves making the cor-
responding αi an arbitrarily large positive number; however, if gi(x) ≤ 0, then the
requirement that αi be nonnegative means that the optimal setting of αi to achieve
the maximum is αi = 0, so that the maximum value is 0.

• Similarly, if any hi(x) 6= 0, then maximizing the bracketed expression involves choosing
the corresponding βi to have the same sign as hi(x) and arbitrarily large magnitude;
however, if hi(x) = 0, then the maximum value is 0, independent of βi.

Putting these two cases together, we see that if x is primal feasible (i.e., gi(x) ≤ 0, i =
1, . . . ,m and hi(x) = 0, i = 1, . . . , p), then the maximum value of the bracketed expression
is 0, but if any of the constraints are violated, then the maximum value is ∞. From this, we
can write,

θP(x) = f(x)
︸︷︷︸

original objective

+

{

0 if x is primal feasible

∞ if x is primal infeasible
︸ ︷︷ ︸

barrier function for “carving away” infeasible solutions

(7)

Therefore, we can interpret the primal objective θP(x) as a modified version of the convex
objective function of the original problem (OPT), with the difference being that infeasible

3To see why, note that

θP(x) = max
α,β:αi≥0,∀i

L(x, α, β) = max
α,β:αi≥0,∀i

[

f(x) +

m∑

i=1

αigi(x) +

p
∑

i=1

βihi(x)

]

. (3)

Observe that each of the gi(x)’s are convex functions in x, and since the αi’s are constrained to be nonneg-
ative, then αigi(x) is convex in x for each i. Similarly, each βihi(x) is convex in x (regardless of the sign of
βi) since hi(x) is linear. Since the sum of convex functions is always convex, we see that the quantity inside
the brackets is a convex function of x. Finally, the maximum of a collection of convex functions is again a
convex function (prove this for yourself!), so we can conclude that θP(x) is a convex function of x.
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solutions (i.e., x’s for which some constraint is violated) have objective value ∞. Intuitively,
we can consider

max
α,β:αi≥0,∀i

[
m∑

i=1

αigi(x) +

p
∑

i=1

βihi(x)

]

=

{

0 if x is feasible for (OPT)

∞ if x is infeasible for (OPT).
. (8)

as a type of “barrier” function which prevents us from considering infeasible points as can-
didate solutions for the optimization problem.

1.4 Interpreting the dual problem

The dual objective, θD(α, β), is a concave function of α and β.4 To interpret the dual
problem, first we make the following observation:

Lemma 1. If (α, β) are dual feasible, then θD(α, β) ≤ p∗

Proof. Observe that

θD(α, β) = min
x

L(x, α, β) (10)

≤ L(x∗, α, β) (11)

= f(x∗) +
m∑

i=1

αigi(x
∗) +

p
∑

i=1

βihi(x
∗) (12)

≤ f(x∗) = p∗. (13)

Here, the first and third steps follow directly from the definitions of the dual objective
function and the Lagrangian, respectively. The second step follows from the fact that the
preceding expression minimized over possible values of x. The last step follows from the fact
that x∗ is primal feasible, (α, β) are dual feasible, and hence equation (8) implies that the
latter two terms of (12) must be nonpositive.

The lemma shows that that given any dual feasible (α, β), the dual objective θD(α, β)
provides a lower bound on the optimal value p∗ of the primal problem. Since the dual
problem involves maximizing the dual objective over the space of all dual feasible (α, β), it
follows that the dual problem can be seen as a search for the tightest possible lower bound on
p∗. This gives rise to a property of any primal and dual optimization problem pairs known
as weak duality :

4To see why, note that

θD(α, β) = min
x

L(x, α, β) = min
x

[

f(x) +

m∑

i=1

αigi(x) +

p
∑

i=1

βihi(x)

]

. (9)

Observe that for any fixed value of x, the quantity inside the brackets is an affine function of α and β, and
hence concave. Since the minimum of a collection of concave functions is also concave, we can conclude that
θD(α, β) is a concave function of α and β.
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Lemma 2 (Weak Duality). For any pair of primal and dual problems, d∗ ≤ p∗.

Clearly, weak duality is a consequence of Lemma 1 using (α∗, β∗) as the dual feasible
point. For some primal/dual optimization problems, an even stronger result holds, known
as strong duality :

Lemma 3 (Strong Duality). For any pair of primal and dual problems which satisfy certain
technical conditions called constraint qualifications, then d∗ = p∗.

A number of different “constraint qualifications” exist, of which the most commonly
invoked constraint qualification is known as Slater’s condition : a primal/dual problem
pair satisfy Slater’s condition if there exists some feasible primal solution x for which all
inequality constraints are strictly satisfied (i.e., gi(x) < 0, i = 1, . . . ,m). In practice, nearly
all convex problems satisfy some type of constraint qualification, and hence the primal and
dual problems have the same optimal value.

1.5 Complementary slackness

One particularly interesting consequence of strong duality for convex optimization problems
is a property known as complementary slackness (or KKT complementarity):

Lemma 4 (Complementary Slackness). If strong duality holds, then α∗
i g(x∗

i ) = 0 for each
i = 1, . . . ,m.

Proof. Suppose that strong duality holds. Largely copying the proof from the last section,
observe that

p∗ = d∗ = θD(α∗, β∗) = min
x

L(x, α∗, β∗) (14)

≤ L(x∗, α∗, β∗) (15)

= f(x∗) +
m∑

i=1

α∗
i gi(x

∗) +

p
∑

i=1

β∗
i hi(x

∗) (16)

≤ f(x∗) = p∗. (17)

Since the first and last expressions in this sequence are equal, it follows that every interme-
diate expression is also equal. Subtracting the left half of (17) from (16), we see that

m∑

i=1

α∗
i gi(x

∗) +

p
∑

i=1

β∗
i hi(x

∗) = 0. (18)

Recall, however, that each α∗
i is nonnegative, each gi(x

∗) is nonpositive, and each hi(x
∗) is

zero due to the primal and dual feasibility of x∗ and (α∗, β∗), respectively. As a consequence,
(18) is a summation of all nonpositive terms which equals to zero. It readily follows that
all individual terms in the summation must themselves be zero (for if not, there are no
compensating positive terms in the summation which would allow the overall sum to remain
zero).

6



Complementary slackness can be written in many equivalent ways. One way, in particu-
lar, is the pair of conditions

α∗
i > 0 =⇒ gi(x

∗) = 0 (19)

gi(x
∗) < 0 =⇒ α∗

i = 0. (20)

In this form, we can see that whenever any α∗
i is strictly greater than zero, then this implies

that the corresponding inequality constraint must hold with equality. We refer to this as an
active constraint. In the case of support vector machines (SVMs), active constraints are
also known as support vectors.

1.6 The KKT conditions

Finally, given everything so far, we can now characterize the optimal conditions for a primal
dual optimization pair. We have the following theorem:

Theorem 1.1. Suppose that x∗ ∈ R
n, α∗ ∈ R

m and β∗ ∈ R
p satisfy the following conditions:

1. (Primal feasibility) gi(x
∗) ≤ 0, i = 1, . . . ,m and hi(x

∗) = 0, i = 1, . . . , p,

2. (Dual feasibility) α∗
i ≥ 0, i = 1, . . . ,m,

3. (Complementary slackness) α∗
i gi(x

∗) = 0, i = 1, . . . ,m, and

4. (Lagrangian stationarity) ∇xL(x∗, α∗, β∗) = 0.

Then x∗ is primal optimal and (α∗, β∗) are dual optimal. Furthermore, if strong duality
holds, then any primal optimal x∗ and dual optimal (α∗, β∗) must satisfy the conditions 1
through 4.

These conditions are known as the Karush-Kuhn-Tucker (KKT) conditions.5

2 A simple duality example

As a simple application of duality, in this section, we will show how to form the dual problem
for a simple convex optimization problem. Consider the convex optimization problem,

minimize
x∈R2

x2
1 + x2

subject to 2x1 + x2 ≥ 4
x2 ≥ 1.

5Incidentally, the KKT theorem has an interesting history. The result was originally derived by Karush
in his 1939 master’s thesis but did not catch any attention until it was rediscovered in 1950 by two mathe-
maticians Kuhn and Tucker. A variant of essentially the same result was also derived by John in 1948. For
an interesting historical account of why so many iterations of this result went unnoticed for nearly a decade,
see the paper,

Kjeldsen, T.H. (2000) A contextualized historical analysis of the Kuhn-Tucker Theorem in
nonlinear programming: the impact of World War II. Historica Mathematics 27: 331-361.

7



First, we rewrite our optimization problem in standard form as

minimize
x∈R2

x2
1 + x2

subject to 4 − 2x1 − x2 ≤ 0
1 − x2 ≤ 0.

The Lagrangian is then

L(x, α) = x2
1 + x2 + α1(4 − 2x1 − x2) + α2(1 − x2), (21)

and the objective of the dual problem is defined to be

θD(α) = min
x

L(x, α)

To express the dual objective in a form which depends only on α (but not x), we first observe
that the the Lagrangian is differentiable in x, and in fact, is separable in the two components
x1 and x2 (i.e., we can minimize with respect to each separately).

To minimize with respect to x1, observe that the Lagrangian is a strictly convex quadratic
function of x1 and hence the minimum with respect to x1 can be found by setting the
derivative to zero:

∂

∂x1

L(x, α) = 2x1 − 2α1 = 0 =⇒ x1 = α1. (22)

To minimize with respect to x2, observe that the Lagrangian is an affine function of x2,
for which the linear coefficient is precisely the derivative of the Lagrangian coefficient with
respect to x2,

∂

∂x2

L(x, α) = 1 − α1 − α2 (23)

If the linear coefficient is non-zero, then the objective function can be made arbitrarily small
by choosing the x2 to have the opposite sign of the linear coefficient and arbitrarily large
magnitude. However, if the linear coefficient is zero, then the objective function does not
depend on x2.

Putting these observations together, we have

θD(α) = min
x

L(x, α)

= min
x2

[
α2

1 + x2 + α1(4 − 2α1 − x2) + α2(1 − x2)
]

= min
x2

[
−α2

1 + 4α1 + α2 + x2(1 − α1 − α2)
]

=

{

−α2
1 + 4α1 + α2 if 1 − α1 − α2 = 0

−∞ otherwise
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so the dual problem is given by:

maximize
α∈R2

θD(α)

subject to α1 ≥ 0
α2 ≥ 0.

Finally, we can simplify the dual problem by observing making the dual constraints explicit6:

maximize
α∈R2

−α2
1 + 4α1 + α2

subject to α1 ≥ 0
α2 ≥ 0
1 − α1 − α2 = 0.

Notice that the dual problem is a concave quadratic program in the variables α.

3 The L1-norm soft margin SVM

To see a more complex example of Lagrange duality in action, we derive the dual of the
L1-norm soft-margin SVM primal presented in class, as well as the corresponding KKT
complementarity (i.e., complementary slackness) conditions. We have,

minimize
w,b,ξ

1

2
‖w‖2 + C

m∑

i=1

ξi

subject to y(i)(wT x(i) + b) ≥ 1 − ξi, i = 1, . . . ,m,

ξi ≥ 0, i = 1, . . . ,m.

First, we put this into standard form, with “≤ 0” inequality constraints:

minimize
w,b,ξ

1

2
‖w‖2 + C

m∑

i=1

ξi

subject to 1 − ξi − y(i)(wT x(i) + b) ≤ 0, i = 1, . . . ,m,

−ξi ≤ 0, i = 1, . . . ,m.

Next, we form the generalized Lagrangian,7

L(w, b, ξ, α, β) =
1

2
‖w‖2 + C

m∑

i=1

ξi +
m∑

i=1

αi(1 − ξi − y(i)(wT x(i) + b)) −
m∑

i=1

βiξi,

6By this, we mean that we are moving the condition which causes θD(α) to be −∞ into the set of
constraints of the dual optimization problem.

7Here, it is important to note that (w, b, ξ) collectively play the role of the “x” primal variables. Similarly,
(α, β) collectively play the role of the “α” dual variables normally used for inequality constraints. There are
no “β” dual variables here since there are no affine equality constraints in this problem.
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which gives the primal and dual optimization problems:

max
α,β:αi≥0,βi≥0

θD(α, β) where θD(α, β) := min
w,b,ξ

L(w, b, ξ, α, β), (SVM-D)

min
w,b,ξ

θP(w, b, ξ) where θP(w, b, ξ) := max
α,β:αi≥0,βi≥0

L(w, b, ξ, α, β). (SVM-P)

To get the dual problem in the form shown in the lecture notes, however, we still have a
little more work to do. In particular,

1. Eliminating the primal variables. To eliminate the primal variables from the dual
problem, we compute θD(α, β) by noticing that

θD(α, β) = minw,b,ξ L(w, b, ξ, α, β)

is an unconstrained optimization problem, where the objective function L(w, b, ξ, α, β)
is differentiable. The Lagrangian is a strictly convex quadratic function of w, so for
any fixed (α, β), if (ŵ, b̂, ξ̂) minimize the Lagrangian, it must be the case that

∇wL(ŵ, b̂, ξ̂, α, β) = ŵ −

m∑

i=1

αiy
(i)x(i) = 0. (24)

Furthermore, the Lagrangian is linear in b and ξ; by reasoning analogous to that
described in the simple duality example from the previous section, we can set the
derivatives with respect to b and ξ to zero, and add the resulting conditions as explicit
constraints in the dual optimization problem:

∂

∂b
L(ŵ, b̂, ξ̂, α, β) = −

m∑

i=1

αiy
(i) = 0 (25)

∂

∂ξi

L(ŵ, b̂, ξ̂, α, β) = C − αi − βi = 0. (26)

We can use these conditions to compute the dual objective as

θD(α, β) = L(ŵ, b̂, ξ̂)

=
1

2
‖ŵ‖2 + C

m∑

i=1

ξ̂i +
m∑

i=1

αi(1 − ξ̂i − y(i)(ŵT x(i) + b̂)) −
m∑

i=1

βiξ̂i

=
1

2
‖ŵ‖2 + C

m∑

i=1

ξ̂i +
m∑

i=1

αi(1 − ξ̂i − y(i)(ŵT x(i))) −
m∑

i=1

βiξ̂i

=
1

2
‖ŵ‖2 +

m∑

i=1

αi(1 − y(i)(ŵT x(i))),

where the first equality follows from the optimality of (ŵ, b̂, ξ̂) for fixed (α, β), the
second equality uses the definition of the generalized Lagrangian, and the third and
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fourth equalities follow from (25) and (26), respectively. Finally, to use (24), observe
that

1

2
‖ŵ‖2 +

m∑

i=1

αi(1 − y(i)(ŵT x(i))) =
m∑

i=1

αi +
1

2
‖ŵ‖2 − ŵT

m∑

i=1

αiy
(i)x(i)

=
m∑

i=1

αi +
1

2
‖ŵ‖2 − ‖ŵ‖2

=
m∑

i=1

αi −
1

2
‖ŵ‖2

=
m∑

i=1

αi −
1

2

m∑

i=1

m∑

j=1

αiαiy
(i)y(j)〈x(i), x(j)〉.

Therefore, our dual problem (with no more primal variables and all constraints made
explicit) is simply

maximize
α,β

m∑

i=1

αi −
1

2

m∑

i=1

m∑

j=1

αiαiy
(i)y(j)〈x(i), x(j)〉

subject to αi ≥ 0, i = 1, . . . ,m,

βi ≥ 0, i = 1, . . . ,m,

αi + βi = C, i = 1, . . . ,m,
m∑

i=1

αiy
(i) = 0.

2. KKT complementary. KKT complementarity requires that for any primal optimal
(w∗, b∗, ξ∗) and dual optimal (α∗, β∗),

α∗
i (1 − ξ∗i − y(i)(w∗T x(i) + b∗)) = 0

β∗
i ξ

∗
i = 0

for i = 1, . . . ,m. From the first condition, we see that if α∗
i > 0, then in order for the

product to be zero, then 1 − ξ∗i − y(i)(w∗T x(i) + b∗) = 0. It follows that

y(i)(w∗T x(i) + b∗) ≤ 1

since ξ∗ ≥ 0 by primal feasibility. Similarly, if β∗
i > 0, then ξ∗i = 0 to ensure comple-

mentarity. From the primal constraint, y(i)(wT x(i) + b) ≥ 1 − ξi, it follows that

y(i)(w∗T x(i) + b∗) ≥ 1.

Finally, since β∗
i > 0 is equivalent to α∗

i < C (since α∗ + β∗
i = C), we can summarize

the KKT conditions as follows:

α∗
i < C ⇒ y(i)(w∗T x(i) + b∗) ≥ 1,

α∗
i > 0 ⇒ y(i)(w∗T x(i) + b∗) ≤ 1.

11



or equivalently,

α∗
i = 0 ⇒ y(i)(w∗T x(i) + b∗) ≥ 1,

0 < α∗
i < C ⇒ y(i)(w∗T x(i) + b∗) = 1,

α∗
i = C ⇒ y(i)(w∗T x(i) + b∗) ≤ 1.

3. Simplification. We can tidy up our dual problem slightly by observing that each pair
of constraints of the form

βi ≥ 0 αi + βi = C

is equivalent to the single constraint, αi ≤ C; that is, if we solve the optimization
problem

maximize
α,β

m∑

i=1

αi −
1

2

m∑

i=1

m∑

j=1

αiαiy
(i)y(j)〈x(i), x(j)〉

subject to 0 ≤ αi ≤ C, i = 1, . . . ,m,
m∑

i=1

αiy
(i) = 0.

(27)

and subsequently set βi = C − αi, then it follows that (α, β) will be optimal for the
previous dual problem above. This last form, indeed, is the form of the soft-margin
SVM dual given in the lecture notes.

4 Directions for further exploration

In many real-world tasks, 90% of the challenge involves figuring out how to write an opti-
mization problem in a convex form. Once the correct form has been found, a number of
pre-existing software packages for convex optimization have been well-tuned to handle dif-
ferent specific types of optimization problems. The following constitute a small sample of
the available tools:

• commerical packages: CPLEX, MOSEK

• MATLAB-based: CVX, Optimization Toolbox (linprog, quadprog), SeDuMi

• libraries: CVXOPT (Python), GLPK (C), COIN-OR (C)

• SVMs: LIBSVM, SVM-light

• machine learning: Weka (Java)
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In particular, we specifically point out CVX as an easy-to-use generic tool for solving convex
optimization problems easily using MATLAB, and CVXOPT as a powerful Python-based
library which runs independently of MATLAB.8 If you’re interested in looking at some of the
other packages listed above, they are easy to find with a web search. In short, if you need a
specific convex optimization algorithm, pre-existing software packages provide a rapid way
to prototype your idea without having to deal with the numerical trickiness of implementing
your own complete convex optimization routines.

Also, if you find this material fascinating, make sure to check out Stephen Boyd’s class,
EE364: Convex Optimization I, which will be offered during the Winter Quarter. The
textbook for the class (listed as [1] in the References) has a wealth of information about
convex optimization and is available for browsing online.

References

[1] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge UP, 2004.
Online: http://www.stanford.edu/∼boyd/cvxbook/

8CVX is available at http://www.stanford.edu/∼boyd/cvx/ and CVXOPT is available at http://www.
ee.ucla.edu/∼vandenbe/cvxopt/.
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Convex Optimization Overview

Zico Kolter (updated by Honglak Lee)

October 17, 2008

1 Introduction

Many situations arise in machine learning where we would like to optimize the value of
some function. That is, given a function f : R

n → R, we want to find x ∈ R
n that minimizes

(or maximizes) f(x). We have already seen several examples of optimization problems in
class: least-squares, logistic regression, and support vector machines can all be framed as
optimization problems.

It turns out that, in the general case, finding the global optimum of a function can be a
very difficult task. However, for a special class of optimization problems known as convex

optimization problems, we can efficiently find the global solution in many cases. Here,
“efficiently” has both practical and theoretical connotations: it means that we can solve
many real-world problems in a reasonable amount of time, and it means that theoretically
we can solve problems in time that depends only polynomially on the problem size.

The goal of these section notes and the accompanying lecture is to give a very brief
overview of the field of convex optimization. Much of the material here (including some
of the figures) is heavily based on the book Convex Optimization [1] by Stephen Boyd and
Lieven Vandenberghe (available for free online), and EE364, a class taught here at Stanford
by Stephen Boyd. If you are interested in pursuing convex optimization further, these are
both excellent resources.

2 Convex Sets

We begin our look at convex optimization with the notion of a convex set .

Definition 2.1 A set C is convex if, for any x, y ∈ C and θ ∈ R with 0 ≤ θ ≤ 1,

θx + (1 − θ)y ∈ C.

Intuitively, this means that if we take any two elements in C, and draw a line segment
between these two elements, then every point on that line segment also belongs to C. Figure
1 shows an example of one convex and one non-convex set. The point θx + (1− θ)y is called
a convex combination of the points x and y.

1



Figure 1: Examples of a convex set (a) and a non-convex set (b).

2.1 Examples

• All of R
n. It should be fairly obvious that given any x, y ∈ R

n, θx + (1 − θ)y ∈ R
n.

• The non-negative orthant, R
n
+. The non-negative orthant consists of all vectors in

R
n whose elements are all non-negative: R

n
+ = {x : xi ≥ 0 ∀i = 1, . . . , n}. To show

that this is a convex set, simply note that given any x, y ∈ R
n
+ and 0 ≤ θ ≤ 1,

(θx + (1 − θ)y)i = θxi + (1 − θ)yi ≥ 0 ∀i.

• Norm balls. Let ‖ · ‖ be some norm on R
n (e.g., the Euclidean norm, ‖x‖2 =

√
∑n

i=1 x2
i ). Then the set {x : ‖x‖ ≤ 1} is a convex set. To see this, suppose x, y ∈ R

n,
with ‖x‖ ≤ 1, ‖y‖ ≤ 1, and 0 ≤ θ ≤ 1. Then

‖θx + (1 − θ)y‖ ≤ ‖θx‖ + ‖(1 − θ)y‖ = θ‖x‖ + (1 − θ)‖y‖ ≤ 1

where we used the triangle inequality and the positive homogeneity of norms.

• Affine subspaces and polyhedra. Given a matrix A ∈ R
m×n and a vector b ∈ R

m,
an affine subspace is the set {x ∈ R

n : Ax = b} (note that this could possibly be empty
if b is not in the range of A). Similarly, a polyhedron is the (again, possibly empty)
set {x ∈ R

n : Ax � b}, where ‘�’ here denotes componentwise inequality (i.e., all the
entries of Ax are less than or equal to their corresponding element in b).1 To prove
this, first consider x, y ∈ R

n such that Ax = Ay = b. Then for 0 ≤ θ ≤ 1,

A(θx + (1 − θ)y) = θAx + (1 − θ)Ay = θb + (1 − θ)b = b.

Similarly, for x, y ∈ R
n that satisfy Ax ≤ b and Ay ≤ b and 0 ≤ θ ≤ 1,

A(θx + (1 − θ)y) = θAx + (1 − θ)Ay ≤ θb + (1 − θ)b = b.

1Similarly, for two vectors x, y ∈ R
n, x � y denotes that each element of x is greater than or equal to the

corresponding element in y. Note that sometimes ‘≤’ and ‘≥’ are used in place of ‘�’ and ‘�’; the meaning
must be determined contextually (i.e., both sides of the inequality will be vectors).
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• Intersections of convex sets. Suppose C1, C2, . . . , Ck are convex sets. Then their
intersection

k
⋂

i=1

Ci = {x : x ∈ Ci ∀i = 1, . . . , k}

is also a convex set. To see this, consider x, y ∈
⋂k

i=1 Ci and 0 ≤ θ ≤ 1. Then,

θx + (1 − θ)y ∈ Ci ∀i = 1, . . . , k

by the definition of a convex set. Therefore

θx + (1 − θ)y ∈
k
⋂

i=1

Ci.

Note, however, that the union of convex sets in general will not be convex.

• Positive semidefinite matrices. The set of all symmetric positive semidefinite
matrices, often times called the positive semidefinite cone and denoted S

n
+, is a convex

set (in general, S
n ⊂ R

n×n denotes the set of symmetric n × n matrices). Recall that
a matrix A ∈ R

n×n is symmetric positive semidefinite if and only if A = AT and for
all x ∈ R

n, xT Ax ≥ 0. Now consider two symmetric positive semidefinite matrices
A,B ∈ S

n
+ and 0 ≤ θ ≤ 1. Then for any x ∈ R

n,

xT (θA + (1 − θ)B)x = θxT Ax + (1 − θ)xT Bx ≥ 0.

The same logic can be used to show that the sets of all positive definite, negative
definite, and negative semidefinite matrices are each also convex.

3 Convex Functions

A central element in convex optimization is the notion of a convex function .

Definition 3.1 A function f : R
n → R is convex if its domain (denoted D(f)) is a convex

set, and if, for all x, y ∈ D(f) and θ ∈ R, 0 ≤ θ ≤ 1,

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y).

Intuitively, the way to think about this definition is that if we pick any two points on the
graph of a convex function and draw a straight line between then, then the portion of the
function between these two points will lie below this straight line. This situation is pictured
in Figure 2.2

We say a function is strictly convex if Definition 3.1 holds with strict inequality for
x 6= y and 0 < θ < 1. We say that f is concave if −f is convex, and likewise that f is
strictly concave if −f is strictly convex.

2Don’t worry too much about the requirement that the domain of f be a convex set. This is just a
technicality to ensure that f(θx + (1 − θ)y) is actually defined (if D(f) were not convex, then it could be
that f(θx + (1 − θ)y) is undefined even though x, y ∈ D(f)).
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Figure 2: Graph of a convex function. By the definition of convex functions, the line con-
necting two points on the graph must lie above the function.

3.1 First Order Condition for Convexity

Suppose a function f : R
n → R is differentiable (i.e., the gradient3 ∇xf(x) exists at all

points x in the domain of f). Then f is convex if and only if D(f) is a convex set and for
all x, y ∈ D(f),

f(y) ≥ f(x) + ∇xf(x)T (y − x).

The function f(x) + ∇xf(x)T (y − x) is called the first-order approximation to the
function f at the point x. Intuitively, this can be thought of as approximating f with its
tangent line at the point x. The first order condition for convexity says that f is convex if
and only if the tangent line is a global underestimator of the function f . In other words, if
we take our function and draw a tangent line at any point, then every point on this line will
lie below the corresponding point on f .

Similar to the definition of convexity, f will be strictly convex if this holds with strict
inequality, concave if the inequality is reversed, and strictly concave if the reverse inequality
is strict.

Figure 3: Illustration of the first-order condition for convexity.

3Recall that the gradient is defined as ∇xf(x) ∈ R
n, (∇xf(x))i = ∂f(x)

∂xi
. For a review on gradients and

Hessians, see the previous section notes on linear algebra.
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3.2 Second Order Condition for Convexity

Suppose a function f : R
n → R is twice differentiable (i.e., the Hessian4 ∇2

xf(x) is defined
for all points x in the domain of f). Then f is convex if and only if D(f) is a convex set and
its Hessian is positive semidefinite: i.e., for any x ∈ D(f),

∇2
xf(x) � 0.

Here, the notation ‘�’ when used in conjunction with matrices refers to positive semidefi-
niteness, rather than componentwise inequality. 5 In one dimension, this is equivalent to the
condition that the second derivative f ′′(x) always be non-negative (i.e., the function always
has positive non-negative).

Again analogous to both the definition and the first order conditions for convexity, f is
strictly convex if its Hessian is positive definite, concave if the Hessian is negative semidefi-
nite, and strictly concave if the Hessian is negative definite.

3.3 Jensen’s Inequality

Suppose we start with the inequality in the basic definition of a convex function

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) for 0 ≤ θ ≤ 1.

Using induction, this can be fairly easily extended to convex combinations of more than one
point,

f

(

k
∑

i=1

θixi

)

≤
k
∑

i=1

θif(xi) for
k
∑

i=1

θi = 1, θi ≥ 0 ∀i.

In fact, this can also be extended to infinite sums or integrals. In the latter case, the
inequality can be written as

f

(
∫

p(x)xdx

)

≤

∫

p(x)f(x)dx for

∫

p(x)dx = 1, p(x) ≥ 0 ∀x.

Because p(x) integrates to 1, it is common to consider it as a probability density, in which
case the previous equation can be written in terms of expectations,

f(E[x]) ≤ E[f(x)].

This last inequality is known as Jensen’s inequality, and it will come up later in class.6

4Recall the Hessian is defined as ∇2
xf(x) ∈ R

n×n, (∇2
xf(x))ij = ∂2f(x)

∂xi∂xj

5Similarly, for a symmetric matrix X ∈ S
n, X � 0 denotes that X is negative semidefinite. As with vector

inequalities, ‘≤’ and ‘≥’ are sometimes used in place of ‘�’ and ‘�’. Despite their notational similarity to
vector inequalities, these concepts are very different; in particular, X � 0 does not imply that Xij ≥ 0 for
all i and j.

6In fact, all four of these equations are sometimes referred to as Jensen’s inequality, due to the fact that
they are all equivalent. However, for this class we will use the term to refer specifically to the last inequality
presented here.
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3.4 Sublevel Sets

Convex functions give rise to a particularly important type of convex set called an α-sublevel

set . Given a convex function f : R
n → R and a real number α ∈ R, the α-sublevel set is

defined as
{x ∈ D(f) : f(x) ≤ α}.

In other words, the α-sublevel set is the set of all points x such that f(x) ≤ α.
To show that this is a convex set, consider any x, y ∈ D(f) such that f(x) ≤ α and

f(y) ≤ α. Then

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) ≤ θα + (1 − θ)α = α.

3.5 Examples

We begin with a few simple examples of convex functions of one variable, then move on to
multivariate functions.

• Exponential. Let f : R → R, f(x) = eax for any a ∈ R. To show f is convex, we can
simply take the second derivative f ′′(x) = a2eax, which is positive for all x.

• Negative logarithm. Let f : R → R, f(x) = − log x with domain D(f) = R++

(here, R++ denotes the set of strictly positive real numbers, {x : x > 0}). Then
f ′′(x) = 1/x2 > 0 for all x.

• Affine functions. Let f : R
n → R, f(x) = bT x + c for some b ∈ R

n, c ∈ R. In
this case the Hessian, ∇2

xf(x) = 0 for all x. Because the zero matrix is both positive
semidefinite and negative semidefinite, f is both convex and concave. In fact, affine
functions of this form are the only functions that are both convex and concave.

• Quadratic functions. Let f : R
n → R, f(x) = 1

2
xT Ax + bT x + c for a symmetric

matrix A ∈ S
n, b ∈ R

n and c ∈ R. In our previous section notes on linear algebra, we
showed the Hessian for this function is given by

∇2
xf(x) = A.

Therefore, the convexity or non-convexity of f is determined entirely by whether or
not A is positive semidefinite: if A is positive semidefinite then the function is convex
(and analogously for strictly convex, concave, strictly concave); if A is indefinite then
f is neither convex nor concave.

Note that the squared Euclidean norm f(x) = ‖x‖2
2 = xT x is a special case of quadratic

functions where A = I, b = 0, c = 0, so it is therefore a strictly convex function.
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• Norms. Let f : R
n → R be some norm on R

n. Then by the triangle inequality and
positive homogeneity of norms, for x, y ∈ R

n, 0 ≤ θ ≤ 1,

f(θx + (1 − θ)y) ≤ f(θx) + f((1 − θ)y) = θf(x) + (1 − θ)f(y).

This is an example of a convex function where it is not possible to prove convexity
based on the second-order or first-order conditions because norms are not generally
differentiable everywhere (e.g., the 1-norm, ||x||1 =

∑n

i=1 |xi|, is non-differentiable at
all points where any xi is equal to zero).

• Nonnegative weighted sums of convex functions. Let f1, f2, . . . , fk be convex
functions and w1, w2, . . . , wk be nonnegative real numbers. Then

f(x) =
k
∑

i=1

wifi(x)

is a convex function, since

f(θx + (1 − θ)y) =
k
∑

i=1

wifi(θx + (1 − θ)y)

≤

k
∑

i=1

wi(θfi(x) + (1 − θ)fi(y))

= θ
k
∑

i=1

wifi(x) + (1 − θ)
k
∑

i=1

wifi(y)

= θf(x) + (1 − θ)f(x).

4 Convex Optimization Problems

Armed with the definitions of convex functions and sets, we are now equipped to consider
convex optimization problems. Formally, a convex optimization problem in an opti-
mization problem of the form

minimize f(x)
subject to x ∈ C

where f is a convex function, C is a convex set, and x is the optimization variable. However,
since this can be a little bit vague, we often write it as

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where f is a convex function, gi are convex functions, and hi are affine functions, and x is
the optimization variable.
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Is it imporant to note the direction of these inequalities: a convex function gi must be
less than zero. This is because the 0-sublevel set of gi is a convex set, so the feasible region,
which is the intersection of many convex sets, is also convex (recall that affine subspaces are
convex sets as well). If we were to require that gi ≥ 0 for some convex gi, the feasible region
would no longer be a convex set, and the algorithms we apply for solving these problems
would no longer be guaranteed to find the global optimum. Also notice that only affine
functions are allowed to be equality constraints. Intuitively, you can think of this as being
due to the fact that an equality constraint is equivalent to the two inequalities hi ≤ 0 and
hi ≥ 0. However, these will both be valid constraints if and only if hi is both convex and
concave, i.e., hi must be affine.

The optimal value of an optimization problem is denoted p⋆ (or sometimes f ⋆) and is
equal to the minimum possible value of the objective function in the feasible region7

p⋆ = min{f(x) : gi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}.

We allow p⋆ to take on the values +∞ and −∞ when the problem is either infeasible (the
feasible region is empty) or unbounded below (there exists feasible points such that f(x) →
−∞), respectively. We say that x⋆ is an optimal point if f(x⋆) = p⋆. Note that there can
be more than one optimal point, even when the optimal value is finite.

4.1 Global Optimality in Convex Problems

Before stating the result of global optimality in convex problems, let us formally define
the concepts of local optima and global optima. Intuitively, a feasible point is called locally

optimal if there are no “nearby” feasible points that have a lower objective value. Similarly,
a feasible point is called globally optimal if there are no feasible points at all that have a
lower objective value. To formalize this a little bit more, we give the following two definitions.

Definition 4.1 A point x is locally optimal if it is feasible (i.e., it satisfies the constraints
of the optimization problem) and if there exists some R > 0 such that all feasible points z
with ‖x − z‖2 ≤ R, satisfy f(x) ≤ f(z).

Definition 4.2 A point x is globally optimal if it is feasible and for all feasible points z,
f(x) ≤ f(z).

We now come to the crucial element of convex optimization problems, from which they
derive most of their utility. The key idea is that for a convex optimization problem

all locally optimal points are globally optimal .
Let’s give a quick proof of this property by contradiction. Suppose that x is a locally

optimal point which is not globally optimal, i.e., there exists a feasible point y such that

7Math majors might note that the min appearing below should more correctly be an inf. We won’t worry
about such technicalities here, and use min for simplicity.
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f(x) > f(y). By the definition of local optimality, there exist no feasible points z such that
‖x − z‖2 ≤ R and f(z) < f(x). But now suppose we choose the point

z = θy + (1 − θ)x with θ =
R

2‖x − y‖2

.

Then

‖x − z‖2 =

∥

∥

∥

∥

x −

(

R

2‖x − y‖2

y +

(

1 −
R

2‖x − y‖2

)

x

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

R

2‖x − y‖2

(x − y)

∥

∥

∥

∥

2

= R/2 ≤ R.

In addition, by the convexity of f we have

f(z) = f(θy + (1 − θ)x) ≤ θf(y) + (1 − θ)f(x) < f(x).

Furthermore, since the feasible set is a convex set, and since x and y are both feasible
z = θy + (1 − θ) will be feasible as well. Therefore, z is a feasible point, with ‖x − z‖2 < R
and f(z) < f(x). This contradicts our assumption, showing that x cannot be locally optimal.

4.2 Special Cases of Convex Problems

For a variety of reasons, it is oftentimes convenient to consider special cases of the general
convex programming formulation. For these special cases we can often devise extremely
efficient algorithms that can solve very large problems, and because of this you will probably
see these special cases referred to any time people use convex optimization techniques.

• Linear Programming. We say that a convex optimization problem is a linear

program (LP) if both the objective function f and inequality constraints gi are affine
functions. In other words, these problems have the form

minimize cT x + d
subject to Gx � h

Ax = b

where x ∈ R
n is the optimization variable, c ∈ R

n, d ∈ R, G ∈ R
m×n, h ∈ R

m,
A ∈ R

p×n, b ∈ R
p are defined by the problem, and ‘�’ denotes elementwise inequality.

• Quadratic Programming. We say that a convex optimization problem is a quadratic

program (QP) if the inequality constraints gi are still all affine, but if the objective
function f is a convex quadratic function. In other words, these problems have the
form,

minimize 1
2
xT Px + cT x + d

subject to Gx � h
Ax = b

9



where again x ∈ R
n is the optimization variable, c ∈ R

n, d ∈ R, G ∈ R
m×n, h ∈ R

m,
A ∈ R

p×n, b ∈ R
p are defined by the problem, but we also have P ∈ S

n
+, a symmetric

positive semidefinite matrix.

• Quadratically Constrained Quadratic Programming. We say that a convex
optimization problem is a quadratically constrained quadratic program (QCQP)
if both the objective f and the inequality constraints gi are convex quadratic functions,

minimize 1
2
xT Px + cT x + d

subject to 1
2
xT Qix + rT

i x + si ≤ 0, i = 1, . . . ,m
Ax = b

where, as before, x ∈ R
n is the optimization variable, c ∈ R

n, d ∈ R, A ∈ R
p×n, b ∈ R

p,
P ∈ S

n
+, but we also have Qi ∈ S

n
+, ri ∈ R

n, si ∈ R, for i = 1, . . . ,m.

• Semidefinite Programming. This last example is more complex than the previous
ones, so don’t worry if it doesn’t make much sense at first. However, semidefinite
programming is becoming more prevalent in many areas of machine learning research,
so you might encounter these at some point, and it is good to have an idea of what
they are. We say that a convex optimization problem is a semidefinite program

(SDP) if it is of the form

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . , p

X � 0

where the symmetric matrix X ∈ S
n is the optimization variable, the symmetric ma-

trices C,A1, . . . , Ap ∈ S
n are defined by the problem, and the constraint X � 0 means

that we are constraining X to be positive semidefinite. This looks a bit different than
the problems we have seen previously, since the optimization variable is now a matrix
instead of a vector. If you are curious as to why such a formulation might be useful,
you should look into a more advanced course or book on convex optimization.

It should be obvious from the definitions that quadratic programs are more general than
linear programs (since a linear program is just a special case of a quadratic program where
P = 0), and likewise that quadratically constrained quadratic programs are more general
than quadratic programs. However, what is not obvious is that semidefinite programs are
in fact more general than all the previous types, that is, any quadratically constrained
quadratic program (and hence any quadratic program or linear program) can be expressed
as a semidefinte program. We won’t discuss this relationship further in this document, but
this might give you just a small idea as to why semidefinite programming could be useful.

4.3 Examples

Now that we’ve covered plenty of the boring math and formalisms behind convex optimiza-
tion, we can finally get to the fun part: using these techniques to solve actual problems.
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We’ve already encountered a few such optimization problems in class, and in nearly every
field, there is a good chance that someone has applied convex optimization to solve some
problem.

• Support Vector Machines (SVM). One of the most prevalent applications of con-
vex optimization methods in machine learning is the support vector machine classifier.
As discussed in class, finding the support vector classifier (in the case with slack vari-
ables) can be formulated as the optimization problem

minimize 1
2
‖w‖2

2 + C
∑m

i=1 ξi

subject to y(i)(wT x(i) + b) ≥ 1 − ξi, i = 1, . . . ,m
ξi ≥ 0, i = 1, . . . ,m

with optimization variables w ∈ R
n, ξ ∈ R

m, b ∈ R, and where C ∈ R and x(i), y(i), i =
1, . . . m are defined by the problem. This is an example of a quadratic program, which
we shall show by putting the problem into the form described in the previous section.
In particular, if we define k = m + n + 1, let the optimization variable be

x ∈ R
k ≡





w
ξ
b





and define the matrices

P ∈ R
k×k =





I 0 0
0 0 0
0 0 0



 , c ∈ R
k =





0
C · 1

0



 ,

G ∈ R
2m×k =

[

−diag(y)X −I −y
0 −I 0

]

, h ∈ R
2m =

[

−1
0

]

where I is the identity, 1 is the vector of all ones, and X and y are defined as in class,

X ∈ R
m×n =













x(1)T

x(2)T

...

x(m)T













, y ∈ R
m =











y(1)

y(2)

...
y(m)











.

You should convince yourself that the quadratic program described in the previous
section, when using these matrices defined above, is equivalent to the SVM optimization
problem. In reality, it is fairly easy to see that there the SVM optimization problem
has a quadratic objective and linear constraints, so we typically don’t need to put it
into standard form to “prove” that it is a QP, and we would only do so if we are using
an off-the-shelf solver that requires the input to be in standard form.
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• Constrained least squares. In class we have also considered the least squares prob-
lem, where we want to minimize ‖Ax − b‖2

2 for some matrix A ∈ R
m×n and b ∈ R

m.
As we saw, this particular problem can be solved analytically via the normal equa-
tions. However, suppose that we also want to constrain the entries in the solution x
to lie within some predefined ranges. In other words, suppose we wanted to solve the
optimization problem,

minimize 1
2
‖Ax − b‖2

2

subject to l � x � u

with optimization variable x and problem data A ∈ R
m×n, b ∈ R

m, l ∈ R
n, and u ∈ R

n.
This might seem like a simple additional constraint, but it turns out that there will
no longer be an analytical solution. However, you should convince yourself that this
optimization problem is a quadratic program, with matrices defined by

P ∈ R
n×n =

1

2
AT A, c ∈ R

n = −bT A, d ∈ R =
1

2
bT b,

G ∈ R
2n×2n =

[

−I 0
0 I

]

, h ∈ R
2n =

[

−l
u

]

.

• Maximum Likelihood for Logistic Regression. For homework one, you were
required to show that the log-likelihood of the data in a logistic model was concave.
The log likehood under such a model is

ℓ(θ) =
n
∑

i=1

{

y(i) ln g(θT x(i)) + (1 − y(i)) ln(1 − g(θT x(i)))
}

where g(z) denotes the logistic function g(z) = 1/(1 + e−z). Finding the maximum
likelihood estimate is then a task of maximizing the log-likelihood (or equivalently,
minimizing the negative log-likelihood, a convex function), i.e.,

minimize −ℓ(θ)

with optimization variable θ ∈ R
n and no constraints.

Unlike the previous two examples, it is not so easy to put this problem into a “standard”
form optimization problem. Nevertheless, you have seen on the homework that the fact
that ℓ is a concave function means that you can very efficiently find the global solution
using an algorithm such as Newton’s method.

4.4 Implementation: Linear SVM using CVX

Many convex optimization problems can be solved by several off-the-shelf software packages
including CVX, Sedumi, CPLEX, MOSEK, etc. Thus, in many cases, once you identify the
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convex optimization problem, you can solve it without worrying about how to implement
the algorithm yourself. This is particularly useful for a rapid prototyping.8

Among these software packages, we introduce CVX [2] as an example. CVX is a free
MATLAB-based software package for solving generic convex optimzation problems; it can
solve a wide variety of convex optimization problems such as LP, QP, QCQP, SDP, etc.
As an illustration, we conclude this section by implementing a linear SVM classifier for the
binary classification problem using the data given in the Problem Set #1. For more general
setting using other non-linear kernels, the dual formulation can be solved using CVX as well.

% load data

load q1x.dat

load q1y.dat

% define variables

X = q1x;

y = 2*(q1y-0.5);

C = 1;

m = size(q1x,1);

n = size(q1x,2);

% train svm using cvx

cvx_begin

variables w(n) b xi(m)

minimize 1/2*sum(w.*w) + C*sum(xi)

y.*(X*w + b) >= 1 - xi;

xi >= 0;

cvx_end

% visualize

xp = linspace(min(X(:,1)), max(X(:,1)), 100);

yp = - (w(1)*xp + b)/w(2);

yp1 = - (w(1)*xp + b - 1)/w(2); % margin boundary for support vectors for y=1

yp0 = - (w(1)*xp + b + 1)/w(2); % margin boundary for support vectors for y=0

idx0 = find(q1y==0);

idx1 = find(q1y==1);

plot(q1x(idx0, 1), q1x(idx0, 2), ’rx’); hold on

8However, depending on the optimization problem, these off-the-shelf convex optimization solvers can be
much slower compared to the best possible implementation; therefore, sometimes you may have to use more
customized solvers or implement your own.
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Figure 4: Decision boundary for a linear SVM classifier with C = 1.

plot(q1x(idx1, 1), q1x(idx1, 2), ’go’);

plot(xp, yp, ’-b’, xp, yp1, ’--g’, xp, yp0, ’--r’);

hold off

title(sprintf(’decision boundary for a linear SVM classifier with C=%g’, C));
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Gaussian processes

Chuong B. Do (updated by Honglak Lee)

November 22, 2008

Many of the classical machine learning algorithms that we talked about during the first
half of this course fit the following pattern: given a training set of i.i.d. examples sampled
from some unknown distribution,

1. solve a convex optimization problem in order to identify the single “best fit” model for
the data, and

2. use this estimated model to make “best guess” predictions for future test input points.

In these notes, we will talk about a different flavor of learning algorithms, known as
Bayesian methods. Unlike classical learning algorithm, Bayesian algorithms do not at-
tempt to identify “best-fit” models of the data (or similarly, make “best guess” predictions
for new test inputs). Instead, they compute a posterior distribution over models (or similarly,
compute posterior predictive distributions for new test inputs). These distributions provide
a useful way to quantify our uncertainty in model estimates, and to exploit our knowledge
of this uncertainty in order to make more robust predictions on new test points.

We focus on regression problems, where the goal is to learn a mapping from some input
space X = Rn of n-dimensional vectors to an output space Y = R of real-valued targets.
In particular, we will talk about a kernel-based fully Bayesian regression algorithm, known
as Gaussian process regression. The material covered in these notes draws heavily on many
different topics that we discussed previously in class (namely, the probabilistic interpretation
of linear regression1, Bayesian methods2, kernels3, and properties of multivariate Gaussians4).

The organization of these notes is as follows. In Section 1, we provide a brief review
of multivariate Gaussian distributions and their properties. In Section 2, we briefly review
Bayesian methods in the context of probabilistic linear regression. The central ideas under-
lying Gaussian processes are presented in Section 3, and we derive the full Gaussian process
regression model in Section 4.

1See course lecture notes on “Supervised Learning, Discriminative Algorithms.”
2See course lecture notes on “Regularization and Model Selection.”
3See course lecture notes on “Support Vector Machines.”
4See course lecture notes on “Factor Analysis.”
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1 Multivariate Gaussians

A vector-valued random variable x ∈ Rn is said to have a multivariate normal (or
Gaussian) distribution with mean µ ∈ Rn and covariance matrix Σ ∈ Sn

++ if

p(x; µ, Σ) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(x − µ)TΣ−1(x − µ)

)

. (1)

We write this as x ∼ N (µ, Σ). Here, recall from the section notes on linear algebra that Sn
++

refers to the space of symmetric positive definite n × n matrices.5

Generally speaking, Gaussian random variables are extremely useful in machine learning
and statistics for two main reasons. First, they are extremely common when modeling “noise”
in statistical algorithms. Quite often, noise can be considered to be the accumulation of a
large number of small independent random perturbations affecting the measurement process;
by the Central Limit Theorem, summations of independent random variables will tend to
“look Gaussian.” Second, Gaussian random variables are convenient for many analytical
manipulations, because many of the integrals involving Gaussian distributions that arise in
practice have simple closed form solutions. In the remainder of this section, we will review
a number of useful properties of multivariate Gaussians.

Consider a random vector x ∈ Rn with x ∼ N (µ, Σ). Suppose also that the variables in x

have been partitioned into two sets xA = [x1 · · · xr]
T ∈ Rr and xB = [xr+1 · · · xn]T ∈ Rn−r

(and similarly for µ and Σ), such that

x =

[

xA

xB

]

µ =

[

µA

µB

]

Σ =

[

ΣAA ΣAB

ΣBA ΣBB

]

.

Here, ΣAB = ΣT
BA since Σ = E[(x − µ)(x − µ)T ] = ΣT . The following properties hold:

1. Normalization. The density function normalizes, i.e.,
∫

x

p(x; µ, Σ)dx = 1.

This property, though seemingly trivial at first glance, turns out to be immensely
useful for evaluating all sorts of integrals, even ones which appear to have no relation
to probability distributions at all (see Appendix A.1)!

2. Marginalization. The marginal densities,

p(xA) =

∫

xB

p(xA, xB; µ, Σ)dxB

p(xB) =

∫

xA

p(xA, xB; µ, Σ)dxA

5There are actually cases in which we would want to deal with multivariate Gaussian distributions where
Σ is positive semidefinite but not positive definite (i.e., Σ is not full rank). In such cases, Σ−1 does not exist,
so the definition of the Gaussian density given in (1) does not apply. For instance, see the course lecture
notes on “Factor Analysis.”
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are Gaussian:

xA ∼ N (µA, ΣAA)

xB ∼ N (µB, ΣBB).

3. Conditioning. The conditional densities

p(xA | xB) =
p(xA, xB; µ, Σ)

∫

xA

p(xA, xB; µ, Σ)dxA

p(xB | xA) =
p(xA, xB; µ, Σ)

∫

xB

p(xA, xB; µ, Σ)dxB

are also Gaussian:

xA | xB ∼ N
(

µA + ΣABΣ−1
BB(xB − µB), ΣAA − ΣABΣ−1

BBΣBA

)

xB | xA ∼ N
(

µB + ΣBAΣ−1
AA(xA − µA), ΣBB − ΣBAΣ−1

AAΣAB

)

.

A proof of this property is given in Appendix A.2. (See also Appendix A.3 for an easier
version of the derivation.)

4. Summation. The sum of independent Gaussian random variables (with the same
dimensionality), y ∼ N (µ, Σ) and z ∼ N (µ′, Σ′), is also Gaussian:

y + z ∼ N (µ + µ′, Σ + Σ′).

2 Bayesian linear regression

Let S = {(x(i), y(i))}m
i=1 be a training set of i.i.d. examples from some unknown distribution.

The standard probabilistic interpretation of linear regression states that

y(i) = θT x(i) + ε(i), i = 1, . . . , m

where the ε(i) are i.i.d. “noise” variables with independent N (0, σ2) distributions. It follows
that y(i) − θT x(i) ∼ N (0, σ2), or equivalently,

P (y(i) | x(i), θ) =
1√
2πσ

exp

(

−(y(i) − θT x(i))2

2σ2

)

.

For notational convenience, we define

X =











— (x(1))T —
— (x(2))T —

...
— (x(m))T —











∈ Rm×n ~y =











y(1)

y(2)

...
y(m)











∈ Rm ~ε =











ε(1)

ε(2)

...
ε(m)











∈ Rm.

3



−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

Bayesian linear regression, 95% confidence region

Figure 1: Bayesian linear regression for a one-dimensional linear regression problem, y(i) =
θx(i) + ǫ(i), with ǫ(i) ∼ N (0, 1) i.i.d. noise. The green region denotes the 95% confidence
region for predictions of the model. Note that the (vertical) width of the green region is
largest at the ends but narrowest in the middle. This region reflects the uncertain in the
estimates for the parameter θ. In contrast, a classical linear regression model would display
a confidence region of constant width, reflecting only the N (0, σ2) noise in the outputs.

In Bayesian linear regression, we assume that a prior distribution over parameters is
also given; a typical choice, for instance, is θ ∼ N (0, τ 2I). Using Bayes’s rule, we obtain the
parameter posterior,

p(θ | S) =
p(θ)p(S | θ)

∫

θ′
p(θ′)p(S | θ′)dθ′

=
p(θ)

∏m
i=1 p(y(i) | x(i), θ)

∫

θ′
p(θ′)

∏m
i=1 p(y(i) | x(i), θ′)dθ′

. (2)

Assuming the same noise model on testing points as on our training points, the “output” of
Bayesian linear regression on a new test point x∗ is not just a single guess “y∗”, but rather
an entire probability distribution over possible outputs, known as the posterior predictive
distribution:

p(y∗ | x∗, S) =

∫

θ

p(y∗ | x∗, θ)p(θ | S)dθ. (3)

For many types of models, the integrals in (2) and (3) are difficult to compute, and hence,
we often resort to approximations, such as MAP estimation (see course lecture notes on
“Regularization and Model Selection”).

In the case of Bayesian linear regression, however, the integrals actually are tractable! In
particular, for Bayesian linear regression, one can show (after much work!) that

θ | S ∼ N
(

1

σ2
A−1XT~y, A−1

)

y∗ | x∗, S ∼ N
(

1

σ2
xT
∗
A−1XT~y, xT

∗
A−1x∗ + σ2

)
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where A = 1
σ2 X

T X + 1
τ2 I. The derivation of these formulas is somewhat involved.6 Nonethe-

less, from these equations, we get at least a flavor of what Bayesian methods are all about: the
posterior distribution over the test output y∗ for a test input x∗ is a Gaussian distribution—
this distribution reflects the uncertainty in our predictions y∗ = θT x∗ + ε∗ arising from both
the randomness in ε∗ and the uncertainty in our choice of parameters θ. In contrast, classical
probabilistic linear regression models estimate parameters θ directly from the training data
but provide no estimate of how reliable these learned parameters may be (see Figure 1).

3 Gaussian processes

As described in Section 1, multivariate Gaussian distributions are useful for modeling finite
collections of real-valued variables because of their nice analytical properties. Gaussian
processes are the extension of multivariate Gaussians to infinite-sized collections of real-
valued variables. In particular, this extension will allow us to think of Gaussian processes as
distributions not just over random vectors but in fact distributions over random functions.7

3.1 Probability distributions over functions with finite domains

To understand how one might paramterize probability distributions over functions, consider
the following simple example. Let X = {x1, . . . , xm} be any finite set of elements. Now,
consider the set H of all possible functions mapping from X to R. For instance, one example
of a function f0(·) ∈ H is given by

f0(x1) = 5, f0(x2) = 2.3, f0(x2) = −7, . . . , f0(xm−1) = −π, f0(xm) = 8.

Since the domain of any f(·) ∈ H has only m elements, we can always represent f(·)
compactly as an m-dimensional vector, ~f =

[

f(x1) f(x2) · · · f(xm)
]T

. In order to specify
a probability distribution over functions f(·) ∈ H, we must associate some “probability
density” with each function in H. One natural way to do this is to exploit the one-to-one
correspondence between functions f(·) ∈ H and their vector representations, ~f . In particular,

if we specify that ~f ∼ N (~µ, σ2I), then this in turn implies a probability distribution over
functions f(·), whose probability density function is given by

p(h) =
m
∏

i=1

1√
2πσ

exp

(

− 1

2σ2
(f(xi) − µi)

2

)

.

6For the complete derivation, see, for instance, [1]. Alternatively, read the Appendices, which gives a
number of arguments based on the “completion-of-squares” trick, and derive this formula yourself!

7Let H be a class of functions mapping from X → Y. A random function f(·) from H is a function which
is randomly drawn from H, according to some probability distribution over H. One potential source of
confusion is that you may be tempted to think of random functions as functions whose outputs are in some
way stochastic; this is not the case. Instead, a random function f(·), once selected from H probabilistically,
implies a deterministic mapping from inputs in X to outputs in Y.
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In the example above, we showed that probability distributions over functions with finite
domains can be represented using a finite-dimensional multivariate Gaussian distribution
over function outputs f(x1), . . . , f(xm) at a finite number of input points x1, . . . , xm. How
can we specify probability distributions over functions when the domain size may be infinite?
For this, we turn to a fancier type of probability distribution known as a Gaussian process.

3.2 Probability distributions over functions with infinite domains

A stochastic process is a collection of random variables, {f(x) : x ∈ X}, indexed by elements
from some set X , known as the index set.8 A Gaussian process is a stochastic process such
that any finite subcollection of random variables has a multivariate Gaussian distribution.

In particular, a collection of random variables {f(x) : x ∈ X} is said to be drawn from a
Gaussian process with mean function m(·) and covariance function k(·, ·) if for any finite
set of elements x1, . . . , xm ∈ X , the associated finite set of random variables f(x1), . . . , f(xm)
have distribution,







f(x1)
...

f(xm)






∼ N













m(x1)
...

m(xm)






,







k(x1, x1) · · · k(x1, xm)
...

. . .
...

k(xm, x1) · · · k(xm, xm)












.

We denote this using the notation,

f(·) ∼ GP(m(·), k(·, ·)).

Observe that the mean function and covariance function are aptly named since the above
properties imply that

m(x) = E[x]

k(x, x′) = E[(x − m(x))(x′ − m(x′)).

for any x, x′ ∈ X .
Intuitively, one can think of a function f(·) drawn from a Gaussian process prior as an

extremely high-dimensional vector drawn from an extremely high-dimensional multivariate
Gaussian. Here, each dimension of the Gaussian corresponds to an element x from the index
set X , and the corresponding component of the random vector represents the value of f(x).
Using the marginalization property for multivariate Gaussians, we can obtain the marginal
multivariate Gaussian density corresponding to any finite subcollection of variables.

What sort of functions m(·) and k(·, ·) give rise to valid Gaussian processes? In general,
any real-valued function m(·) is acceptable, but for k(·, ·), it must be the case that for any

8Often, when X = R, one can interpret the indices x ∈ X as representing times, and hence the variables
f(x) represent the temporal evolution of some random quantity over time. In the models that are used for
Gaussian process regression, however, the index set is taken to be the input space of our regression problem.
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Figure 2: Samples from a zero-mean Gaussian process prior with kSE(·, ·) covariance function,
using (a) τ = 0.5, (b) τ = 2, and (c) τ = 10. Note that as the bandwidth parameter τ

increases, then points which are farther away will have higher correlations than before, and
hence the sampled functions tend to be smoother overall.

set of elements x1, . . . , xm ∈ X , the resulting matrix

K =







k(x1, x1) · · · k(x1, xm)
...

. . .
...

k(xm, x1) · · · k(xm, xm)







is a valid covariance matrix corresponding to some multivariate Gaussian distribution. A
standard result in probability theory states that this is true provided that K is positive
semidefinite. Sound familiar?

The positive semidefiniteness requirement for covariance matrices computed based on
arbitrary input points is, in fact, identical to Mercer’s condition for kernels! A function k(·, ·)
is a valid kernel provided the resulting kernel matrix K defined as above is always positive
semidefinite for any set of input points x1, . . . , xm ∈ X . Gaussian processes, therefore, are
kernel-based probability distributions in the sense that any valid kernel function can be used
as a covariance function!

3.3 The squared exponential kernel

In order to get an intuition for how Gaussian processes work, consider a simple zero-mean
Gaussian process,

f(·) ∼ GP(0, k(·, ·)).
defined for functions h : X → R where we take X = R. Here, we choose the kernel function
k(·, ·) to be the squared exponential9 kernel function, defined as

kSE(x, x′) = exp

(

− 1

2τ 2
||x − x′||2

)

9In the context of SVMs, we called this the Gaussian kernel; to avoid confusion with “Gaussian” processes,
we refer to this kernel here as the squared exponential kernel, even though the two are formally identical.
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for some τ > 0. What do random functions sampled from this Gaussian process look like?
In our example, since we use a zero-mean Gaussian process, we would expect that for

the function values from our Gaussian process will tend to be distributed around zero.
Furthermore, for any pair of elements x, x′ ∈ X .

• f(x) and f(x′) will tend to have high covariance x and x′ are “nearby” in the input
space (i.e., ||x − x′|| = |x − x′| ≈ 0, so exp(− 1

2τ2 ||x − x′||2) ≈ 1).

• f(x) and f(x′) will tend to have low covariance when x and x′ are “far apart” (i.e.,
||x − x′|| ≫ 0, so exp(− 1

2τ2 ||x − x′||2) ≈ 0).

More simply stated, functions drawn from a zero-mean Gaussian process prior with the
squared exponential kernel will tend to be “locally smooth” with high probability; i.e.,
nearby function values are highly correlated, and the correlation drops off as a function of
distance in the input space (see Figure 2).

4 Gaussian process regression

As discussed in the last section, Gaussian processes provide a method for modelling probabil-
ity distributions over functions. Here, we discuss how probability distributions over functions
can be used in the framework of Bayesian regression.

4.1 The Gaussian process regression model

Let S = {(x(i), y(i))}m
i=1 be a training set of i.i.d. examples from some unknown distribution.

In the Gaussian process regression model,

y(i) = f(x(i)) + ε(i), i = 1, . . . , m

where the ε(i) are i.i.d. “noise” variables with independent N (0, σ2) distributions. Like in
Bayesian linear regression, we also assume a prior distribution over functions f(·); in
particular, we assume a zero-mean Gaussian process prior,

f(·) ∼ GP(0, k(·, ·))

for some valid covariance function k(·, ·).
Now, let T = {(x(i)

∗ , y
(i)
∗ )}m∗

i=1 be a set of i.i.d. testing points drawn from the same unknown
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distribution as S.10 For notational convenience, we define

X =











— (x(1))T —
— (x(2))T —

...
— (x(m))T —











∈ Rm×n ~f =











f(x(1))
f(x(2))

...
f(x(m))











, ~ε =











ε(1)

ε(2)

...
ε(m)











, ~y =











y(1)

y(2)

...
y(m)











∈ Rm,

X∗ =











— (x
(1)
∗ )T —

— (x
(2)
∗ )T —
...

— (x
(m∗)
∗ )T —











∈ Rm∗×n ~f∗ =











f(x
(1)
∗ )

f(x
(2)
∗ )
...

f(x
(m∗)
∗ )











, ~ε∗ =











ε
(1)
∗

ε
(2)
∗

...

ε
(m∗)
∗











, ~y∗ =











y
(1)
∗

y
(2)
∗

...

y
(m∗)
∗











∈ Rm∗ .

Given the training data S, the prior p(h), and the testing inputs X∗, how can we compute
the posterior predictive distribution over the testing outputs ~y∗? For Bayesian linear regres-
sion in Section 2, we used Bayes’s rule in order to compute the paramter posterior, which we
then used to compute posterior predictive distribution p(y∗ | x∗, S) for a new test point x∗.
For Gaussian process regression, however, it turns out that an even simpler solution exists!

4.2 Prediction

Recall that for any function f(·) drawn from our zero-mean Gaussian process prior with
covariance function k(·, ·), the marginal distribution over any set of input points belonging
to X must have a joint multivariate Gaussian distribution. In particular, this must hold for
the training and test points, so we have

[

~f
~f∗

]∣

∣

∣

∣

∣

X, X∗ ∼ N
(

~0,

[

K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

])

,

where

~f ∈ Rm such that ~f =
[

f(x(1)) · · · f(x(m))
]T

~f∗ ∈ Rm∗ such that ~f∗ =
[

f(x
(1)
∗ ) · · · f(x

(m)
∗ )

]T

K(X, X) ∈ Rm×m such that (K(X, X))ij = k(x(i), x(j))

K(X, X∗) ∈ Rm×m∗ such that (K(X, X∗))ij = k(x(i), x(j)
∗

)

K(X∗, X) ∈ Rm∗×m such that (K(X∗, X))ij = k(x(i)
∗

, x(j))

K(X∗, X∗) ∈ Rm∗×m∗ such that (K(X∗, X∗))ij = k(x(i)
∗

, x(j)
∗

).

From our i.i.d. noise assumption, we have that
[

~ε

~ε∗

]

∼ N
(

~0,

[

σ2I ~0
~0T σ2I

])

.

10We assume also that T are S are mutually independent.
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Figure 3: Gaussian process regression using a zero-mean Gaussian process prior with kSE(·, ·)
covariance function (where τ = 0.1), with noise level σ = 1, and (a) m = 10, (b) m = 20, and
(c) m = 40 training examples. The blue line denotes the mean of the posterior predictive
distribution, and the green shaded region denotes the 95% confidence region based on the
model’s variance estimates. As the number of training examples increases, the size of the
confidence region shrinks to reflect the diminishing uncertainty in the model estimates. Note
also that in panel (a), the 95% confidence region shrinks near training points but is much
larger far away from training points, as one would expect.

The sums of independent Gaussian random variables is also Gaussian, so
[

~y

~y∗

]∣

∣

∣

∣

X, X∗ =

[

~f
~f∗

]

+

[

~ε

~ε∗

]

∼ N
(

~0,

[

K(X, X) + σ2I K(X, X∗)
K(X∗, X) K(X∗, X∗) + σ2I

])

.

Now, using the rules for conditioning Gaussians, it follows that

~y∗ | ~y, X, X∗ ∼ N (µ∗, Σ∗)

where

µ∗ = K(X∗, X)
(

K(X, X) + σ2I
)

−1
~y

Σ∗ = K(X∗, X∗) + σ2I − K(X∗, X)
(

K(X, X) + σ2I
)

−1
K(X, X∗).

And that’s it! Remarkably, performing prediction in a Gaussian process regression model is
very simple, despite the fact that Gaussian processes in themselves are fairly complicated!11

5 Summary

We close our discussion of our Gaussian processes by pointing out some reasons why Gaussian
processes are an attractive model for use in regression problems and in some cases may be
preferable to alternative models (such as linear and locally-weighted linear regression):

11Interestingly, it turns out that Bayesian linear regression, when “kernelized” in the proper way, turns
out to be exactly equivalent to Gaussian process regression! But the derivation of the posterior predictive
distribution is far more complicated for Bayesian linear regression, and the effort needed to kernelize the
algorithm is even greater. The Gaussian process perspective is certainly much easier!
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1. As Bayesian methods, Gaussian process models allow one to quantify uncertainty in
predictions resulting not just from intrinsic noise in the problem but also the errors
in the parameter estimation procedure. Furthermore, many methods for model selec-
tion and hyperparameter selection in Bayesian methods are immediately applicable to
Gaussian processes (though we did not address any of these advanced topics here).

2. Like locally-weighted linear regression, Gaussian process regression is non-parametric
and hence can model essentially arbitrary functions of the input points.

3. Gaussian process regression models provide a natural way to introduce kernels into a
regression modeling framework. By careful choice of kernels, Gaussian process regres-
sion models can sometimes take advantage of structure in the data (though, we also
did not examine this issue here).

4. Gaussian process regression models, though perhaps somewhat tricky to understand
conceptually, nonetheless lead to simple and straightforward linear algebra implemen-
tations.
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Appendix A.1

In this example, we show how the normalization property for multivariate Gaussians can be
used to compute rather intimidating multidimensional integrals without performing any real
calculus! Suppose you wanted to compute the following multidimensional integral,

I(A, b, c) =

∫

x

exp

(

−1

2
xT Ax − xT b − c

)

dx,

for some A ∈ Sm
++, b ∈ Rm, and c ∈ R. Although one could conceivably perform the

multidimensional integration directly (good luck!), a much simpler line of reasoning is based
on a mathematical trick known as “completion-of-squares.” In particular,

I(A, b, c) = exp (−c) ·
∫

x

exp

(

−1

2
xT Ax − xT AA−1b

)

dx

= exp (−c) ·
∫

x

exp

(

−1

2
(x − A−1b)T A(x − A−1b) − bT A−1b

)

dx

= exp
(

−c − bT A−1b
)

·
∫

x

exp

(

−1

2
(x − A−1b)T A(x − A−1b)

)

dx.

Defining µ = A−1b and Σ = A−1, it follows that I(A, b, c) is equal to

(2π)m/2|Σ|1/2

exp (c + bT A−1b)
·
[

1

(2π)m/2|Σ|1/2

∫

x

exp

(

−1

2
(x − µ)TΣ−1(x − µ)

)

dx

]

.

However, the term in brackets is identical in form to the integral of a multivariate Gaussian!
Since we know that a Gaussian density normalizes, it follows that the term in brackets is
equal to 1. Therefore,

I(A, b, c) =
(2π)m/2|A−1|1/2

exp (c + bT A−1b)
.

Appendix A.2

We derive the form of the distribution of xA given xB; the other result follows immediately
by symmetry. Note that

p(xA | xB) =
1

∫

xA

p(xA, xB; µ, Σ)dxA

·
[

1

(2π)m/2|Σ|1/2
exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)]

=
1

Z1

exp

{

−1

2

([

xA

xB

]

−
[

µA

µB

])T [

VAA VAB

VBA VBB

]([

xA

xB

]

−
[

µA

µB

])

}

where Z1 is a proportionality constant which does not depend on xA, and

Σ−1 = V =

[

VAA VAB

VBA VBB

]

.
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To simplify this expression, observe that

([

xA

xB

]

−
[

µA

µB

])T [

VAA VAB

VBA VBB

]([

xA

xB

]

−
[

µA

µB

])

= (xA − µA)T VAA(xA − µA) + (xA − µA)T VAB(xB − µB)

+ (xB − µB)T VBA(xA − µA) + (xB − µB)T VBB(xB − µB).

Retaining only terms dependent on xA (and using the fact that VAB = V T
BA), we have

p(xA | xB) =
1

Z2
exp

(

−1

2

[

xT
AVAAxA − 2xT

AVAAµA + 2xT
AVAB(xB − µB)

]

)

where Z2 is a new proportionality constant which again does not depend on xA. Finally,
using the “completion-of-squares” argument (see Appendix A.1), we have

p(xA | xB) =
1

Z3

exp

(

−1

2
(xA − µ′)T VAA(xA − µ′)

)

where Z3 is again a new proportionality constant not depending on xA, and where µ′ =
µA − V −1

AAVAB(xB − µB). This last statement shows that the distribution of xA, conditioned
on xB, again has the form of a multivariate Gaussian. In fact, from the normalization
property, it follows immediately that

xA | xB ∼ N (µA − V −1
AAVAB(xB − µB), V −1

AA).

To complete the proof, we simply note that

[

VAA VAB

VBA VBB

]

=

[

(ΣAA − ΣABΣ−1
BBΣBA)−1 −(ΣAA − ΣABΣ−1

BBΣBA)−1ΣABΣ−1
BB

−Σ−1
BBΣBA(ΣAA − ΣABΣ−1

BBΣBA)−1 (ΣBB − ΣBAΣ−1
AAΣAB)−1

]

follows from standard formulas for the inverse of a partitioned matrix. Substituting the
relevant blocks into the previous expression gives the desired result.

Appendix A.3

In this section, we present an alternative (and easier) derivation of the conditional distri-
bution of multivariate Gaussian distribution. Note that, as in Appendix A.2, we can write
p(xA | xB) as following:

p(xA | xB) =
1

∫

xA

p(xA, xB; µ, Σ)dxA

·
[

1

(2π)m/2|Σ|1/2
exp

(

−1

2
(x − µ)TΣ−1(x − µ)

)]

(4)

=
1

Z1

exp

{

−1

2

([

xA − µA

xB − µB

])T [

VAA VAB

VBA VBB

] [

xA − µA

xB − µB

]

}

(5)
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where Z1 is a proportionality constant which does not depend on xA.
This derivation uses an additional assumption that the conditional distribution is a mul-

tivariate Gaussian distribution; in other words, we assume that p(xA | xB) ∼ N (µ∗, Σ∗) for
some µ∗, Σ∗. (Alternatively, you can think about this derivation as another way of finding
“completion-of-squares”.)

The key intuition in this derivation is that p(xA | xB) will be maximized when xA = µ∗ ,

x∗

A. To maximize p(xA | xB), we compute the gradient of log p(xA | xB) w.r.t. xA and set it
to zero. Using Equation (5), we have

∇xA
log p(xA | xB)|xA=x∗

A
(6)

= −VAA(x∗

A − µA) − VAB(xB − µB) (7)

= 0. (8)

This implies that

µ∗ = x∗

A = µA − V −1
AAVAB(xB − µB). (9)

Similarly, we use the fact that the inverse covariance matrix of a Gaussian distribution
p(·) is a negative Hessian of log p(·). In other words, the inverse covariance matrix of a
Gaussian distribution p(xA|xB) is a negative Hessian of log p(xA|xB). Using Equation (5),
we have

Σ∗−1 = −∇xA
∇T

xA
log p(xA | xB) (10)

= VAA. (11)

Therefore, we get

Σ∗ = V −1
AA . (12)
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The Multivariate Gaussian Distribution

Chuong B. Do

October 10, 2008

A vector-valued random variable X =
[

X1 · · · Xn

]T
is said to have a multivariate

normal (or Gaussian) distribution with mean µ ∈ Rn and covariance matrix Σ ∈ Sn
++

1

if its probability density function2 is given by

p(x; µ, Σ) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

.

We write this as X ∼ N (µ, Σ). In these notes, we describe multivariate Gaussians and some
of their basic properties.

1 Relationship to univariate Gaussians

Recall that the density function of a univariate normal (or Gaussian) distribution is
given by

p(x; µ, σ2) =
1√
2πσ

exp

(

− 1

2σ2
(x − µ)2

)

.

Here, the argument of the exponential function, − 1
2σ2 (x−µ)2, is a quadratic function of the

variable x. Furthermore, the parabola points downwards, as the coefficient of the quadratic
term is negative. The coefficient in front, 1√

2πσ
, is a constant that does not depend on x;

hence, we can think of it as simply a “normalization factor” used to ensure that

1√
2πσ

∫ ∞

−∞
exp

(

− 1

2σ2
(x − µ)2

)

= 1.

1Recall from the section notes on linear algebra that S
n

++ is the space of symmetric positive definite n×n

matrices, defined as

S
n

++ =
{

A ∈ R
n×n : A = AT and xT Ax > 0 for all x ∈ R

n such that x 6= 0
}

.

2In these notes, we use the notation p(•) to denote density functions, instead of fX(•) (as in the section
notes on probability theory).
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Figure 1: The figure on the left shows a univariate Gaussian density for a single variable X.
The figure on the right shows a multivariate Gaussian density over two variables X1 and X2.

In the case of the multivariate Gaussian density, the argument of the exponential function,
−1

2
(x − µ)T Σ−1(x − µ), is a quadratic form in the vector variable x. Since Σ is positive

definite, and since the inverse of any positive definite matrix is also positive definite, then
for any non-zero vector z, zT Σ−1z > 0. This implies that for any vector x 6= µ,

(x − µ)T Σ−1(x − µ) > 0

−1

2
(x − µ)T Σ−1(x − µ) < 0.

Like in the univariate case, you can think of the argument of the exponential function as
being a downward opening quadratic bowl. The coefficient in front (i.e., 1

(2π)n/2|Σ|1/2
) has an

even more complicated form than in the univariate case. However, it still does not depend
on x, and hence it is again simply a normalization factor used to ensure that

1

(2π)n/2|Σ|1/2

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

dx1dx2 · · · dxn = 1.

2 The covariance matrix

The concept of the covariance matrix is vital to understanding multivariate Gaussian
distributions. Recall that for a pair of random variables X and Y , their covariance is
defined as

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])] = E[XY ] − E[X]E[Y ].

When working with multiple variables, the covariance matrix provides a succinct way to
summarize the covariances of all pairs of variables. In particular, the covariance matrix,
which we usually denote as Σ, is the n × n matrix whose (i, j)th entry is Cov[Xi, Xj].

2



The following proposition (whose proof is provided in the Appendix A.1) gives an alter-
native way to characterize the covariance matrix of a random vector X:

Proposition 1. For any random vector X with mean µ and covariance matrix Σ,

Σ = E[(X − µ)(X − µ)T ] = E[XXT ] − µµT . (1)

In the definition of multivariate Gaussians, we required that the covariance matrix Σ
be symmetric positive definite (i.e., Σ ∈ Sn

++). Why does this restriction exist? As seen
in the following proposition, the covariance matrix of any random vector must always be
symmetric positive semidefinite:

Proposition 2. Suppose that Σ is the covariance matrix corresponding to some random

vector X. Then Σ is symmetric positive semidefinite.

Proof. The symmetry of Σ follows immediately from its definition. Next, for any vector
z ∈ Rn, observe that

zT Σz =
n
∑

i=1

n
∑

j=1

(Σijzizj) (2)

=
n
∑

i=1

n
∑

j=1

(Cov[Xi, Xj] · zizj)

=
n
∑

i=1

n
∑

j=1

(E[(Xi − E[Xi])(Xj − E[Xj])] · zizj)

= E

[

n
∑

i=1

n
∑

j=1

(Xi − E[Xi])(Xj − E[Xj]) · zizj

]

. (3)

Here, (2) follows from the formula for expanding a quadratic form (see section notes on linear
algebra), and (3) follows by linearity of expectations (see probability notes).

To complete the proof, observe that the quantity inside the brackets is of the form
∑

i

∑

j xixjzizj = (xT z)2 ≥ 0 (see problem set #1). Therefore, the quantity inside the
expectation is always nonnegative, and hence the expectation itself must be nonnegative.
We conclude that zT Σz ≥ 0.

From the above proposition it follows that Σ must be symmetric positive semidefinite in
order for it to be a valid covariance matrix. However, in order for Σ−1 to exist (as required in
the definition of the multivariate Gaussian density), then Σ must be invertible and hence full
rank. Since any full rank symmetric positive semidefinite matrix is necessarily symmetric
positive definite, it follows that Σ must be symmetric positive definite.
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3 The diagonal covariance matrix case

To get an intuition for what a multivariate Gaussian is, consider the simple case where n = 2,
and where the covariance matrix Σ is diagonal, i.e.,

x =

[

x1

x2

]

µ =

[

µ1

µ2

]

Σ =

[

σ2
1 0
0 σ2

2

]

In this case, the multivariate Gaussian density has the form,

p(x; µ, Σ) =
1

2π

∣

∣

∣

∣

σ2
1 0
0 σ2

2

∣

∣

∣

∣

1/2
exp

(

−1

2

[

x1 − µ1

x2 − µ2

]T [
σ2

1 0
0 σ2

2

]−1 [
x1 − µ1

x2 − µ2

]

)

=
1

2π(σ2
1 · σ2

2 − 0 · 0)1/2
exp

(

−1

2

[

x1 − µ1

x2 − µ2

]T
[

1
σ2

1

0

0 1
σ2

2

]

[

x1 − µ1

x2 − µ2

]

)

,

where we have relied on the explicit formula for the determinant of a 2× 2 matrix3, and the
fact that the inverse of a diagonal matrix is simply found by taking the reciprocal of each
diagonal entry. Continuing,

p(x; µ, Σ) =
1

2πσ1σ2

exp

(

−1

2

[

x1 − µ1

x2 − µ2

]T
[

1
σ2

1

(x1 − µ1)
1
σ2

2

(x2 − µ2)

])

=
1

2πσ1σ2

exp

(

− 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

)

=
1√

2πσ1

exp

(

− 1

2σ2
1

(x1 − µ1)
2

)

· 1√
2πσ2

exp

(

− 1

2σ2
2

(x2 − µ2)
2

)

.

The last equation we recognize to simply be the product of two independent Gaussian den-
sities, one with mean µ1 and variance σ2

1, and the other with mean µ2 and variance σ2
2.

More generally, one can show that an n-dimensional Gaussian with mean µ ∈ Rn and
diagonal covariance matrix Σ = diag(σ2

1, σ
2
2, . . . , σ

2
n) is the same as a collection of n indepen-

dent Gaussian random variables with mean µi and variance σ2
i , respectively.

4 Isocontours

Another way to understand a multivariate Gaussian conceptually is to understand the shape
of its isocontours. For a function f : R2 → R, an isocontour is a set of the form

{

x ∈ R2 : f(x) = c
}

.

for some c ∈ R.4

3Namely,

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad − bc.

4Isocontours are often also known as level curves. More generally, a level set of a function f : Rn → R,
is a set of the form

{

x ∈ R
2 : f(x) = c

}

for some c ∈ R.

4



4.1 Shape of isocontours

What do the isocontours of a multivariate Gaussian look like? As before, let’s consider the
case where n = 2, and Σ is diagonal, i.e.,

x =

[

x1

x2

]

µ =

[

µ1

µ2

]

Σ =

[

σ2
1 0
0 σ2

2

]

As we showed in the last section,

p(x; µ, Σ) =
1

2πσ1σ2

exp

(

− 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

)

. (4)

Now, let’s consider the level set consisting of all points where p(x; µ, Σ) = c for some constant
c ∈ R. In particular, consider the set of all x1, x2 ∈ R such that

c =
1

2πσ1σ2

exp

(

− 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

)

2πcσ1σ2 = exp

(

− 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

)

log(2πcσ1σ2) = − 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

log

(

1

2πcσ1σ2

)

=
1

2σ2
1

(x1 − µ1)
2 +

1

2σ2
2

(x2 − µ2)
2

1 =
(x1 − µ1)

2

2σ2
1 log

(

1
2πcσ1σ2

) +
(x2 − µ2)

2

2σ2
2 log

(

1
2πcσ1σ2

) .

Defining

r1 =

√

2σ2
1 log

(

1

2πcσ1σ2

)

r2 =

√

2σ2
2 log

(

1

2πcσ1σ2

)

,

it follows that

1 =

(

x1 − µ1

r1

)2

+

(

x2 − µ2

r2

)2

. (5)

Equation (5) should be familiar to you from high school analytic geometry: it is the equation
of an axis-aligned ellipse, with center (µ1, µ2), where the x1 axis has length 2r1 and the
x2 axis has length 2r2!

4.2 Length of axes

To get a better understanding of how the shape of the level curves vary as a function of
the variances of the multivariate Gaussian distribution, suppose that we are interested in

5
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Figure 2:
The figure on the left shows a heatmap indicating values of the density function for an

axis-aligned multivariate Gaussian with mean µ =

[

3
2

]

and diagonal covariance matrix Σ =
[

25 0
0 9

]

. Notice that the Gaussian is centered at (3, 2), and that the isocontours are all

elliptically shaped with major/minor axis lengths in a 5:3 ratio. The figure on the right
shows a heatmap indicating values of the density function for a non axis-aligned multivariate

Gaussian with mean µ =

[

3
2

]

and covariance matrix Σ =

[

10 5
5 5

]

. Here, the ellipses are

again centered at (3, 2), but now the major and minor axes have been rotated via a linear
transformation.
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the values of r1 and r2 at which c is equal to a fraction 1/e of the peak height of Gaussian
density.

First, observe that maximum of Equation (4) occurs where x1 = µ1 and x2 = µ2. Substi-
tuting these values into Equation (4), we see that the peak height of the Gaussian density
is 1

2πσ1σ2

.

Second, we substitute c = 1
e

(

1
2πσ1σ2

)

into the equations for r1 and r2 to obtain

r1 =

√

√

√

√

√2σ2
1 log





1

2πσ1σ2 · 1
e

(

1
2πσ1σ2

)



 = σ1

√
2

r2 =

√

√

√

√

√2σ2
2 log





1

2πσ1σ2 · 1
e

(

1
2πσ1σ2

)



 = σ2

√
2.

From this, it follows that the axis length needed to reach a fraction 1/e of the peak height of
the Gaussian density in the ith dimension grows in proportion to the standard deviation σi.
Intuitively, this again makes sense: the smaller the variance of some random variable xi, the
more “tightly” peaked the Gaussian distribution in that dimension, and hence the smaller
the radius ri.

4.3 Non-diagonal case, higher dimensions

Clearly, the above derivations rely on the assumption that Σ is a diagonal matrix. However,
in the non-diagonal case, it turns out that the picture is not all that different. Instead
of being an axis-aligned ellipse, the isocontours turn out to be simply rotated ellipses.
Furthermore, in the n-dimensional case, the level sets form geometrical structures known as
ellipsoids in Rn.

5 Linear transformation interpretation

In the last few sections, we focused primarily on providing an intuition for how multivariate
Gaussians with diagonal covariance matrices behaved. In particular, we found that an n-
dimensional multivariate Gaussian with diagonal covariance matrix could be viewed simply
as a collection of n independent Gaussian-distributed random variables with means and vari-
ances µi and σ2

i , respectvely. In this section, we dig a little deeper and provide a quantitative
interpretation of multivariate Gaussians when the covariance matrix is not diagonal.

The key result of this section is the following theorem (see proof in Appendix A.2).

Theorem 1. Let X ∼ N (µ, Σ) for some µ ∈ Rn and Σ ∈ Sn
++. Then, there exists a matrix

B ∈ Rn×n such that if we define Z = B−1(X − µ), then Z ∼ N (0, I).

7



To understand the meaning of this theorem, note that if Z ∼ N (0, I), then using the
analysis from Section 4, Z can be thought of as a collection of n independent standard normal
random variables (i.e., Zi ∼ N (0, 1)). Furthermore, if Z = B−1(X − µ) then X = BZ + µ
follows from simple algebra.

Consequently, the theorem states that any random variable X with a multivariate Gaus-
sian distribution can be interpreted as the result of applying a linear transformation (X =
BZ + µ) to some collection of n independent standard normal random variables (Z).
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Appendix A.1

Proof. We prove the first of the two equalities in (1); the proof of the other equality is similar.

Σ =







Cov[X1, X1] · · · Cov[X1, Xn]
...

. . .
...

Cov[Xn, X1] · · · Cov[Xn, Xn]







=







E[(X1 − µ1)
2] · · · E[(X1 − µ1)(Xn − µn)]

...
. . .

...
E[(Xn − µn)(X1 − µ1)] · · · E[(Xn − µn)2]







= E







(X1 − µ1)
2 · · · (X1 − µ1)(Xn − µn)

...
. . .

...
(Xn − µn)(X1 − µ1) · · · (Xn − µn)2






(6)

= E













X1 − µ1
...

Xn − µn







[

X1 − µ1 · · · Xn − µn

]






(7)

= E
[

(X − µ)(X − µ)T
]

.

Here, (6) follows from the fact that the expectation of a matrix is simply the matrix found
by taking the componentwise expectation of each entry. Also, (7) follows from the fact that
for any vector z ∈ Rn,

zzT =











z1

z2
...
zn











[

z1 z2 · · · zn

]

=











z1z1 z1z2 · · · z1zn

z2z1 z2z2 · · · z2zn
...

...
. . .

...
znz1 znz2 · · · znzn











.

Appendix A.2

We restate the theorem below:

Theorem 1. Let X ∼ N (µ, Σ) for some µ ∈ Rn and Σ ∈ Sn
++. Then, there exists a matrix

B ∈ Rn×n such that if we define Z = B−1(X − µ), then Z ∼ N (0, I).

The derivation of this theorem requires some advanced linear algebra and probability
theory and can be skipped for the purposes of this class. Our argument will consist of two
parts. First, we will show that the covariance matrix Σ can be factorized as Σ = BBT

for some invertible matrix B. Second, we will perform a “change-of-variable” from X to a
different vector valued random variable Z using the relation Z = B−1(X − µ).
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Step 1: Factorizing the covariance matrix. Recall the following two properties of
symmetric matrices from the notes on linear algebra5:

1. Any real symmetric matrix A ∈ Rn×n can always be represented as A = UΛUT , where
U is a full rank orthogonal matrix containing of the eigenvectors of A as its columns,
and Λ is a diagonal matrix containing A’s eigenvalues.

2. If A is symmetric positive definite, all its eigenvalues are positive.

Since the covariance matrix Σ is positive definite, using the first fact, we can write Σ = UΛUT

for some appropriately defined matrices U and Λ. Using the second fact, we can define
Λ1/2 ∈ Rn×n to be the diagonal matrix whose entries are the square roots of the corresponding
entries from Λ. Since Λ = Λ1/2(Λ1/2)T , we have

Σ = UΛUT = UΛ1/2(Λ1/2)T UT = UΛ1/2(UΛ1/2)T = BBT ,

where B = UΛ1/2.6 In this case, then Σ−1 = B−T B−1, so we can rewrite the standard
formula for the density of a multivariate Gaussian as

p(x; µ, Σ) =
1

(2π)n/2|BBT |1/2
exp

(

−1

2
(x − µ)T B−T B−1(x − µ)

)

. (8)

Step 2: Change of variables. Now, define the vector-valued random variable Z =
B−1(X−µ). A basic formula of probability theory, which we did not introduce in the section
notes on probability theory, is the “change-of-variables” formula for relating vector-valued
random variables:

Suppose that X =
[

X1 · · · Xn

]T ∈ Rn is a vector-valued random variable with
joint density function fX : Rn → R. If Z = H(X) ∈ Rn where H is a bijective,
differentiable function, then Z has joint density fZ : Rn → R, where

fZ(z) = fX(x) ·

∣

∣

∣

∣

∣

∣

∣

det













∂x1

∂z1

· · · ∂x1

∂zn
...

. . .
...

∂xn

∂z1

· · · ∂xn

∂zn













∣

∣

∣

∣

∣

∣

∣

.

Using the change-of-variable formula, one can show (after some algebra, which we’ll skip)
that the vector variable Z has the following joint density:

pZ(z) =
1

(2π)n/2
exp

(

−1

2
zT z

)

. (9)

The claim follows immediately. �

5See section on “Eigenvalues and Eigenvectors of Symmetric Matrices.”
6To show that B is invertible, it suffices to observe that U is an invertible matrix, and right-multiplying

U by a diagonal matrix (with no zero diagonal entries) will rescale its columns but will not change its rank.
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More on Multivariate Gaussians

Chuong B. Do

November 21, 2008

Up to this point in class, you have seen multivariate Gaussians arise in a number of appli-
cations, such as the probabilistic interpretation of linear regression, Gaussian discriminant
analysis, mixture of Gaussians clustering, and most recently, factor analysis. In these lec-
ture notes, we attempt to demystify some of the fancier properties of multivariate Gaussians
that were introduced in the recent factor analysis lecture. The goal of these notes is to give
you some intuition into where these properties come from, so that you can use them with
confidence on your homework (hint hint!) and beyond.

1 Definition

A vector-valued random variable x ∈ Rn is said to have a multivariate normal (or Gaus-
sian) distribution with mean µ ∈ Rn and covariance matrix Σ ∈ Sn

++
1 if its probability

density function is given by

p(x; µ, Σ) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

.

We write this as x ∼ N (µ, Σ).

2 Gaussian facts

Multivariate Gaussians turn out to be extremely handy in practice due to the following facts:

• Fact #1: If you know the mean µ and covariance matrix Σ of a Gaussian random
variable x, you can write down the probability density function for x directly.

1Recall from the section notes on linear algebra that S
n
++ is the space of symmetric positive definite n×n

matrices, defined as

S
n
++ =

{

A ∈ R
n×n : A = AT and xT Ax > 0 for all x ∈ R

n such that x 6= 0
}

.

1



• Fact #2: The following Gaussian integrals have closed-form solutions:
∫

x∈Rn

p(x; µ, Σ)dx =

∫ ∞

−∞

· · ·
∫ ∞

−∞

p(x; µ, Σ)dx1 . . . dxn = 1

∫

x∈Rn

xip(x; µ, σ2)dx = µi

∫

x∈Rn

(xi − µi)(xj − µj)p(x; µ, σ2)dx = Σij.

• Fact #3: Gaussians obey a number of closure properties:

– The sum of independent Gaussian random variables is Gaussian.

– The marginal of a joint Gaussian distribution is Gaussian.

– The conditional of a joint Gaussian distribution is Gaussian.

At first glance, some of these facts, in particular facts #1 and #2, may seem either
intuitively obvious or at least plausible. What is probably not so clear, however, is why
these facts are so powerful. In this document, we’ll provide some intuition for how these facts
can be used when performing day-to-day manipulations dealing with multivariate Gaussian
random variables.

3 Closure properties

In this section, we’ll go through each of the closure properties described earlier, and we’ll
either prove the property using facts #1 and #2, or we’ll at least give some type of intuition
as to why the property is true.

The following is a quick roadmap of what we’ll cover:

sums marginals conditionals
why is it Gaussian? no yes yes

resulting density function yes yes yes

3.1 Sum of independent Gaussians is Gaussian

The formal statement of this rule is:

Suppose that y ∼ N (µ, Σ) and z ∼ N (µ′, Σ′) are independent Gaussian dis-
tributed random variables, where µ, µ′ ∈ Rn and Σ, Σ′ ∈ Sn

++. Then, their sum
is also Gaussian:

y + z ∼ N (µ + µ′, Σ + Σ′).

Before we prove anything, here are some observations:

2



1. The first thing to point out is that the importance of the independence assumption in
the above rule. To see why this matters, suppose that y ∼ N (µ, Σ) for some mean
vector µ and covariance matrix Σ, and suppose that z = −y. Clearly, z also has a
Gaussian distribution (in fact, z ∼ N (−µ, Σ), but y + z is identically zero!

2. The second thing to point out is a point of confusion for many students: if we add
together two Gaussian densities (“bumps” in multidimensional space), wouldn’t we get
back some bimodal (i.e., “two-humped” density)? Here, the thing to realize is that the
density of the random variable y + z in this rule is NOT found by simply adding the
densities of the individual random variables y and z. Rather, the density of y + z will
actually turn out to be a convolution of the densities for y and z.2 To show that the
convolution of two Gaussian densities gives a Gaussian density, however, is beyond the
scope of this class.

Instead, let’s just use the observation that the convolution does give some type of Gaus-
sian density, along with Fact #1, to figure out what the density, p(y + z|µ, Σ) would be, if
we were to actually compute the convolution. How can we do this? Recall that from Fact
#1, a Gaussian distribution is fully specified by its mean vector and covariance matrix. If
we can determine what these are, then we’re done.

But this is easy! For the mean, we have

E[yi + zi] = E[yi] + E[zi] = µi + µ′
i

from linearity of expectations. Therefore, the mean of y + z is simply µ + µ′. Also, the
(i, j)th entry of the covariance matrix is given by

E[(yi + zi)(yj + zj)] − E[yi + zi]E[yj + zj]

= E[yiyj + ziyj + yizj + zizj] − (E[yi] + E[zi])(E[yj] + E[zj])

= E[yiyj] + E[ziyj] + E[yizj] + E[zizj] − E[yi]E[yj] − E[zi]E[yj] − E[yi]E[zj] − E[zi][zj]

= (E[yiyj] − E[yi]E[yj]) + (E[zizj] − E[zi]E[zj])

+ (E[ziyj] − E[zi]E[yj]) + (E[yizj] − E[yi]E[zj]).

Using the fact that y and z are independent, we have E[ziyj] = E[zi]E[yj] and E[yizj] =
E[yi]E[zj]. Therefore, the last two terms drop out, and we are left with,

E[(yi + zi)(yj + zj)] − E[yi + zi]E[yj + zj]

= (E[yiyj] − E[yi]E[yj]) + (E[zizj] − E[zi]E[zj])

= Σij + Σ′
ij.

2For example, if y and z were univariate Gaussians (i.e., y ∼ N (µ, σ2), z ∼ N (µ′, σ′2)), then the
convolution of their probability densities is given by

p(y + z;µ, µ′, σ2, σ′2) =

∫

∞

−∞

p(w;µ, σ2)p(y + z − w;µ′, σ′2)dw

=

∫

∞

−∞

1√
2πσ

exp

(

− 1

2σ2
(w − µ)2

)

· 1√
2πσ′

exp

(

− 1

2σ′2
(y + z − w − µ′)2

)

dw

3



From this, we can conclude that the covariance matrix of y + z is simply Σ + Σ′.
At this point, take a step back and think about what we have just done. Using some

simple properties of expectations and independence, we have computed the mean and co-
variance matrix of y + z. Because of Fact #1, we can thus write down the density for y + z

immediately, without the need to perform a convolution!3

3.2 Marginal of a joint Gaussian is Gaussian

The formal statement of this rule is:

Suppose that

[

xA

xB

]

∼ N
([

µA

µB

]

,

[

ΣAA ΣAB

ΣBA ΣBB

])

,

where xA ∈ Rm, xB ∈ Rn, and the dimensions of the mean vectors and covariance
matrix subblocks are chosen to match xA and xB. Then, the marginal densities,

p(xA) =

∫

xB∈Rn

p(xA, xB; µ, Σ)dxB

p(xB) =

∫

xA∈Rm

p(xA, xB; µ, Σ)dxA

are Gaussian:

xA ∼ N (µA, ΣAA)

xB ∼ N (µB, ΣBB).

To justify this rule, let’s just focus on the marginal distribution with respect to the variables
xA.4

First, note that computing the mean and covariance matrix for a marginal distribution
is easy: simply take the corresponding subblocks from the mean and covariance matrix of
the joint density. To make sure this is absolutely clear, let’s look at the covariance between
xA,i and xA,j (the ith component of xA and the jth component of xA). Note that xA,i and
xA,j are also the ith and jth components of

[

xA

xB

]

3Of course, we needed to know that y + z had a Gaussian distribution in the first place.
4In general, for a random vector x which has a Gaussian distribution, we can always permute entries of

x so long as we permute the entries of the mean vector and the rows/columns of the covariance matrix in
the corresponding way. As a result, it suffices to look only at xA, and the result for xB follows immediately.
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(since xA appears at the top of this vector). To find their covariance, we need to simply look
at the (i, j)th element of the covariance matrix,

[

ΣAA ΣAB

ΣBA ΣBB

]

.

The (i, j)th element is found in the ΣAA subblock, and in fact, is precisely ΣAA,ij. Using
this argument for all i, j ∈ {1, . . . ,m}, we see that the covariance matrix for xA is simply
ΣAA. A similar argument can be used to find that the mean of xA is simply µA. Thus, the
above argument tells us that if we knew that the marginal distribution over xA is Gaussian,
then we could immediately write down a density function for xA in terms of the appropriate
submatrices of the mean and covariance matrices for the joint density!

The above argument, though simple, however, is somewhat unsatisfying: how can we
actually be sure that xA has a multivariate Gaussian distribution? The argument for this
is slightly long-winded, so rather than saving up the punchline, here’s our plan of attack up
front:

1. Write the integral form of the marginal density explicitly.

2. Rewrite the integral by partitioning the inverse covariance matrix.

3. Use a “completion-of-squares” argument to evaluate the integral over xB.

4. Argue that the resulting density is Gaussian.

Let’s see each of these steps in action.

3.2.1 The marginal density in integral form

Suppose that we wanted to compute the density function of xA directly. Then, we would
need to compute the integral,

p(xA) =

∫

xB∈Rn

p(xA, xB; µ, Σ)dxB

=
1

(2π)
m+n

2

∣

∣

∣

∣

ΣAA ΣAB

ΣBA ΣBB

∣

∣

∣

∣

1/2

∫

xB∈Rn

exp

(

−1

2

[

xA − µA

xB − µB

]T [
ΣAA ΣAB

ΣBA ΣBB

]−1 [
xA − µA

xB − µB

]

)

dxB.

3.2.2 Partitioning the inverse covariance matrix

To make any sort of progress, we’ll need to write the matrix product in the exponent in a
slightly different form. In particular, let us define the matrix V ∈ R(m+n)×(m+n) as5

V =

[

VAA VAB

VBA VBB

]

= Σ−1.

5Sometimes, V is called the “precision” matrix.
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It might be tempting to think that

V =

[

VAA VAB

VBA VBB

]

=

[

ΣAA ΣAB

ΣBA ΣBB

]−1

“=”

[

Σ−1
AA Σ−1

AB

Σ−1
BA Σ−1

BB

]

However, the rightmost equality does not hold! We’ll return to this issue in a later step; for
now, though, it suffices to define V as above without worrying what actual contents of each
submatrix are.

Using this definition of V , the integral expands to

p(xA) =
1

Z

∫

xB∈Rn

exp
(

−
[1

2
(xA − µA)T VAA(xA − µA) +

1

2
(xA − µA)T VAB(xB − µB)

+
1

2
(xB − µB)T VBA(xA − µA) +

1

2
(xB − µB)T VBB(xB − µB)

])

dxB,

where Z is some constant not depending on either xA or xB that we’ll choose to ignore for
the moment. If you haven’t worked with partitioned matrices before, then the expansion
above may seem a little magical to you. It is analogous to the idea that when defining a
quadratic form based on some 2 × 2 matrix A, then

xT Ax =
∑

i

∑

j

Aijxixj = x1A11x1 + x1A12x2 + x2A21x1 + x2A22x2.

Take some time to convince yourself that the matrix generalization above also holds.

3.2.3 Integrating out xB

To evaluate the integral, we’ll somehow want to integrate out xB. In general, however,
Gaussian integrals are hard to compute by hand. Is there anything we can do to save time?
There are, in fact, a number of Gaussian integrals for which the answer is already known
(see Fact #2). The basic idea in this section, then, will be to transform the integral we had
in the last section into a form where we can apply one of the results from Fact #2 in order
to perform the required integration easily.

The key to this is a mathematical trick known as “completion of squares.” Consider the
quadratic function zT Az + bT z + c where A is a symmetric, nonsingular matrix. Then, one
can verify directly that

1

2
zT Az + bT z + c =

1

2

(

z + A−1b
)T

A
(

z + A−1b
)

+ c − 1

2
bT A−1b.

This is the multivariate generalization of the “completion of squares” argument used in single
variable algebra:

1

2
az2 + bz + c =

1

2
a

(

z +
b

a

)2

+ c − b2

2a
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To apply the completion of squares in our situation above, let

z = xB − µB

A = VBB

b = VBA(xA − µA)

c =
1

2
(xA − µA)T VAA(xA − µA).

Then, it follows that the integral can be rewritten as

p(xA) =
1

Z

∫

xB∈Rn

exp

(

−
[

1

2

(

xB − µB + V −1
BBVBA(xA − µA)

)T
VBB

(

xB − µB + V −1
BBVBA(xA − µA)

)

+
1

2
(xA − µA)T VAA(xA − µA) − 1

2
(xA − µA)T VABV −1

BBVBA(xA − µA)

])

dxB

We can factor out the terms not including xB to obtain,

p(xA) = exp

(

−1

2
(xA − µA)T VAA(xA − µA) +

1

2
(xA − µA)T VABV −1

BBVBA(xA − µA)

)

· 1

Z

∫

xB∈Rn

exp

(

−1

2

[

(

xB − µB + V −1

BBVBA(xA − µA)
)T

VBB

(

xB − µB + V −1

BBVBA(xA − µA)
)

])

dxB

At this point, we can now apply Fact #2. In particular, we know that generically speaking,
for a multivariate Gaussian distributed random variable x with mean µ and covariance matrix
Σ, the density function normalizes, i.e.,

1

(2π)n/2|Σ|1/2

∫

Rn

exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

= 1,

or equivalently,

∫

Rn

exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

= (2π)n/2|Σ|1/2.

We use this fact to get rid of the remaining integral in our expression for p(xA):

p(xA) =
1

Z
· (2π)n/2|VBB |1/2 · exp

(

−1

2
(xA − µA)T (VAA − VABV −1

BBVBA)(xA − µA)

)

.

3.2.4 Arguing that resulting density is Gaussian

At this point, we are almost done! Ignoring the normalization constant in front, we see that
the density of xA is the exponential of a quadratic form in xA. We can quickly recognize
that our density is none other than a Gaussian with mean vector µA and covariance matrix
(VAA−VABV −1

BBVBA)−1. Although the form of the covariance matrix may seem a bit complex,
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we have already achieved what we set out to show in the first place—namely, that xA has a
marginal Gaussian distribution. Using the logic before, we can conclude that this covariance
matrix must somehow reduce to ΣAA.

But, in case you are curious, it’s also possible to show that our derivation is consistent
with this earlier justification. To do this, we use the following result for partitioned matrices:

[

A B

C D

]−1

=

[

M−1 −M−1BD−1

−D−1CM−1 D−1 + D−1CM−1BD−1

]

.

where M = A−BD−1C. This formula can be thought of as the multivariable generalization
of the explicit inverse for a 2 × 2 matrix,

[

a b

c d

]−1

=
1

ad − bc

[

d −b

−c a

]

.

Using the formula, it follows that

[

ΣAA ΣAB

ΣBA ΣBB

]

=

[

VAA VAB

VBA VBB

]−1

=

[

(VAA − VABV −1
BBVBA)−1 −(VAA − VABV −1

BBVBA)−1VABV −1
BB

−V −1
BBVBA(VAA − VABV −1

BBVBA)−1 (VBB − VBAV −1
AAVAB)−1

]

We immediately see that (VAA − VABV −1
BBVBA)−1 = ΣAA, just as we expected!

3.3 Conditional of a joint Gaussian is Gaussian

The formal statement of this rule is:

Suppose that
[

xA

xB

]

∼ N
([

µA

µB

]

,

[

ΣAA ΣAB

ΣBA ΣBB

])

,

where xA ∈ Rm, xB ∈ Rn, and the dimensions of the mean vectors and covariance
matrix subblocks are chosen to match xA and xB. Then, the conditional densities

p(xA | xB) =
p(xA, xB; µ, Σ)

∫

xA∈Rm p(xA, xB; µ, Σ)dxA

p(xB | xA) =
p(xA, xB; µ, Σ)

∫

xB∈Rn p(xA, xB; µ, Σ)dxB

are also Gaussian:

xA | xB ∼ N
(

µA + ΣABΣ−1
BB(xB − µB), ΣAA − ΣABΣ−1

BBΣBA

)

xB | xA ∼ N
(

µB + ΣBAΣ−1
AA(xA − µA), ΣBB − ΣBAΣ−1

AAΣAB

)

.
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As before, we’ll just examine the conditional distribution xB | xA, and the other result will
hold by symmetry. Our plan of attack will be as follows:

1. Write the form of the conditional density explicitly.

2. Rewrite the expression by partitioning the inverse covariance matrix.

3. Use a “completion-of-squares” argument.

4. Argue that the resulting density is Gaussian.

Let’s see each of these steps in action.

3.3.1 The conditional density written explicitly

Suppose that we wanted to compute the density function of xB given xA directly. Then, we
would need to compute

p(xB | xA) =
p(xA, xB; µ, Σ)

∫

xB∈Rm p(xA, xB; µ, Σ)dxA

=
1

Z ′
exp

(

−1

2

[

xA − µA

xB − µB

]T [
ΣAA ΣAB

ΣBA ΣBB

]−1 [
xA − µA

xB − µB

]

)

where Z ′ is a normalization constant that we used to absorb factors not depending on xB.
Note that this time, we don’t even need to compute any integrals – the value of the integral
does not depend on xB, and hence the integral can be folded into the normalization constant
Z ′.

3.3.2 Partitioning the inverse covariance matrix

As before, we reparameterize our density using the matrix V , to obtain

p(xB | xA) =
1

Z ′
exp

(

−1

2

[

xA − µA

xB − µB

]T [
VAA VAB

VBA VBB

] [

xA − µA

xB − µB

]

)

=
1

Z ′
exp
(

−
[1

2
(xA − µA)T VAA(xA − µA) +

1

2
(xA − µA)T VAB(xB − µB)

+
1

2
(xB − µB)T VBA(xA − µA) +

1

2
(xB − µB)T VBB(xB − µB)

])

.

3.3.3 Use a “completion of squares” argument

Recall that

1

2
zT Az + bT z + c =

1

2

(

z + A−1b
)T

A
(

z + A−1b
)

+ c − 1

2
bT A−1b
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provided A is a symmetric, nonsingular matrix. As before, to apply the completion of squares
in our situation above, let

z = xB − µB

A = VBB

b = VBA(xA − µA)

c =
1

2
(xA − µA)T VAA(xA − µA).

Then, it follows that the expression for p(xB | xA) can be rewritten as

p(xB | xA) =
1

Z ′
exp

(

−
[

1

2

(

xB − µB + V −1
BBVBA(xA − µA)

)T
VBB

(

xB − µB + V −1
BBVBA(xA − µA)

)

+
1

2
(xA − µA)T VAA(xA − µA) − 1

2
(xA − µA)T VABV −1

BBVBA(xA − µA)

])

Absorbing the portion of the exponent which does not depend on xB into the normalization
constant, we have

p(xB | xA) =
1

Z ′′
exp

(

−1

2

(

xB − µB + V −1
BBVBA(xA − µA)

)T
VBB

(

xB − µB + V −1
BBVBA(xA − µA)

)

)

3.3.4 Arguing that resulting density is Gaussian

Looking at the last form, p(xB | xA) has the form of a Gaussian density with mean µB −
V −1

BBVBA(xA − µA) and covariance matrix V −1
BB. As before, recall our matrix identity,

[

ΣAA ΣAB

ΣBA ΣBB

]

=

[

(VAA − VABV −1
BBVBA)−1 −(VAA − VABV −1

BBVBA)−1VABV −1
BB

−V −1
BBVBA(VAA − VABV −1

BBVBA)−1 (VBB − VBAV −1
AAVAB)−1

]

.

From this, it follows that

µB|A = µB − V −1
BBVBA(xA − µA) = µB + ΣBAΣ−1

AA(xA − µA).

Conversely, we can also apply our matrix identity to obtain:

[

VAA VAB

VBA VBB

]

=

[

(ΣAA − ΣABΣ−1
BBΣBA)−1 −(ΣAA − ΣABΣ−1

BBΣBA)−1ΣABΣ−1
BB

−Σ−1
BBΣBA(ΣAA − ΣABΣ−1

BBΣBA)−1 (ΣBB − ΣBAΣ−1
AAΣAB)−1

]

,

from which it follows that

ΣB|A = V −1
BB = ΣBB − ΣBAΣ−1

AAΣAB.

And, we’re done!
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4 Summary

In these notes, we used a few simple properties of multivariate Gaussians (plus a couple
matrix algebra tricks) in order to argue that multivariate Gaussians satisfy a number of
closure properties. In general, multivariate Gaussians are exceedingly useful representations
of probability distributions because the closure properties ensure that most of the types
of operations we would ever want to perform using a multivariate Gaussian can be done
in closed form. Analytically, integrals involving multivariate Gaussians are often nice in
practice since we can rely on known Gaussian integrals to avoid having to ever perform the
integration ourselves.

5 Exercise

Test your understanding! Let A ∈ Rn×n be a symmetric nonsingular square matrix, b ∈ Rn,
and c. Prove that

∫

x∈Rn

exp

(

−1

2
xT Ax − xT b − c

)

dx =
(2π)n/2

|A|1/2 exp(c − bT A−1b)
.
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